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Abstract: A model-based quality monitoring method for wood combustion process is discussed. The
method consists of a gas sensor signal combined with additional process measurements. In this case, raw
signal indicating the presence of Carbon monoxide in flue gas is enriched applying sensor fusion to
provide on-line information for control purposes. The presented model is identified and tested with data
sets obtained from combustion experiments with a wood fuel. According to simulation results with
testing data, the model satisfactory generates similar and undelayed CO concentration values as
compared to reference signals of a gas analyser. Further, the presented monitoring method is capable to
compensate drift and nonlinearities in the gas sensor response during the combustion tests. These
properties could increase the potential usage of such type a gas sensors intended for monitoring
combustion quality.
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1. INTRODUCTION

Quality of a combustion process is determined by emissions
and efficiency. In order to maintain optimal process
conditions with formation of minimal harmful components,
combustion needs to be monitored.

Process conditions may vary remarkably in small-scale
combustion units, leading to formation of harmful
combustible gases. Carbon monoxide (CO) is one of the
typical gaseous component in such conditions. It can be also
utilised as an indicator for other combustion products
including gaseous hydrocarbons.

Semiconductor gas sensors are one of the most widespread
among the measurements of gaseous combustion products.
Typical applications include gas leak detectors, low-cost gas
analysers and lambda sensors. However, their applications in
the real-time combustion monitoring have been rare because
of the harsh nature of measuring environment.
Semiconductor gas sensors are usually produced applying a
reactive metal oxide material that is sensitive to concentration
changes of several gas components. This is because of the
variation in conductance between electrodes accordingly,
making it possible to measure resistance over the
semiconductor material layer (Torvela et al., 1989; Petersson
and Holmberg, 2005). Often, doping some additional
ingredient into a reactive material enhances the properties of
the metal oxide. In this way, common characteristics of this
type of sensor family like non-linear response, cross-
sensitivity and chemical material erosion – drifting in sensor
response, can be at least partly compensated (Endres et al.
1995; White and Turner, 1997).

In order to provide instant and reliable information for
combustion quality monitoring, response signal of a
semiconductor based gas sensor needs to be conditioned and
enriched. In CO monitoring, the task is then to minimise
cross-sensitivity and sensor drift together with its non-linear
response characteristics. In this research, a group of sensor
signals is fused to monitor combustion quality in a small-
scale heating appliance. The paper presents a model-based
method to combine a semiconductor sensor signal with flue
gas temperature and fuel weighting signals in small-scale
combustion process. Next, the applied methodology related to
sensor fusion is discussed. Then, the monitoring results with
the  data  from combustion  experiments  with  solid  wood as  a
fuel are presented. Finally, conclusions originating from the
results are given.

2. MODEL-BASED SENSOR FUSION

2.1  Model Inputs

In combustion of solid fuels, flue gas temperature is partly
related to the formation of CO. It is also straightforward to
measure and related sensors may provide a fast response. The
second variable selected as input for the model is the mass of
fuel. Changes in the fuel weight may be used for indicating
the progress of burning in a fuel layer during batch
combustion. The raw signal of a semiconductor sensor is
utilised as a third input for the modelling.

Adaptation to different burning phases is achieved by
modelling CO concentration locally at three operation
regimes. Progress of burning is described here with a
proportional value mn(t) of the fuel weights as
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where mpa(t) is the current mass of the fuel layer and mpa(t0)
is  the  mass  at  the  start-up.  Value  of mn(t)  is  now  used  in
decomposing the process into separate operation regimes.
Local regions are defined by fuzzy sets because of uncertain
information in (1). Three burning phases are approximated
with fuzzy sets ignition, burning and charring. The
membership functions of the presented fuzzy sets apply the
current value of mn(t). The location of functions is permanent,
because mn(t) stays between one and zero. For example, when
the  current  value  of mn(t) is near one, the burning phase
according to the fuzzy sets is estimated mostly by ignition. At
the same time, it is possible that the burning phase belongs a
little bit to the fuzzy set burning. The membership functions
of  the  burning  phase  define  the  validity  of  the  local  TS-
models for the current operation regime. Local models can be
now constructed for these regimes and scheduled using the
membership functions. Membership values are acting as
weights for the local TS-models. The global model is
composed as the sum of weighted local models.

2.2  Structure of the Model

Many successful modelling results have been reported with a
fuzzy model structure suggested originally by Takagi and
Sugeno (1985). The same modelling approach has been
applied formerly also to on-line monitoring of carbon dioxide
concentration in flue gases (Ruusunen and Leiviskä, 2004).

The structure of the Takagi-Sugeno (TS) -model consists of
fuzzy rules. Membership functions appear in the premise,
whereas the consequent part contains the linear equation.
Fuzzy rules represent linear local input-output relations of the
system. TS-type fuzzy rules applied here for the CO
modelling are of the following form
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where x1 (t)  is  the  value  of mn (t), x2(t) is the current
temperature of the combustion, ai and bi are parameters, x is
the vector of model inputs in the consequent part, Ai1 (x1(t)) is
the membership function of current burning phase, Ai2 (x2(t))
is the membership function of the flue gas temperature and

iŷ (t)  is  an  output  of  the ith rule. The output kŷ (t)  of  the
model can be formed using a simplified method (Tanaka, et
al., 1995) as
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where wi is the product of membership values used in the
premise part of the ith rule,
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For parameter identification of the model, criterion function
EM is defined as follows
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where yk(t) is the real value of CO concentration. Error
between the real value and model output is minimized by
estimating the parameters of each rule. This is done by
partially differentiating criterion function with respect to
consequent parameters of the model (2)
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and after that modifying each parameter recursively using (6)
as
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where e  is the learning factor. Subscript m denotes the
ordinal number of parameter-input variable pairs in the
consequent part. Parameter estimating method (7) is a logical
selection for this purpose, because learning now occurs
locally, concerning only to currently valid fuzzy rules.

3. EXPERIMENTAL

3.1  Realisation of the Gas Sensor

In  this  work  the  gas  sensor  was  based  on  the  thick-film
technology. The heating element of the sensor was realised
by printing Pt conductors on 96% alumina. The line width of
the conductors was 100 µm, the thickness was 5 µm and the
total length was about 65 mm. The resistance of the heating
element was about 300 ohm.

The conductor layer was fired at peak temperature of 1373 K
after which the SnO2 paste was screen-printed over the
conductors. This SnO2 paste  was  doped  with  100  ppm  Sb
which decreased the resistivity of the semiconducting layer.
The paste was double-printed in order to increase the layer
thickness and eliminate any voids in the film. The final
thickness of semiconducting layer was 30 µm.



3.2  Set up for Combustion Experiments

The measurement campaign for the wood log combustion,
consisting of a batch-fired stove with a 5 kW average heat
output was set up. The grate area of the stove was 0.096 m2

and was  installed  0.1  m above the  floor  of  the  furnace.  The
height of the stove was 1.5 metres and the total height of the
device approximately two metres.

Combustion air was supplied from two air inlets, located on
the  level  of  the  grate.  Exit  temperature  of  the  flue  gas  was
measured using a shielded and ungrounded K-type
thermocouple with a wire thickness of 1.5 mm. Actuators for
the dampers were installed to enable automatic control. A
load cell connected to the grate weighed the fuel mass
continuously. A natural draught was present during the
measurement campaign. During the tests, sampling frequency
of  four  hertz  was  in  use.  Measured  signals  were  saved  to  a
database every five seconds as a mean value of 20 preceding
data points. At the same time, an infrared gas analyser was
used to measure the concentration of CO in the dry flue gas.

4. RESULTS AND DISCUSSION

4.1  Combustion Experiments

Identification data for the estimation of the model parameters
were obtained from one experiment, in which two batches of
chopped firewood were burnt. In addition, five combustion
experiments were then performed to collect validation data,
resulting in total 4885 data points (Ruusunen and Leiviskä,
2004). Total number of burnt fuel batches was 15. Mass of
these batches varied between 1.2 – 2 kilograms of birch and
aspen wood. Moisture of the wood was nine percent, except
in one batch with measured moisture content of 30 percent.
As an example, acquired data set for model identification is
shown in Figure 1.
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Fig. 1. Acquired data set for parameter estimation.

As seen in Figure 1, the time variant behaviour exhibits in the
response  of  the  gas  sensor.  Also,  the  flue  gas  temperature
level tends to increase during the test campaign. This is due
to the warming of the chimney. Signals in the Figure 1 have

been  arbitrary  scaled  to  same  magnitude  for  data
visualization.

4.2  Simulations With Measured Data

The model parameters (2) were first estimated using
measured CO concentrations as a reference signal and by
minimising the criterion function (5). For this, identification
data set was used.

Model inputs were scaled between zero and one using
maximum identification data set values of each variable.
Initial values of the model parameters were set to 0.1. The
model parameters then typically converged to minimum after
15 iterations.

Based on these results, the model parameters for testing were
obtained with learning factor of 0.01 and at 15th iteration. At
this point, the minimum value of the error criterion was 0.25.

After identification of the model parameters, validation of the
CO monitoring approach was performed with the rest of the
data. With the normal distribution and randomness
assumptions made, sample mean of the modelling error was
0.01±0.002 percentage by volume at confidence level 99%.
Standard deviation of the error was 0.06 percentage by
volume. Mean absolute percentage error was 15%
respectively. The measured and modelled CO concentration
in  the  flue  gas  is  presented  in  Figure  2  with  validation  data
set.
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Fig. 2. Measured and modelled CO concentration in flue gas.

It  can  be  noticed  from  the  above  Figure  2  that  the  model
output mainly follows the measured CO concentration. Some
deviations between the model and the measurement are
present due to the noisy fuel weight signal and an abrupt
change of fuel moisture content. These issues could be
compensated by an additional or different kind of model
input combinations. On the other hand, the increase of sensor
costs because of this can be major restriction in small-scale
heating appliances. Besides, in the followed real-time
combustion control tests the presented monitoring approach
for CO was successful as a part of the control system.



With the model and the resulting sensor fusion, the time lag
of CO measurement (25 second) was removed. This, together
with drift compensation of the sensor signal are favourable
properties when aiming to minimise gaseous emissions by
continuous quality monitoring of combustion processes.

5.  CONCLUSIONS

In  this  case  study,  fusion  of  the  sensors  for  monitoring
process quality seem to exhibit relevancy when applied with
data-based modelling. By using an empirical modelling
approach, application family can be transferable. Then,
sensor that exhibit nonlinear and drifting response could be
easier to apply for mass production with low cost supported
by the enriched signal information applying sensor fusion.
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