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Abstract: Fatigue is caused by cracks formed in repeated loading and unloading situations when
the load exceeds certain thresholds. Structures fracture suddenly when a crack reaches a critical
size. Intelligent stress indices based on nonlinear scaling provide good indicators of the severity
of the load. The stress index is -2 when the stress is negligible, and levels {-1, 0, 1} are analogue
to the lower limits of the vibration severity ranges usable, still acceptable, not acceptable. The
Wöhler curve represented by a linguistic equation (LE) model makes the calculations highly
efficient. The contribution of the stress is calculated in each sample time, which corresponds
the cycle time. The cumulative sum of the contributions indicates the deterioration of condition
and provides a prediction of the fatigue risk. In this case, torque measurements collected from
a roller mill have been analysed by using a combination of two norms and the stress index is
obtained by nonlinear scaling from the combination of these features. Long operating periods
can be achieved if the stress levels are kept low, in practice a large number of passes have low
stress indices. The high stress situations are seen as a very steep rise. The stress levels can be
followed by a generalised statistical process control approach. At the risk level higher than 60%,
a single high torque level can have a strong effect on the activation of a failure. These approaches
operate well for the set of failures analysed in this study and is promising for practical use.

Keywords: Fatigue detection, nonlinear scaling, intelligent stress indices, torque measurements,
condition monitoring

1. INTRODUCTION

Rolling mills are heavily loaded process equipment, which
require condition monitoring solutions to maximise utili-
sation at a reduced risk of failures. Torque monitoring en-
ables a condition-based maintenance of main drive spindles
to optimise rolling schedules and minimise the risk of over-
loads. Torque sensor technology presented is specifically
designed for rough ambient conditions. When loads are
increased monitoring of critical components becomes more
and more important. Overload risk rises and service factor
of equipment is reduced. The key point is to maintain
or upgrade equipment as late as possible, but as early as
necessary. The higher the capital asset of the equipment
and the more disastrous the potential consequences of a
failure are, the higher the necessity for condition monitor-
ing. Typical areas of application are drive spindles, gear
boxes, roll housings and electrical motors. (Mackel and
Fieweger, 2010)

The history of fatigue analysis already began in 1837,
when Wilhelm Albert published the first fatigue test re-
sults (Schütz, 1996) in Clausthal. Wöhler concluded that
cyclic stress range is more important than peak stress and
introduces the concept of the endurance limit. Fatigue is
progressive, localised structural damage that is caused by
repeated loading and unloading. The nominal maximum
stress values are less than the ultimate tensile stress limit
and may be below the yield stress limit of the material.
The mechanism proceeds through cracks formed when
the load exceeds certain thresholds. Structures fracture

suddenly when a crack reaches a critical size. The shape
of the structure will significantly affect fatigue life; square
holes or sharp corners will lead to elevated local stresses
where fatigue cracks can initiate. Round holes and smooth
transitions or fillets are therefore important in order to
increase the fatigue strength of the structure. The effects
of each stress level are taken into account in the calcula-
tions of cumulative damage from individual contributions
(Palmgren, 1924; Miner, 1945).

Advanced signal processing methods and intelligent fault
diagnosis have been developed to detect different types of
machine faults reliably at an early stage. Dimensionless
indices, which are obtained by comparing each feature
value with the corresponding value in normal operation,
provide useful information on different faults, and even
more sensitive solutions can be obtained by selecting suit-
able features. (Lahdelma and Juuso, 2007) Generalised
moments and norms include many well-known statistical
features as special cases and provide compact new fea-
tures capable of detecting faulty situations (Lahdelma and
Juuso, 2008, 2011a,b).

Intelligent methods extend the idea of dimensionless in-
dices to nonlinear systems: the basic idea is nonlinear
scaling, which was developed to extract the meanings of
variables from measurement signals (Juuso, 2004). In the
present systems, the scaling functions are developed by us-
ing generalised moments and norms (Juuso and Lahdelma,
2010; Juuso, 2013) and tuned with genetic algorithms
(Juuso, 2009).



The condition monitoring applications are similar with de-
tecting operating conditions in the process industry (Juuso
and Leiviskä, 2010). Detection of operating conditions can
be extended by means of a Case-Based Reasoning (CBR)
type application with linguistic equation (LE) models and
fuzzy logic (Juuso, 1994, 1999, 2004). The basic idea is
nonlinear scaling, which was developed to extract the
meanings of variables from measurement signals (Juuso
and Leiviskä, 1992). The parameters of the scaling func-
tions can be recursive updated with data analysis: the
scaling is upgraded gradually and even the initial estimates
are not necessary (Juuso, 2015b).

Torque measurement technology has been discussed in
(Mackel and Fieweger, 2010). Intelligent stress indices
based on nonlinear scaling were introduced to fatigue
detection in (Juuso and Lahdelma, 2012). The Wöhler
curve is represented by a linguistic equation (LE) model,
where the stress index can be a scaled value of stress or a
scaled value of a generalised norm obtained from vibration
signals. Torque measurements are informative in fatigue
prediction (Juuso and Ruusunen, 2013). A generalised
statistical process control (GSPC) for stress monitoring
by using the nonlinear scaling methodology to evaluate
limits (Juuso, 2015a).

This paper addresses fatigue prediction using intelligent
stress indices obtained from torque measurements in a
roller mill. Advanced signal processing, generalised norms
and nonlinear scaling are combined in the calculations.

2. TORQUE MONITORING

Torque is one of the most important rolling process mea-
surements since the whole power required for material
forming is transmitted via drive trains to the rolls. In
practice the main drives of the rolling mill are highly
dynamically loaded, e.g. bite impact, reversing rolling
practice, torsional vibrations and cobbling affect the prod-
uct and the residual life time of drive components. The
torque sensors used in rolling mills have to be extremely
robust because of the rough operating conditions. Al-
though often neglected because of cost reasons, torque
monitoring provides efficient tools for product quality and
plant reliability. The monitoring of rolling mill main drives
requires torque to be measured directly at spindles or
motor shafts. The current signal from the motor, which is
often misused for similar monitoring purposes offers only
limited information, especially in terms of signal dynamics
(Figure 1). Measured rolling torque will thus become an
important measurement for general process monitoring
and an essential information for drive train monitoring.
(Mackel and Fieweger, 2010)

3. STRESS INDICES

3.1 Nonlinear scaling

Meanings of feature and index levels are essential in stress
monitoring. Membership functions used in fuzzy logic are
represented with membership definitions, which provide
nonlinear mappings from the operation area, defined with
feasible ranges, to the linguistic values represented inside
a real-valued interval [-2,2]. The basic scaling approach

Fig. 1. Comparison of measured and calculated torque for
one rolling pass in a roughing mill: torque calculated
from motor current (red) and torque measured at
main drive shaft (blue) (Mackel and Fieweger, 2010).

presented in (Juuso, 2004) has been improved later: a new
constraint handling was introduced in (Juuso, 2009), and a
new skewness based methodology was presented for signal
processing in (Juuso and Lahdelma, 2010). Membership
definitions are monotonously increasing scaling functions
f() which consist of two second order polynomials and
their inverse functions f−1().

3.2 Feature extraction

Features are extracted from measurements with gener-
alised norms defined by

||τMp
j ||p = (τMp

j )1/p = [
1

N

N∑
i=1

(xj)
p
i ]

1/p, (1)

where p 6= 0, is calculated from N values of a sample, τ is
the sample time. With a real-valued order p ∈ < this norm
can be used as a central tendency value if ||τMp

j ||p ∈ <,
i.e. xj > 0 when p < 0, and xj ≥ 0 when p > 0. The
norm (1) is calculated about the origin, and it combines
two trends: a strong increase caused by the power p and a
decrease with the power 1/p. Therefore, all the norms have
same dimensions as xj . The generalised norm of absolute
values |xj | was introduced for signal analysis in (Lahdelma
and Juuso, 2008). In stress monitoring, all the features and
indices are positive.

3.3 Scaling functions

Monotonously increasing scaling functions can be con-
structed by adjusting the centre point cj , the core
[(cl)j , (ch)j ] and the support [min (xj), max (xj)]. In the
data-based solution, the value range of xj is divided into
two parts by the central tendency value cj and the core
area, [(cl)j , (ch)j ], is limited by the central tendency val-
ues of the lower and upper part. The approach is based
on the normalised moments generalised by replacing the
expectation with the norm (1) as the central value:

γpk =
1

Nσkj

N∑
i=1

[(xj)i − ||τMp
j ||p]

k (2)

where σj is calculated about the origin, and k is a positive
integer. (Juuso and Lahdelma, 2010)



The monotonous increase is achieved with a sequential
approach introduced in (Juuso, 2009): first define the
centre point cj , then the core by choosing the ratios

α−
j =

(cl)j −min (xj)

cj − (cl)j

α+
j =

max (xj)− (ch)j
(ch)j − cj

(3)

from the range [ 13 , 3], and finally calculate the support
[min (xj), max (xj)]. The norms (1) are used together with
the generalised skewness (2) in the data-driven approach to
define the centre and corner points. The ratios (3), which
are checked in all data-driven cases, are also guiding the
manual construction of the scaling functions. Additional
constraints are used e.g. to introduce local linear parts
can be included if they are feasible.

The nonlinear scaling methodology provides good results
for the automatic generation of scaling functions. Even
small faults and anomalies are detected. The approach has
been tested with normal, Poisson and Weibull distribu-
tions and used in condition monitoring applications (Juuso
and Lahdelma, 2010). This approach is suitable for a very
large set of statistical distributions (Juuso, 2013).

3.4 Stress indices

Stress indices obtained from the scaled values (Juuso and
Lahdelma, 2010) provide an indication of the severity of
the load. The indices are calculated with problem-specific
sample times, and variation with time is handled as un-
certainty by presenting the indices as time-varying fuzzy
numbers. The classification limits can also be considered
fuzzy. Practical long-term tests have been performed e.g.
for diagnosing faults in bearings, in supporting rolls of lime
kilns and for the cavitation of water turbines (Juuso and
Lahdelma, 2010). The indices obtained from short samples
are aimed for use in the same way as the process measure-
ments in process control. The new indices are consistent
with the measurement and health indices developed for
condition monitoring. (Juuso and Lahdelma, 2008) The
cavitation index is an example of a stress index: when the
stress in negligible, and levels -1, 0, 1 are analogue to the
lower limits of the vibration severity ranges usable, still
acceptable, not acceptable defined in the VDI 2056 (VDI,
1964; Collacott, 1977).

3.5 LE models

The nonlinear scaling transforms the nonlinear model y =
F (x) to a linear problem. The basic element of a linguistic
equation (LE) model is a compact equation

m∑
j=1

AijXj(t− nj) +Bi = 0, (4)

where Xj is a linguistic value for the variable j, j = 1...m.
Each variable j has its own time delay nj compared to
the variable with latest time label. Linguistic values in the
range [−2, 2] are obtained from the actual data values by
membership definitions. The directions of the interaction
are represented by interaction coefficients Aij ∈ <. In the
original system (Juuso and Leiviskä, 1992), the linguistic
labels {very low, low, normal, high, very high} were
replaced by numbers {−2,−1, 0, 1, 2}.

The coefficients Aij and Bi in (4) have a relative meaning,
i.e. the equation can be multiplied or divided by any non-
zero real number without changing the model. A LE model
with several equations can be represented as a matrix
equation

AX + B = 0, (5)

where the interaction matrix A contains all coefficients
Aij , i = 1, . . . , n, j = 1, . . . , m, and the bias vector B all
bias terms Bi, i = 1, . . . , n. The time delays of individual
variables are equation specific. As linear equations, each
model can be used in any direction, i.e. the output variable
can be chosen freely.

Fig. 2. S-N curves in typifying fatigue test results (Bathia,
1999; Boyer, 2001).

4. FATIQUE

4.1 Stress and fatigue

ASTM International, earlier known as the American Soci-
ety for Testing and Materials, defines fatigue life, Nf , as
the number of stress cycles of a specified character that a
specimen sustains before failure of aspecific nature occurs.
(Stephens and Fuchs, 2001) In high-cycle fatigue situa-
tions, material performance is commonly characterized by
an S-N curve, also known as the Wöhler curve (Figure
2). This is a graph of the magnitude of a cyclic stress
(S) against the logarithmic scale of cycles to failure (N).
The curves are material specific (Marines et al., 2003). S-N
curves are derived from tests on samples of the material
where a regular sinusoidal stress is applied by a testing
machine which also counts the number of cycles to failure.
Probability distributions that are common in data anal-
ysis and in design against fatigue include the lognormal
distribution, extreme value distribution, the Birnbaum-
Saunders distribution and the Weibull distribution. (Juuso
and Lahdelma, 2012)

In practice, the sequence of load is complex, often random,
including large and small loads. The rainflow analysis
and histograms of cyclic stress are used to assess the
safe life in these cases. The effects of each stress level
are taken into account in the calculations of cumulative
damage. Individual contributions are combined by means
of algorithms such as the Miners rule, also known as the



Fig. 3. Load-classification box-plots show fatigue and utilisation ratio for equipment such as spindles or rolls (Mackel
and Fieweger, 2010).

Palmgren-Miner linear damage hypothesis. The algorithm
assumes that there are m different stress magnitudes in
a spectrum {Si, i = 1 . . .m} , each contributing ni(Si)
cycles, and Ni(Si) is the number of cycles to the failure of
a constant stress Si. The failure occurs when

m∑
i=1

ni(Si)

Ni(Si)
= Cmax (6)

where Cmax is an experimental constant between 0.7 and
2.2. The rule (6) does not include the handling of the
probabilistic nature of fatigue. The effects of dynamic
stress changes are not taken into account either. (Juuso
and Ruusunen, 2013)

Fatigue and wear monitoring for the condition-based main-
tenance of torque loaded drive equipment can be improved
by compiling load collectives and condensing these load
collectives into box-plots for each fatigue affected drive
component (Figure 3).

4.2 Fatigue prediction

Wöhler curves were in (Juuso and Lahdelma, 2012) repre-
sented by a linguistic equation

IS = log10(NC) (7)

where the stress index can be a scaled value of stress,
f−1(Si), or a scaled value of a generalised norm obtained
from vibration signals: f−1(||τMp

α||). The scaling of the

logarithmic values of the number of cycles, NC , is linear.
As the LE model is nonlinear, it covers a wide operating
range. The system may also contain several specific equa-
tions corresponding to different operating points, e.g. low,
normal and high stress.

The Wöhler curves can be generated from material tests.
For the existing Wöhler curves, the scaling functions of
the stress are generated by defining the corner points from
the selected points (S,NC). Then the corner points are
modified if the limits of the shape factors α−

j and α−
j

are violated. For process equipment, the S-N curves are
gradually refined, as extensive tests cannot be performed
in the same way as for materials. The approach is similar to
the one used in recursive modelling for prognostics (Juuso
and Lahdelma, 2011; Juuso, 2015b).

The continuous model (7) extends the principle of the
Palmgren-Miner linear damage hypothesis (6). In each
sample time, τ , the cycles NC(k) obtained from IS(k) by
(7), and the resulting contribution τ

NC(k) summarised to

the previous contributions

C(k) = C(k − 1) +
τ

NC(k)
, (8)

which can also be used for predictions based on use
scenarios. Since the stress is not constant for the whole
cycle, the sample time is taken as a fraction of the cycle
time. The previous history can be updated whenever the



scaling functions are changed. (Juuso and Lahdelma, 2012)
The value range of the sum C is scaled to provide the
fatigue risk in percents (%).

The cumulative sum of the contributions presented by
(8) indicates the deterioration of the condition, and the
simulated sums can be used to predict the failure time.
The high stress contributions dominate in the summation.
Correspondingly, the very low stress periods have a negli-
gible effect, which is consistent with the idea of infinite life
time (Figure 2). The summation of the contributions also
reveals repeated loading and unloading, and the individual
contributions provide indications of the severity of the
effect.

5. ROLLER MILL

The condition monitoring approach based on stress indices
has been tested by using torque measurements from a hot
rolling mill. The aims are to calculate a prediction of the
fatigue risk and to provide information for expanding the
feasible operating time.

5.1 Measurements

Data preparation from the huge measurement material
was a very time-consuming phase in this project: torque
measurements were analysed from 35000 passes, each
having measurement values in the similar way as shown
in Figure 1. The maximum torques have important effect
on the progress of the fatigue risk, e.g. very high torques
can cause an immediate failure. Three very high torque
values are seen in Figure 4.
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Fig. 4. Measured maximum average torque (kNm) (Juuso
and Ruusunen, 2013).

5.2 Features

The feature alternatives included several norms and their
combinations. The feature selection is based on the in-
formation theory: the best similarity between signals is
achieved for a feature obtained as difference between the
effective and average values, i.e.

Feature = [
1

N

N∑
i=1

(xj)
2
i ]

1/2 − 1

N

N∑
i=1

(xj)i (9)

where xj is the fillet split. The time interval τ can be
different for the passes. Since the orders of the norm are
here 1 and 2, also negative values of xj can be used. The
resulting features are shown in Figure 5.
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Fig. 5. Feature = fillet split effective - fillet split average
(kNm) (Juuso and Ruusunen, 2013).

5.3 Stress index

The scaling function is highly nonlinear (Figure 6). The
support area is changed to ensure that the scaling function
is monotonously increasing. All the feature values are
positive: the negative value corresponding to the very
low level is needed for function definitions. The shape is
consistent with S-N curves shown in Figure 2.
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Fig. 6. Scaling function of Feature (9) extracted from the
data shown in Figure 5.

5.4 LE based S-N curve

The S-N curve is represented by the linguistic equation
(7). The stress index is calculated from the scaled features
obtained by using the nonlinear scaling functions, also
denoted as membership definitions. The resulting linguis-
tic S-N curve is linear, which is clearly seen in Figure 7.
The scaling function shown in Figure 6 extracts well the
nonlinear effects.

A large number of passes have low stress indices. The index
values are scaled to the feature values to form a normal S-
N curve (Figure 8). The high stress cases are seen as a very
steep rise in the semilogarithmic curve which supports the
previous idea to count only the number of overloads, see
Figure 3.

5.5 Fatigue risk

The fatigue risk is predicted with the extended approach
introduced in (Juuso and Lahdelma, 2012): the contribu-
tion of each pass is obtained by the continuous model (7)
and summarised to the previous contributions by (8). The
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Fig. 7. Linguistic S-N curve presenting the analysed passes
(Juuso and Ruusunen, 2013).
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Fig. 8. S-N curve presenting the analysed passes (Juuso
and Ruusunen, 2013).

risk is increasing fast when the stress index is high, but
the increase can also be very slow for a quite long time
(Figure 9) if the stress is kept in moderate levels.

At the risk level higher than 60%, a single high torque level
can have a strong effect on the activation of a failure. The
first failure at the pass 6181 takes place when the torque
is very high, over 1 kNm (Figure 4). High torque values at
the passes 24582 and 33606 do not cause a failure. There
is a long operation period before the third failure at the
pass 22164. The second failure does not fit this model.

The approach is promising for practical use since it op-
erates well for the limited set of failures analysed in this
study. However, further tuning and testing with the huge
measurement material is needed.

The fatigue risk should be calculated separately for each
workroll resulting a classification plot which refines the
idea shown in Figure 3. The number of overloads is
replaced by a quantitative, tunable fatigue risk calculated
by (8).

5.6 Statistical process control

Statistical process control (SPC) is a feasible solution for
demonstrating real time the risky levels of the stress during
the operation, see Figure 10. SPC is based on continuously
analysing and reducing variation in manufacturing pro-
cesses (Oakland, 2008). Focus is on early detection and
various control charts have been developed and widely
used for that: Shewhart started already in1920s. Standard
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Fig. 9. Calculated fatigue risk (%): o is a failure point and
a pass with high torque, which does not cause a failure
(Juuso and Ruusunen, 2013).

control charts are often based on normal distributions, but
non-Gaussian data need to be analysed in many cases.
A flexible family of statistical distributions is applied in
(Fournier et al., 2006).
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Fig. 10. GSPC results for Feature (9) and the stress index
obtained for a period selected from Figure 5 (Juuso,
2015a).

In the applications, which require stress monitoring, both
process measurements and condition monitoring measure-
ments are highly nonlinear. The statistical process control
(SPC) can be extended to nonlinear and non-Gaussian
data by using the new generalised SPC introduced in



(Juuso, 2015a) is suitable for a large set of statistical dis-
tributions. The parameters of the scaling function provide
the upper control limit UCL corresponding to IS = 2. A
better quality performance can be achieved if the limit
is moved to UCL∗, i.e. IS = 1. Removing the values
exceeding the level corresponding to IS = 2 will then
change distribution to the quality control which is main
area of the SPC. Normal control rules can be used in charts
shown in Figure 10).

6. CONCLUSION

The Wöhler curves represented by linguistic equation (LE)
models are feasible in calculating the contributions of a
complex load that varies with time. Torque measurements
collected from a rolling mill are analysed with a combina-
tion of two norms and scaled with the nonlinear scaling
approach. The stress index is linked to the fatigue by a
linguistic S-N curve, which is linear. The high stress cases
are seen as a very steep rise in the semilogarithmic curve.
At the risk level higher than 60%, a single high torque
level can have a strong effect on the activation of a failure.
Long operating periods can be achieved if the risk levels
are low. A generalised SPC approach is a feasible solution
to demonstrate the risky stress levels during the operation.
These approaches operate well for the limited set of failures
analysed in this study and is promising for practical use.
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