
1

Measurement, Monitoring and
Environmental Assessment research
program (MMEA)
Research report
Deliverable 1.1.7

Helsinki 2013

Extensible Architecture for Distributed Near
Real-Time Environmental Monitoring

Authors
Corresponding author: Ville Kotovirta VTT Technical Research Centre of Finland

P.O. Box 1000, FI-02044 VTT, Finland.
Tel. +358-20-722 111, fax. +358 20 722 7024
e-mail: ville.kotovirta@vtt.fi

2nd author: Harri Hytönen Vaisala Oyj

P.O. Box 26, FI-00421 Helsinki, Finland
Tel. +358-9-894 91
e-mail: harri.hytonen@vaisala.com

3rd author: Antti Aalto HiQ International AB

Vaisalantie 6, 02130 Espoo, Finland,
Tel. +358-9-4355 860
e-mail: antti.aalto@hiq.fi

CLEEN LTD
ETELÄRANTA 10
P.O. BOX 10
FI-00130 HELSINKI
FINLAND
www.cleen.fi

2

Abstract
Near real-time environmental monitoring is needed for decision-making in dynamic
environmental conditions. A distributed near real-time environmental monitoring
system consists of distributed processing components that produce information from
the raw data coming from distributed sources. The data processing needs to deliver
the information in time, be reliable and robust to succeed in the delivery continuously,
and be cost-efficient to develop, configure and maintain. We discuss 1) requirements
for a distributed near real-time environmental monitoring system; 2) suggest an
architectural model that supports the development of scalable, extensible,
interoperable and robust near real-time environmental monitoring systems; and 3)
present a prototype system implementation for validating the architectural model. The
architecture combines Enterprise Service Bus (ESB), complex event processing
(CEP) and cloud computing, and the prototype set up can do simple event processing
for 7,000 observation messages per second with processing costs of around $2/hour.
Keywords: Environmental monitoring; near real-time; data processing; cloud computing;
Enterprise Service Bus; complex event processing; distributed computing

3

Contents	
1 Introduction ... 4

1.1. Near real-time processing... 4
1.2. Distributed systems .. 5
1.3. The scope of the article .. 5

2 System architecture ... 6
2.1. Requirements for distributed near real-time environmental
monitoring .. 6
2.2. System architecture for developing distributed near real-time
environmental monitoring systems .. 9

3 Prototype system for validating the architectural model 12
3.1. Prototype architecture .. 12
3.2. Data storage and security ... 14
3.3. Performance and scalability ... 15

4 Discussion ... 16
5 Conclusions ... 18
6 Abbreviations .. 19
7 References... 19

4

1 Introduction	
Large amounts of environmental data are produced by various distributed
sensor networks and forecast models in near real-time. These data are the
basis for near real-time environmental monitoring systems that process
relevant context-related information from raw environmental data and deliver
the processed information to end-users who utilize it in decision-making in
dynamic environmental conditions. For example, a system for monitoring ice
conditions in ice-infested sea areas delivers satellite and on-ground radar
images, as well as oceanographic and meteorological observations and
forecasts, to ships for navigation purposes (Kotovirta et al., 2011); an air
quality monitoring system collects air quality measurements from distributed
sensor networks and generates visualizations as well as sending alerts to
citizens about the changing air quality (Lim et al., 2012); a tsunami early
warning system collects seismic observations, buoy observations and tide
gauge observation about water level from various areas to produce
customized warning messages for delivery via different channels such as the
web, TV broadcasting, SMS and e-mail (Wächter et al., 2012).

1.1.Near	real-time	processing	

The term near real-time here refers to monitoring systems that operate in
approximately second or minute scale depending on the application-specific
requirements. Changes in the environment are detected and processed without
unnecessary delays, but the requirements are not as high as for the real-time
monitoring systems applied for example in automation and robotics that
operate in millisecond scale. However, for decision-making in dynamic
conditions the information should be delivered in time, as it becomes outdated
when the conditions change. For example, in the ice conditions monitoring
example the latest satellite image is delivered to the icebreakers in tens of
minutes after the satellite flyby, which is adequate for navigation purposes.
The information delivery should be successful in all cases, as a failure to
deliver critical information may be costly, even life-threatening. For example,
ships navigating in ice are dependent on updated information about the ice
conditions in order to choose safe and cost-efficient routes. In the case of a
near real-time air quality application, allergic people must remain aware of
surrounding air quality in order to take their medicine in time, and people
living close to a factory where a chemical release has just taken place must be
alerted about the accident and advised to take cover.

5

1.2.Distributed	systems	

A near real-time environmental monitoring system can be considered
distributed when the data sources, the data processing components and the
end-user applications are distributed among heterogeneous systems and
organizations. The raw data sources may include various in-situ or remote
sensors and also forecasting models interpolating and extrapolating the
measurements in space and time. For example, the ice conditions monitoring
system (Kotovirta, 2011) collects oceanographic and meteorological
observations and forecasts from various met offices and environment
institutes, radar images and ice observations from the ships, and remote
sensing data from private and public satellite data sources, and delivers the
processed information over a mobile link to icebreakers operating in the
Baltic Sea.

There will be more and more distributed near real-time data available for
environmental monitoring, as regional and global initiatives are aiming at
integration of environmental systems. For example, Open Geospatial
Consortium (OGC) aims at interoperable interfaces that enable sharing of
environmental data, and Global Earth Observation System of Systems,
GEOSS, is a world-wide voluntary effort aiming at global connectivity of
already existing systems monitoring the environment and storing
environmental data (GEO, 2010). Current trends are towards opening all
publicly produced data, including environmental data. In Europe the INSPIRE
directive (Infrastructure for Spatial Information in the European Community)
obliges European public organizations to open up their environmental data
sources for applications (European Parliament, Council, 2007).

1.3.The	scope	of	the	article	

In this article we consider the development of a system to support the
development of near real-time environmental monitoring systems that utilize
data coming from various distributed data sources. Although many sources
are available with standard interfaces, the development of robust and cost-
efficient solution to answer end-user needs requires careful engineering. Data
sources need to be found, data semantics understood, interfaces adapted,
processing tasks developed, and the relevant information processed, delivered
and presented to end-users. In addition, the development and runtime costs
need to be taken into account.

We analyze general requirements for distributed near real-time environmental
monitoring, and suggest an architectural model that enables development of

6

systems fulfilling the requirements. The architecture is based on state-of-the-
art architectural and information technology components such as Enterprise
Service Bus (ESB), complex event processing (CEP) and cloud computing.
We also present a prototype implementation of the architecture and its
validation results.

2 System	architecture	

2.1.Requirements	for	distributed	near	real-time	
environmental	monitoring	

In this chapter we analyze the general requirements for a distributed near real-
time environmental monitoring system. Figure 1 shows a reference model of
such a system. The data sources include raw measurement data collected by
sensors, as well as the data extrapolated and interpolated in space and time by
models. The data from the sensors and models are processed by various
processing components (e.g. filtering, data fusion) and personalized to various
end-users, humans using a variety of devices, or computers requesting a
variety of interface protocols. Personalization includes the end-user
application or software that represents the information to the user. The
monitoring system consists of data processing chains controlled by a
processing chain control module that monitors and manages the operations of
the chain. Historical values and processed results can be cached or stored for
later use. The processing and personalizing components are separated to
emphasize the difference between the production of more “bulk-like” data
(i.e. preprocessing) and the personalization of the bulk data for specific end-
user needs and user context, such as location, user role, user devices, software
and interfaces. The data processing chains, i.e. the whole environmental
monitoring system, reduce the amount of data, and increase the amount of
information, i.e. usefulness of the data, from the end-user point of view.

7

Figure 1. A reference model of a distributed near real-time environmental
monitoring system. Data coming from sensors and models are processed and
personalized to end-users so that the amount of data volume is minimized and
the amount of information is maximized.

When designing and developing state-of-the-art near real-time environmental
monitoring systems, the following issues, or requirements, should be taken
into account. It should be noted that these are general requirements specified
by the application under development. The requirements are:

Integration of various distributed systems. Environmental data are produced
by many sensors and sensor networks, including in-situ sensors (fixed, ad hoc,
wired, wireless), people using their mobile phones remote-sensing sensors
such as radars and satellites, and computer models producing forecasts.

Extensibility. The monitored environment is unpredictable, and data input and
output as well as data processing needs may grow as a result of a sudden
event in the environment. The system should be extensible so that new data,
processing and users can be included.

8

Configurability. New uses of the system may be achieved, not by adding new
data sources or processing components to the system, but by re-configuring
the system’s existing components. Also, the system’s performance may be
adjusted or optimized through configuration – of data computing resources,
data storage capacity, end-user roles, or security policy, for example.

Scalability. When new data sources, processing and end-users are introduced
in the system more computing power, data storage and data transmission
capacity is required.

Timely data delivery. The system should deliver information in time, i.e. the
resources reserved for data processing, data storage and data transmission
should be adequate for the time requirements of the application area and the
end-users.

Relevance of data delivery. The data delivered to the end-user should contain
only the relevant information, i.e. the data are personalized to the user needs.

Operational reliability. The system should be successful in delivering the
information in every case, as a failure to deliver critical information may be
costly, even life-threatening. In addition, there should not be false alarms as
they will reduce user trust in the system.

Data quality / reliability. Data quality becomes a relevant issue when
important decisions are made based on the processed information. The quality
of the information produced by the data processing chain is dependent on the
data quality not only of the raw data sources, but also of the computational
components of the processing chain.

Data storage. Although the system considers near real-time data flows,
historical values may have a significant role in the decision-making.
Examples of earlier situations may help in estimating how the conditions
develop, and change detection algorithms may compare the newly measured
values with the older ones. If the data sources do not provide historical values,
and the values would give additional value to the data processing, the
monitoring system should store them and enable efficient data retrieval.

Data security. The more valuable the information produced by the system, the
more important the data security of the data processing chain. The key
principles of data security must be included, i.e. confidentiality, integrity and
availability.

9

Cost efficiency. In principle the value gained from a monitoring system
defines how much the system can cost. Some critical applications must be
operating reliably with strict data security regardless of the costs, but in many
cases costs are restricting the architectural choices of the system and thus
defining its overall performance and usability.

2.2.System	architecture	for	developing	distributed	near	
real-time	environmental	monitoring	systems	

In this chapter we describe the suggested system architecture for developing
distributed near real-time environmental monitoring systems fulfilling the
requirements defined in chapter 2.1. The architecture is based on the
Enterprise Service Bus (ESB) software architectural model and cloud
computing platforms, and is presented in Figure 2.

Figure 2. The system architectural model for distributed near real-time
environmental monitoring systems. An Enterprise Service Bus mediates
messages between various services, and controls the data processing chain.
The ESB and processing services run on a scalable cloud platform, and cloud
storages are used for data storing and caching.

10

The requirement for integrating various distributed systems, such as data
sources and data processing components, suggests the use of the Service-
Oriented Architecture (SOA) model which is ideal for integrating
heterogeneous systems (Erl, 2005). In this model, the data sources and
processing components provide each other with services, i.e. interface
procedure calls that can be accessed by other components, thus enabling
creation of a distributed data processing chain. However, the plain SOA
model does not yet answer the operational reliability requirement and provide
robust data processing chains that connect various data sources and
processing modules together. The data processing chain needs to be
controlled.

The Enterprise Service Bus (ESB) is a component that mediates messages
between various distributed systems by transforming and routing the
messages (Chappell, 2004). It extends the traditional client-server model and
promotes asynchronous message oriented design for communication between
systems. The ESB implements a central system that controls and tracks the
message delivery, thus enabling more robust performance of the data
processing chain. For example, if some processing component fails to
complete its task in time, the central control can trigger other service calls that
try to solve the problem, go around it, or alert a human operator. The ESB
supports service virtualization, i.e. the components in the processing chain are
virtualized in the workflow control, and the components can therefore be
substituted with other components providing similar functionality. This
enables flexibility and the required extensibility in the data processing, thus
improving the robustness, operational reliability, configurability and
customizability of the processing task. For example, if some input data source
fails to deliver data, the source could be substituted with another source
providing similar data. In addition, if some processing module ceases to
function, the system could use an alternative module to finalize the
calculations in time.

To improve the operational reliability of the processing chain, the control
module and the processing components of the chain are operating on reliable,
scalable and easily manageable cloud platforms provided by the emerging
field of cloud computing. Cloud computing is foreseen to provide the 5th

utility, after water, electricity, gas and telephony, for meeting the everyday
computing needs of the general community (Buyya, 2009). E.g. Lee et al.
(2010) demonstrated that cloud computing resources are sufficiently elastic to
deal with the unpredictable loads of real-world sensing applications. With
cloud services it is cost-efficient to set up computing systems with required
data processing, data storage, networking and uptime availability without the
need to invest in and maintain the computing hardware and required expertise.

11

It is also cost-efficient to adjust resources to meet the changing needs for data
storage and processing, thus taking care of the scalability requirement. As the
services are virtualized, each service can run on a separate node or a cluster of
nodes in the cloud. The easier adjustment of resources also helps in
implementing the required update frequency, as more processing power is
available if timely delivery and timely data processing asks for it. On the other
hand, the processing can be scaled down and related costs reduced, if less
processing is required. The data can be automatically replicated to different
server farms in different geographical locations, depending on the cloud
service provider, which improves the reliability of data storing.

A dedicated component in the architecture is responsible for the quality
control of the dataflow. Quality processing can range from simple threshold
checks to more complex statistical analysis, such as the one presented by Hill
et al. (2010). Any deviations in expected data quality are detected, and
application-dependent actions are taken, e.g. augmenting metadata, diverting
the erroneous dataflow to another processing chain, generating an event, and
notifying and alerting end-users, maintenance, or other relevant stake-holders.

To fulfill the requirement of delivering only relevant information and
reducing the amount of delivered data (relevance of data delivery), the
architecture contains an anomaly detection component, a complex event
processing (CEP) component and a notification service. When the quality
control is needed for detecting quality problems in the data, the anomaly
detection is for recognizing relevant or interesting features in the data and in
the environment that the data represent. For instance, a decline in the
forecasted air quality, or high winds caused by an approaching storm center,
are examples of anomalies in the environment that the user might be
interested in. The general architecture does not specify any anomaly detection
algorithm, as the solution depends on the application. Algorithms for near
real-time anomaly detection of sensor data have been developed, e.g. by Yao
et al. (2010).

The detected anomalies are represented as events for the complex event
processing (CEP) component which can combine events from multiple
anomalies to infer patterns of more complicated events. CEP consists of a
real-time event correlation mechanism controlled by rules encoded with an
event pattern language (Luckham, 2002). The events are the basis of
notifications about meaningful changes in the environment that are delivered
to end-users or end-user applications by the notification service. As a result,
users do not necessarily need to retrieve or poll data regularly, but are notified
whenever something relevant happens from their point of view. Users do not

12

have to be active, but the system actively pushes relevant data to them, thus
enabling a need-based data delivery which reduces the total amount of data
transferred. After a notification, the user or the end-user application can
retrieve more data describing the situation. The data may be processed, e.g.
filtered, by the data processing chain to better answer the end-user or end-user
application needs. The data delivery component is responsible for delivering
the data to the end-user application which presents the data to the end-user.
The data delivery is triggered either by events or by user queries.

The data processing chain’s data security is highly dependent on the level of
data security of separated services. However, as the Enterprise Service Bus
(ESB) acts as a central point of communication it can improve the overall data
security by controlling the traffic between the services. The data security
service component in the architecture takes care of message confidentiality
and integrity, identity and authentication, authorization and privacy, access
policies, and federation of identities. The level of data security is adjusted
according to the specific requirements of the application.

3 Prototype	system	for	validating	the	
architectural	model	

In this chapter we present the results of validating the architectural model by a
prototype implementation. The prototype was implemented on commercially
available cloud computing platforms using open source and proprietary
components, and its performance for different requirements was evaluated. In
most cases the performance with relation to the general requirements could be
evaluated only qualitatively, as quantitative measures were not defined or set
by application-specific requirements. However, some quantitative values
could be measured, such as those for performance and scalability.

3.1.Prototype	architecture	

The prototype architecture is presented in Figure 3. The backbone of the
prototype is based on the WSO2 Enterprise Service Bus (ESB) open source
implementation for the service virtualization, and mediation of messages
between services. The prototype was installed on Linux nodes that run on the
commercially available Amazon Elastic Compute Cloud (Amazon EC2), and
used Microsoft Azure cloud storage and PostGIS SQL database for data
storing.

13

Figure 3. The prototype system architecture. WSO2 Enterprise Service Bus
instances run on Linux nodes on the Amazon EC2 compute cloud, quality
control library and Esper Complex Event Processing (CEP) software are
distributed to Amazon EC2 nodes using the Storm distributed computing
platform, while data storing is taken care of by Windows Azure Tables and
PostGIS database.

Various data sources were connected to the prototype to test the ability to
integrate various distributed systems. The data sources included a weather
station provided by Vaisala, various sensor networks measuring indoor air
quality and building energy consumption, a pollen forecast model provided by
the Finnish Meteorological Institute (FMI), a weather forecast model provided
the FMI, and the water level forecast model provided by the Finnish
Environment Institute (SYKE). The integration of various data sources tests
the prototype’s ability to handle various data types and data formats. The
sensor networks provide time series data from fixed sensor locations, the
pollen forecast delivers gridded data for multiple forecasted time instances,
and the water level forecast provides predicted future values for hundreds of
fixed point locations. Also, various data sources test the ability to handle

14

various interface protocols, including standards, such as OGC, and proprietary
interfaces. The data source proxies in the architecture transform the incoming
messages into the bus internal message format and take care of the
communication with the actual data source.

The extensibility was demonstrated for the indoor air quality and building
energy consumption measurement data sources. A data source proxy was
implemented to transform indoor measurements from one data source into the
bus internal data format, which was then used to deliver the data to the end-
user applications for visualization. As new indoor data sources of the same
data type were integrated, only a new data source proxy was implemented. No
other changes in other components or the end-user applications were needed
for the application to utilize the new data source.

The configurability was realized by using the workflow scripts provided by
the WSO2 ESB. For example, in one test case the data were directed to the
data storage without quality control checking, and in another case the same
data messages were directed first to the data quality control, then to anomaly
detection and to data storage at the same time.

The complex event processing was implemented using an open source event
stream processing and event correlation engine called Esper, developed by
EsperTech. Esper provides a specific language for expressing event
conditions, called Event Processing Language (EPL). The anomalies or events
that the users are interested in are transformed into EPL sentences and
subscribed to Esper. Quality control was implemented using a proprietary
quality control software library that includes rudimentary statistical tests and
algorithms for data quality purposes (e.g. average, standard deviation,
minimum, maximum, histogram, linear regression, FFT). In the prototype,
detected events about quality problems or interesting anomalies can be
delivered to end-users using a notification service that uses e-mail, HTTP and
SMS protocols for sending notification messages.

3.2.Data	storage	and	security	

The data storage was implemented using commercially available noSQL
cloud storage service Microsoft Azure Tables and an open source PostGIS
SQL database. Azure Tables is an example of a noSQL database which does
not use structured query language for data manipulation. The database
provides scalable solutions for storing large data volumes with 99.9% uptime
SLA (Service Level Agreement). However, noSQL databases are not optimal
for handling geo-referenced environmental data, and therefore the prototype
architecture also relies on a PostGIS database to store the geographical

15

parameters. For example, the coordinates of a sensor can be stored in a spatial
database that enables efficient spatial queries, but the observation time series
is stored in a noSQL database that can handle larger amounts of data
efficiently. The data can be retrieved from the prototype via a query service
interface that hides the data storage implementation. Some part of the data,
such as coordinates, may come from the PostGIS database, and some part,
such as the observation time series, may come from the noSQL cloud storage.
The prototype data storage costs were not considered, as the prototype
concentrates on near real-time data processing.

The data security was implemented using the WSO2 Identity Server (IS) and
the WS-Security based authentication mechanism of the WSO2 ESB. The
Identity Server is used for user accounting, authentication and authorization,
while the WS-security enables sending user credentials inside web service
procedure calls (SOAP header). HTTPS protocol is used to encrypt network
communication between the client and the Identity Server. IS supports the
eXtensible Access Control Markup Language (XACML) which defines a
declarative access control policy language implemented in XML and a
processing model describing how to evaluate authorization requests according
to the rules defined in policies. These mechanisms provided the prototype
with good enough data security to prevent unauthorized access to the data or
events generated or mediated by the system. However, thorough tests for
attacking the system were not conducted during this study.

3.3.Performance	and	scalability	

The performance and scalability of the prototype architecture was tested by
measuring the message throughput as a function of computing nodes (Aalto,
2012). The test data sources connected to the prototype did not provide a data
volume close to the system limits, so the system was overloaded with simple
generated test observation messages. It appeared that an ESB implementation
using WSO2 with ActiveMQ message queue in one node could handle around
1,800 messages (test messages of 470 bytes) per second, i.e. transforming the
messages into bus internal format and redirecting them forward. The tests
were run using Amazon on-demand M1 large instances which each have 7.5
GB of memory, and processing power of 4 EC2 units (one EC2 Compute Unit
provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor) with costs of $0.26/hour for the EU region (Amazon Web
Services, Inc., 2013). The performance of message digestion can be improved
by adding more ESB nodes, and Amazon EC2 even provides a service for
load balancing, i.e. new nodes can be engaged or stopped automatically
whenever incoming traffic increases or decreases. In addition to adding new
ESB nodes, the prototype also enabled scalability by utilizing the open source

16

distributed real-time computation system Storm to distribute the computation
of quality control and complex event processing.

We found out that in simple message processing cases the main bottleneck of
the system is the ESB implementation. A scalability test was run with four
nodes in the Storm cluster for complex event processing, and with one to four
nodes for the ESB message mediation. The results show that the system scales
up quite linearly as a function of the number of ESB nodes, at least with the
tested number of nodes. The system could handle on average around 1,800
messages per second using one node, 3,400 using two, 5,300 using three and
7,000 using four ESB nodes. Thus, with four plus four nodes set up, the
prototype can do simple event processing for around 7,000 observation
messages per second with processing costs of around $2/hour.

In addition to processing costs, also the data transfer costs should be taken
into account in near real-time processing. For example, Amazon has various
options depending on from where the data come from and to where the data
go. As the purpose of the architecture is to deliver only the minimum amount
of data to end-users, we can firstly consider the costs of incoming dataflow.
The alternatives for incoming data transfer costs are $0/GB and $0.01/GB (as
of Oct 2013), so inputting 7000 messages (470 bytes each) per second costs
$0-$0.12/hour. Transferring all the messages after event processing would
cost $0/GB, $0.01/GB, $0.02/GB or $0.12/GB (as of Oct 2013) depending on
the delivery location, so the output costs would be $0/hour, $0.12/hour,
$0.24/hour, or $1.42/hour.

4 Discussion	
Despite of recent developments in the information technology and
standardization of data interfaces the efficient development of near real-time
environmental monitoring applications utilizing distributed data sources needs
careful engineering and could be supported by improved tools, design
patterns, best practices, and architectural models.

Different architectures have been presented earlier for near real-time
environmental data processing utilizing Enterprise Service Bus, complex
event processing and cloud services. For example, Cao (2009) proposed use
of the Enterprise Service Bus (ESB) architectural model to handle the data
collection from distributed sensors developed by a variety of manufacturers
relying on various standards; Motwani et al. (2010) discussed use of the ESB
architectural model and complex event processing (CEP), so called event-
driven SOA, as a means of achieving extensibility and interoperability in a
heterogeneous environmental sensor network; and Suakanto et al. (2012)

17

proposed an architecture using cloud computing in sensor data processing for
disaster early warning.

Unlike previous architectures, the proposed architecture combines the three
technologies to fulfill the general requirements for distributed near real-time
environmental monitoring presented in chapter 2.1. The prototype
implementation showed that the proposed architecture can be used to
implement environmental monitoring applications that take into account the
general requirements. The prototype could integrate various distributed
systems such as data sources and processing components, and be extensible,
configurable, scalable, and data secure. The prototype was connected to
various data source interfaces and data formats, including OGC-compatible
data sources, but no OGC-compatible way to retrieve data was yet
implemented. However, the architecture is not restricted to any specific data
or interface formats, so fully OGC-compatible data processing chains are
possible.

The requirement of delivering only relevant information was made possible
by using anomaly detection, complex event processing and a notification
service. The linear scalability suggests that the processing power intensive
requirements for timely delivery and quality control can be achieved by
adjusting the amount of nodes sufficient for the application-specific
requirements. The operational reliability was relying on the cloud services for
processing and data storage. Although no thorough testing of the reliability
had yet been done the cloud services were up and running constantly during
the prototype development and testing. More experiences are being gathered
as the prototype continues running and further tests are implemented.

The cost-efficiency of the prototype relies on the usage of open source
components and the cost-efficiency of the cloud computing services.
However, by reducing the complexity of the computation, the same message
throughput could be achieved with less processing power, i.e. with lower
costs. The performance of a distributed data processing chain is dependent on
the performance of individual components and services constituting the chain,
but also on architectural design choices and the performance of selected
software components. XML is a natural choice for use in interfacing external
services such as the data sources and end-user applications, and XML was
also chosen for the bus internal communication between the services.
However, the marshaling of XML messages to java classes and vice versa
requires additional processing time, which causes latency in the overall data
processing. The performance could be improved by using more concise
messaging formats and more efficient message marshaling. However, XML
gives advantages that were seen as more important than the efficiency in

18

implementation. During the development and the operation of the system the
extensibility and human-readability of XML enables easier debugging,
evolution and maintenance of the messaging. If the speed of processing
should be maximized in a specific case, this can be done by using simpler
messaging formats.

The performance testing was done with simple messages and simple event
handling for the messages; in this case the ESB appeared to be the bottleneck
of message throughput. However, as the complexity of messages or the
complexity of processing of messages increases, the processing time for the
message routing reduces compared to the processing of the data that the
messages carry. The size of messages and the amount of processing depend
on the data sources and the applications of the data. For example, sensor data
sources usually send small messages frequently, as forecast models produce
large amounts of data more seldom. The prototype implementation uses
distribution of the computation separately for the ESB message mediation and
for the data processing required by the quality control and the anomaly
detection. Thus, the processing power can be adjusted according to the
message frequency and amount of data processing of the data.

In some cases, because of high confidentiality of the data, the use of
commercial cloud services for data processing and storing might not be
acceptable. For example, data related to national security or emergency
management is kept on secured servers instead of commercial cloud
platforms. However, we see that a majority of environmental monitoring
applications could rely on commercial cloud services and get a better, more
secure, and more cost-efficient service than could be achieved by proprietary
solutions.

At this stage, the study concentrated on the near real-time data processing
performance. The processing and understanding of current observations may
also require looking back at the historical values, thus emphasizing the
requirement for storing and accessing data efficiently. In the next phase, the
performance of the data storage and retrieval are tested more thoroughly.

5 Conclusions	
Timely environmental information is relevant for decision-making in dynamic
environmental conditions, and new environmental monitoring data sources are
opening for applications. This paper presents general requirements for a
distributed near real-time environmental monitoring system and suggests an
architectural model for developing a system to support near real-time
environmental monitoring applications using distributed data sources. The

19

architecture utilizes state-of-the-art information technology architectural
models and components, such as the Enterprise Service Bus (ESB) to control
the data processing chain workflow and data security, complex event
processing (CEP) to minimize data delivery to end-users, and cloud
computing and cloud storage systems for scalable, robust and cost-efficient
system implementation. The prototype system verifies the architecture and
shows that the combination of ESB, complex event processing (CEP), cloud
computing and distributed processing can solve the requirements for near
real-time environmental monitoring, and be used to develop robust and
powerful environmental data processing chains cost-efficiently.

6 Abbreviations	
CEP Complex event processing
EC2 Amazon Elastic Compute Cloud
ESB Enterprise Service Bus
FMI The Finnish Meteorological Institute
GEO Group on Earth Observations
GEOSS Global Earth Observation System of Systems
GMES Global Monitoring for Environment and Security
HTTPS Hypertext Transfer Protocol Secure
IS Identity Server
OGC Open GIS Consortium
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SWE Sensor Web Enablement
SYKE The Finnish Environment Institute
WS-security Web Services Security
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

7 References	
Aalto A., 2012. Scalability of Complex Event Processing as a part of a distributed
Enterprise Service Bus. Master’s thesis, Degree Program of Computer Science and
Engineering, Aalto University, Espoo.

Amazon Web Services, Inc., 2013. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/ (accessed Oct 2013).

Buyya, R., Chee Shin Yeo, Venugopal, S., Broberg, J., Brandic, I., 2009. Cloud
computing and emerging IT platforms: vision, hype, and reality for delivering
computing as the 5th utility. Future Generation Computer Systems 25 (6): 599-616.

20

Cao, J., 2009. Flexible data collection over distributed sensors on Enterprise Service
Bus. In: 2009 International Conference on Frontier of Computing Science and
Technology, Shanghai, 17-19 Dec 2009.

Chappell, D., 2004. Enterprise Service Bus. O'Reilly Media Inc.

Conrad, C., Hilchey, K., 2011. A review of citizen science and community-based
environmental monitoring: issues and opportunities. Environmental Monitoring and
Assessment 176: 273-291.

Erl, T., 2005. Service-oriented architecture: concepts, technology, and design.
Prentice Hall Professional Technical Reference.

European Parliament, Council, 2007. Directive 2007/2/EC of the European
Parliament and of the Council of 14 March 2007 establishing an Infrastructure for
Spatial Information in the European Community (INSPIRE), Brussels, Belgium.

GEO secretariat, 2010. Report on progress. GEO Secretariat, Geneva, Switzerland.

Hill, D.J., Minsker, B.S., 2010. Anomaly detection in streaming environmental sensor
data: A data-driven modeling approach. Environmental Modelling & Software, 25(9):
1014-1022.

Kotovirta, V., Karvonen, J., von Bock und Polach, R.; Berglund, R., Kujala, P., 2011.
Ships as a sensor network to observe ice field properties. Cold Regions Science and
Technology 65(3):359 – 371.

Lee, K., Murray, D., Hughes, D., Joosen, W., 2010. Extending sensor networks into
the Cloud using Amazon Web Services. In: IEEE International Conference on
Networked Embedded Systems for Enterprise Applications (NESEA), Suzhou, 25-26
Nov. 2010.

Li, H., Wu, B., 2011. A Service-Oriented Architecture for Proactive Geospatial
Information Services. Future Internet 3(4): 298-318.

Lim, S.B., Yoon, K., Eo, Y.D., 2012. Ubiquitous air quality monitoring system with
service oriented architecture middleware. Journal of Convergence Information
Technology 7(6): 193-201.

Luckham, D., 2002. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley Professional.

Motwani, R., Motwani, M., Harris, F., Dascalu, S., 2010. Towards a scalable and
interoperable global environmental sensor network using service oriented
architecture. In: Proceedings of the 2010 Sixth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP 2010), Brisbane, 7-10
Dec 2010.

21

Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J., McLaughlin, D.,
Wilhelmson, R., Graves, S., Ramamurthy, M., Clark, R.D., Yalda, S., Reed, D.A.,
Joseph, E., Chandrasekar, V., 2006. CASA and LEAD: Adaptive Cyberinfrastructure
for Real-Time Multiscale Weather Forecasting. Computer 39(11):56-64.

Quinn, N.W.T., Ortega, R., Rahilly, P.J.A., Royer, C.W., 2010. Use of environmental
sensors and sensor networks to develop water and salinity budgets for seasonal
wetland real-time water quality management. Environmental Modelling & Software
25(9):1045–1058.

Rönkkö, M., Kotovirta, V., Karatzas, K., Bastin, L., Stocker, M., Kolehmainen, M.,
2012. Proactive Environmental Systems: the Next Generation of Environmental
Monitoring. In: Seppelt, R., Voinov, A.A., Lange, S., Bankamp, D. (Eds.): iEMSs
2012 International Congress on Environmental Modelling and Software, Leipzig,
Germany, 1-5 July 2012.

Suakanto, S., Supangkat, S., Suhardi, Saragih, R., Nugroho, T., Nugraha, I.G.B.B.,
2012. Environmental and disaster sensing using cloud computing infrastructure. In:
Proceedings of the 2012 International Conference on Cloud Computing and Social
Networking (ICCCSN), Bandung, West Java, Indonesia, 26-27 April 2012.

Usländer, T., Jacques, P., Simonis, I., Watson, K., 2010. Designing environmental
software applications based upon an open sensor service architecture. Environmental
Modelling & Software 25(9):977-987.

Williams, M., Cornford, D., Bastin, L., Jones, R., Parker, S., 2011. Automatic
processing, quality assurance and serving of real-time weather data. Computers &
Geosciences, vol. 37(3): 351-362.

Wächter, J., Babeyko, A., Fleischer, J., Häner, R., Hammitzsch, M., Kloth, A.,
Lendholt, M., 2012. Development of tsunami early warning systems and future
challenges. Natural Hazards and Earth System Sciences, 12:1923–1935.

Yao, Y., Sharma, A., Golubchik, L., Govindan, R., 2010. Online anomaly detection
for sensor systems: A simple and efficient approach. Performance Evaluation
67(11):1059-1075.

