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Abstract 
 
All measurements include some level of uncertainty. The uncertainty 

should always be taken into account when using a measurement result 

in decision making or process control. There are well defined methods 

of evaluating the measurement uncertainty both at instrument level and 

at system level. Metrology is a branch of science that focuses on the 

uncertainty estimation at instrument level and many guides regarding 

the topic have been published. Partly the same statistical methods are 

also applied to empirical system level uncertainty evaluation and some 

practical guides are well known and widely used for analytical 

measurements. Theory of sampling extends the uncertainty evaluation 

and error avoidance to the sampling process as well. This review 

presents the central features of the methods related to measurement 

uncertainty and sampling error estimation. Also the uncertainties in 

digital signal processing and virtual measurements, and the alternative 

methods in evaluating those, are addressed. 

Helsinki, May 2015 



 

2 

 

Table of contents 

Table of contents ................................................................................................. 2 

1. Introduction ................................................................................................... 3 

1.1. Basic notation ................................................................................................... 4 

1.2. The measurement target .................................................................................. 4 

1.3. Sample types .................................................................................................... 6 

2. The analysis of measurement uncertainty .................................................. 7 

2.1. Modeling approach ........................................................................................... 9 

Six steps of evaluation of the uncertainty ................................................................ 9 

Uncertainty arising from sampling ......................................................................... 12 

2.2. Empirical approach ........................................................................................ 13 

2.3. Alternative methods fulfilling the GUM ......................................................... 16 

Monte Carlo method ............................................................................................. 18 

Fuzzy approach .................................................................................................... 19 

3. Theory of Sampling ..................................................................................... 21 

3.1. Sources of sampling and estimation error ................................................... 21 

3.2. Sampling strategies........................................................................................ 24 

3.3. Estimating the sampling error ....................................................................... 26 

3.4. Variographic analysis ..................................................................................... 27 

Variogram ............................................................................................................. 27 

Calculation of the variogram.................................................................................. 28 

Variograms in practice .......................................................................................... 31 

4. Applications ................................................................................................. 35 

4.1. TOS and variographic analysis ..................................................................... 35 

4.2. Uncertainty estimation for virtual instruments ............................................. 38 

5. Fit-for-purpose ............................................................................................. 41 

6. References ................................................................................................... 44 

 

  



 

3 

 

1. Introduction 

Uncertainty, as a parameter associated with the result of a measurement, 

characterizes the dispersion of the values that could reasonably be attributed 

to the measurand. All measurements include some level of uncertainty. The 

measurement uncertainty depends on the unknown factors and the inaccurate 

knowledge of the known factors. Hence the measurement result is actually an 

estimate of the measurement target. Therefore also the uncertainty should 

always be mentioned with the analytical result. Even greater amount of 

uncertainty is originated from the sampling process. In pure and applied 

science uncertainty may be used to judge the consistency between experiment 

and theory, different measurements, and different theories (Cox, Harris & 

Siebert 2003). 

Metrology is a branch of science investigating the measurement uncertainty. 

Traditionally a metrological interpretation of a measurement process focuses 

on instrument level of a measurement. Thus a correct sampling is assumed 

and the focus is more on a fundamental representation of the uncertainty 

related to the analysis process. Theory of sampling (TOS) is a scientific theory 

originally imposed by Pierre Gy over fifty years ago. TOS focuses on the 

determination of the uncertainty components related to sampling process and 

aims to point out the proper sampling procedures and frequencies i.e. ensuring 

the representativeness of the samples. Therefore TOS is a system level 

representation of measurement uncertainty, or error. The principles of both 

theories are presented in the following two sections. Section 4 gives some 

practical examples of utilizing the tool presented, especially in process and 

environmental applications and intelligent measurements. Finally, Section 5 

presents a very important aspect of quality control, fit-for-purpose (FFP) 

evaluation of a measurement. 

There is a recent literature review on measurement uncertainty published in 

IEEE Transactions on Instrumentation and Measurement (da Silva Hack, ten 

Caten 2012). The review is however restricted into selected journals between 

2004 and 2010 and collects the approaches and calculation methods from 114 

scientific articles. This review and tutorial include also journals outside the ones 

in (da Silva Hack, ten Caten 2012) and extends the view into the earlier 

development of measurement uncertainty estimation. The material studied in 

this review especially concerns with the inclusion of sampling process as an 
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additional source of uncertainty, an aspect that is not considered in the review 

of (da Silva Hack, ten Caten 2012). 

1.1. Basic notation 

The theories involve a carefully chosen notation. The basic terms are 

presented here and some additional definitions are given in more appropriate 

context. The original material being subject to sampling is called a lot. As a 

result of correct sampling, a sample is extracted from the lot. If the sampling 

process is non-correct, the extracted product is a specimen. Another extraction 

from the lot is an increment, which is a partial sample consisting of a single 

fragment, or a single or several groups of fragments to be used in a composite 

sample. A composite sample consists of combined sub-samples (increments) 

where only the composite sample is to be analyzed. (In some context, 

composite samples are called bulk samples (Esbensen, Paoletti & Minkkinen 

2012)) A fragment is the smallest physically separable particle (molecule, 

mineral etc.) in the lot. A group is a number of spatially correlated or spatially 

coherent fragment associations, usually denoting the material occupying the 

extracted volume in the sampling tool. (Petersen, Minkkinen & Esbensen 2005)  

Once the sample is extracted from the lot, a measurement can be taken in 

order to determinate the value of a quantity via (automatic) set operations. A 

(measurable) quantity refers to a quantity in general sense (e.g. length, mass, 

resistance) or to a particular quantity (e.g. length of a given rod) and is an 

attribute of a phenomenon, body or substance that may be distinguished 

qualitatively and determined quantitatively. A value (of a quantity) is the 

magnitude of a particular quantity including a unit of measurement and a 

number. The particular quantity subject to the measurement is called a 

measurand, e.g. vapor pressure of a given sample of water at 20°C. (JCGM100 

2008) 

1.2. The measurement target 

Defining the sampling target: the properties and characteristics of the material 

e.g. in a certain area or time period are of interest, it is considered as a 

sampling target. Each sampling target will generate one reported measurement 

result with its uncertainty. A composite sample is collected from a number of 

primary samples. The single measurement value is obtained from this 

composite sample. The value of uncertainty is affected by the number of 

increments (primary samples) that are taken. This is in contrast with the case 
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of several distinct primary samples, each of them measured separately and 

then using the mean value as a measurand. The standard error related to that 

is actually the standard error of the mean value, not the uncertainty estimate 

for the measurement. The standard error of the mean value can be decreased 

by taking more distinct primary samples. (Ramsey, Ellison 2007) 

Defining the sampling target can also be misunderstood. The final 

measurement result can easily be judged as a measurand describing of the 

analyte in the batch of material, whereas an analysis may call it as a 

measurand of the laboratory sample. Another example is “contaminant 

concentration at a factory outlet at the time of sampling” vs. “the average 

contaminant concentration over a year”. The first viewpoint includes the effects 

of sampling while the other does not. (Ramsey, Ellison 2007) 

The sampling can be taken from different types of objects, or lot types. The 

most important distinction is between the 0-D lot and lots of higher 

dimensionality. 0-D lot has no internal correlation between the individual 

increments i.e. the increments are completely random. Basically, assuming a 

0-D lot, means that the whole object is to be measured. 1-, 2- or 3-D lots the 

individual increments are fixed and spatially correlated along the defining 

dimension(s), either in space or time. Process streams are usually considered 

as 1-D lots as they are moving or stationary stream of particulate material (e.g. 

powders in a conveyor belt), a moving or stationary string of fluids (e.g. fluids 

in pipelines), or a moving or stationary stream made of discrete chronological 

units (bags, truck loads etc. from a production line). (Petersen, Esbensen 2005) 

Figure 1 depicts the difference between lots of different dimensionalities. The 

colored increments are the extracted ones. 
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Figure 1. Illustration of lot dimensionality, redrawn from (Wagner, Esbensen 2011). 

1.3. Sample types 

Composite samples are mixed from several single samples in order to give a 

more reliable sample of the average, or general properties of the measurement 

target. Single samples only give transient properties. Commonly composite 

samples are used for routine monitoring purposes and considered without 

taking into account the measurement uncertainty. Even the interpretation of an 

expert involves a risk of an unreliable decision as the uncertainties cannot be 

quantified (Lambkin, Nortcliff & White 2004). 
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2. The analysis of measurement uncertainty 

Joint Committee for Guides in Metrology and ISO Technical Advisory Group on 

Metrology have published a guide to the expression of uncertainty in 

measurement (JCGM100 2008), also referred as GUM. The purpose of the 

guide is to promote full information on how uncertainty statements are attained 

and to promote a basis for the international comparison of measurement results 

used within standardization, calibration, laboratory accreditation and metrology 

services. The ideal method for evaluating and expressing the measurement 

uncertainty should be universal i.e. applicable to all kind of measurements and 

to all types of input data used in measurements. (JCGM100 2008) Another 

guidance, the EURACHEM/CITAC guide (Ellison, Williams 2012) presents the 

uncertainty estimation, following the GUM principles, in analytical 

measurements. The approach taken in GUM concerns measurements with a 

well-defined physical quantity (measurand) that can be characterized by an 

essentially unique value. However, if the phenomenon can only be represented 

as a distribution of values or is e.g. time-dependent, the measurands are the 

set of quantities describing that distribution or that dependence. 

An analysis of a measurement should cover the measurement target 

(gradients, homogeneity, disturbance due to the measurements, temporal 

variations), the measurement method (reproducibility, variations affecting the 

target and equipment, representativeness, errors in sampling), the 

measurement device (calibration, reference standard, drift, resolution, 

sensitivity, non-linearity, interactions), the measurement conditions and the 

measurer. An uncertainty analysis may point out the weak points of the 

measurement and give information on factors which may help to improve the 

quality of the measurement. Uncertainties in analytical processes are listed in 

(Ellison, Williams 2012). GUM gives a following list of the possible sources of 

uncertainty in a measurement: 

 Incomplete definition of the measurand 

 Imperfect reaIization of the definition of the measurand 

 Nonrepresentative sampling — the sample measured may not represent 

the defined measurand 

 Inadequate knowledge of the effects of environmental conditions on the 

measurement or imperfect measurement of environmental conditions 

 Personal bias in reading analogue instruments 
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 Finite instrument resolution or discrimination threshold 

 Inexact values of measurement standards and reference materials 

 Inexact values of constants and other parameters obtained from external 

sources and used in the data reduction algorithm 

 Approximations and assumptions incorporated in the measurement 

method and procedure 

 Variations in repeated observations of the measurand under apparently 

identical conditions. 

The uncertainty estimate can be estimated empirically (empirical, 

experimental, retrospective, top-down approach) by repeating the whole 

measurement procedure or mathematically (modeling, theoretical, predictive, 

bottom-up approach) by quantifying the sources of uncertainty individually and 

constructing a model. Applicability of the two approaches depends on the 

sampled system. Also a dual approach can be used and many practical 

solutions involve both of these elements. (Ramsey, Ellison 2007) The empirical 

approach includes all sources of uncertainty, but cannot identify the sources. 

However, it is applicable when there is no prior knowledge of the nature of the 

material. If prior knowledge is available i.e. the application is well-

characterized, the modeling approach may be more cost-efficient as it does not 

require extensive experimental studies. Modeling results as a long-term 

solution whereas empirical approach is more valuable when testing different 

sampling targets. (Ramsey, Ellison 2007) 

The analysis of a measurement uncertainty (GUM) is intended for correct 

application of measurement and sampling procedure i.e. small errors. 

However, the sampling can also produce gross operator error (e.g. misuse of 

the measurement protocol, highly heterogeneous material) (Ramsey, Ellison 

2007). Sampling is often a major source of uncertainty in test results and 

usually the uncertainty arising from taking the field samples is much greater 

than errors associated with preparation, handling and analytical and data 

analysis (Lambkin, Nortcliff & White 2004). Traditionally, the sampling and 

analysis processes are treated independently in uncertainty estimation. More 

recently, the sampling has been considered in the same context with analysis 

and a guide (Ramsey, Ellison 2007) has been published. The uncertainty can 

only be estimated if there is an understanding of both the analytical and the 

sampling process. The complete understanding can easily be achieved if one 
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person is responsible for all stages of the measurement process. In many 

cases, the sampling process and the analytical processes are made in different 

locations and by different people or organizations. Therefore, all of the parties 

involved should have a common guidance of the measurement process in 

order to estimate the uncertainty. (Ramsey, Ellison 2007) 

2.1. Modeling approach 

Although called a modeling approach, the calculation of the measurement 

result is based on input data i.e. the measured values of single or repeated 

observations, a judgment based on experience, corrections, information 

brought from external sources, such as calibrated measurement standards, 

certified reference material and reference data from handbooks. (JCGM100 

2008) This section introduces the original, well-established methodology for 

uncertainty estimation with the modeling approach. Some further 

considerations concerning sampling are also given. Alternative modeling 

approaches based on numerical simulation and possibility distributions are 

given in Section 2.3. 

Six steps of evaluation of the uncertainty 

The evaluation of the uncertainty comprises on six steps: defining a 

measurement model, estimating the standard uncertainties of the model inputs, 

calculating the effect (sensitivity) of the uncertainties to the measurand, 

determining the correlation between inputs, combining the uncertainty 

components and, finally, calculating the expanded uncertainty. (JCGM100 

2008) and (Heinonen 2010) are used as a source material on introducing the 

following six steps: 

Step 1 

The measurand is usually determined through a functional relationship rather 

than measured directly (e.g. analyzer gives an electrical current signal as an 

output and a calibration function transfer the current signal into the 

concentration of some component in the gas examined). The measurement 

model is an equation (or a set of equations) including all input quantities 𝑥𝑖 

affecting significantly the estimate 𝑦 and/or the combined standard uncertainty 

𝑢𝑐(𝑦). It is notable that magnitude of a correction can be zero but it still has an 

uncertainty and therefore needed to be included in the model. Typical input 

quantities are for example the signal itself, calibration equation, drift, resolution 
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and ambient conditions. The equation describing the measurement 𝑌 

consisting of input quantities 𝑋𝑖 can be written as: 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁) 

The measurement result, which is an estimate of the measurand Y, or the 

output estimate, denoted as 𝑦, is obtained from the input estimates 𝑥𝑖 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) 

Step 2 

After all the affecting inputs are identified, their standard uncertainties need to 

be determined. Standard uncertainties and variances are required in order to 

compare the inputs. The evaluation of standard uncertainty of an input can be 

done by the statistical analysis of series of observations (Type A evaluation of 

uncertainty) or by other means than the statistical analysis using a priori 

distributions (Type B evaluation of uncertainty). 

Type A evaluation uses the arithmetic mean of the quantity (𝑞̅) as an estimate 

and is applicable when the number of measurements is high enough and 

normal distribution can be assumed. If so, the experimental standard deviation 

𝑠2(𝑞) and the estimate for the variance of the mean 𝑠2(𝑞̅) can be calculated: 

𝑠2(𝑞) =
1

𝑛 − 1
∑(𝑞𝑖 − 𝑞̅)2

𝑛

𝑖=1

 

𝑠2(𝑞̅) =
𝑠2(𝑞)

𝑛
 

The standard uncertainty of quantity 𝑞, denoted as 𝑢(𝑞), equals the square root 

of the estimate for the variance of the mean i.e. 𝑠(𝑞̅). {Note: the notation for 

type A quantities is q but for type B quantities x.}  

Type B evaluation is typically applied for: 

 uncertainties of values and drifts of reference standards 

 uncertainties of environmental quantities 

 uncertainties from specifications of instrument  

 uncertainties from literature values  
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 uncertainty due to the method or the calculation 

 uncertainty due to staff 

 uncertainties from calibration certificates 

These quantities require a priori information about their range and distribution. 

If limiting values are known and all the values have an equal probability, 

rectangular distribution can be used. Sometimes also triangular distributions or 

U-shape distributions are applied. Once the distribution and the range of values 

are chosen, the standard uncertainty 𝑢(𝑥𝑖) can be obtained from the associated 

equations. 

Step 3 

Next the contributions of 𝑢(𝑥𝑖) (and 𝑢(𝑞))to the uncertainty of 𝑦 need to be 

determined. The effect is denoted by the sensitivity coefficient 𝑐𝑖 i.e. 

𝑢𝑖(𝑦) = |𝑐𝑖|𝑢(𝑥𝑖) 

The sensitivity coefficient can be determined from partial derivatives 

(𝑐𝑖 = 𝜕𝑓 𝜕𝑥𝑖⁄ ), by numerical methods or experimentally (𝑐𝑖 = ∆𝑦 ∆𝑥𝑖⁄ ).  

Step 4 

The calculation of the combined standard uncertainty must consider if the input 

quantities are independent or if they have mutual dependence. The covariance 

can either increase on decrease the uncertainty. The covariance of 𝑥𝑖 = 𝐹(𝑞𝑙) 

and 𝑥𝑗 = 𝐺(𝑞𝑙) depending on the same quantities 𝑞𝑙 is calculated as: 

𝑢(𝑥𝑖 , 𝑥𝑗) = ∑
𝛿𝐹

𝛿𝑞𝑙

𝛿𝐺

𝛿𝑞𝑙
𝑢2(𝑞𝑙)

𝑙

 

Step 5 

The combined standard uncertainty is calculated as a square root of the sum 

of the squared standard uncertainties multiplied with their sensitivity 

coefficients. The latter term in the equation is only needed if correlated input 

quantities are found. 
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𝑢𝑐(𝑦) = √∑ (
𝛿𝑓

𝛿𝑥𝑖
)

2

𝑢2(𝑥𝑖)

𝑁

𝑖=1

+ 2 ∑ ∑
𝛿𝑓

𝛿𝑥𝑖

𝛿𝑓

𝛿𝑥𝑗
𝑢(𝑥𝑖 , 𝑥𝑗)

𝑁

𝑖=1

𝑁−1

𝑖=1

 

Step 6 

Expanded uncertainty 𝑈 is the standard uncertainty multiplied by a coverage 

factor 𝑘 i.e. 𝑈 = 𝑘𝑢𝑐(𝑦). Typically a coverage factor k=2 is used corresponding 

roughly a 95% level of confidence, if normal distribution is assumed. However, 

the coverage probability should not be stated, as the traditional approach may 

not justify that claim (Kacker, Jones 2003). 

Although the modeling approach is a long-term solution, the model should be 

revised if the observed data demonstrate that model might be incomplete. In 

order to avoid incompleteness in the first place, all relevant quantities should 

be varied to the fullest practicable extent so that the evaluation of uncertainty 

can be based as much as possible on observed data. Whenever feasible, the 

evaluations of uncertainty should include empirical models of the measurement 

founded on long-term quantitative data, the check standards and control charts 

that can indicate if a measurement is under statistical control. (JCGM100 2008) 

Uncertainty arising from sampling 

Instead of analytical measurements only, the modeling approach can also be 

used for estimating the uncertainty arising from sampling. For the analysis part, 

the uncertainty can be monitored by using repeated measurements and 

certified reference materials, but it is difficult to apply these methods to the 

sampling of materials that are variable and reference materials are not 

available (Lambkin, Nortcliff & White 2004). Identifying the potential sampling 

errors leads to a cause-and-effect modeling and fish-bone diagrams. One such 

example is given in (Lambkin, Nortcliff & White 2004). A cause-effect diagram 

collecting the possible error sources of the sampling process in that study is 

presented in Figure 2. Another example is given in (Kurfürst et al. 2004), where 

the modeling approach based on a reference database was used on the 

estimation of uncertainties resulting from sampling, sample preparation and 

analysis of soil samples. 
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Another model describing the sampling errors comes from the Theory of 

Sampling. Especially the empirical part of TOS is treated in detail in Section 3. 

The Gy’s formula for determining the sampling uncertainty for particulate 

systems from the first principles is presented e.g. in (Gy 2004b, Minkkinen 

2004, JCGM100 2008). This model can predict the uncertainty arising from 

sampling and can be used as an additional input to the measurement model, 

but requires a good knowledge of the material (particle) properties. 

 

 

Figure 2. Cause-effect diagram for the sampling phase, redrawn from (Lambkin, Nortcliff & White 2004). 

 

2.2. Empirical approach 

The empirical approach relies on overall reproducibility estimates from inter-

organizational trials, internal method validations and quality control. As these 

trials are often expensive and time-consuming, an alternative method involving 

e.g. duplicate sampling and analysis has been found suitable especially when 

heterogeneity is the main source of uncertainty. (Lyn et al. 2007) It cannot 

separate the uncertainty of individual sources, but some general classification 

into four sources of error can be made. These are the random errors and 

systematic errors arising both from the sampling processes and analytical 

processes, which are usually called the sampling precision, analytical 

precision, sampling bias and analytical bias. Three of them can be estimated 

with well-established methods, but estimating the sampling bias is more 

challenging. (Ramsey, Ellison 2007) 
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Sampling and analytical precision can be estimated e.g. by the duplication 

method, i.e. repeating some proportion of the samples/analyses. An estimate 

of the analytical bias can be taken from the validation of the analytical method 

or estimated by measuring the bias on well-matched certified reference 

material. Also sampling bias might be estimated using a reference sampling 

target in some cases. An alternative approach on estimating sampling bias 

includes inter-organisational sampling trials. If an evidence (e.g. a prior 

knowledge of the chemical or physical nature of the sampling target, a prior 

information from earlier measurements on complete batches) that systematic 

effects are small and under good control can be found, it may be unnecessary 

to estimate the uncertainty of systematic errors. (Ramsey, Ellison 2007) 

The empirical approach uses a statistical model describing the relationship 

between the measured and true values of the analyte: 

𝑥 = 𝑋𝑡𝑟𝑢𝑒 + 𝜀𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜀𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝜀𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

where 𝑥 is a single measurement of one sample (composite or single) from one 

particular sampling target. The term 𝜀𝑡𝑎𝑟𝑔𝑒𝑡 describes the between-target 

variation and is recommended to be included in the estimation of sampling 

uncertainty. The measurement variance, assuming that the sources of 

variations are independent, can be described by 

𝜎𝑚𝑒𝑎𝑠
2 = 𝜎2

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝜎2
𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

The total variance, including the sampling, is given by 

𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎2

𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜎2
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝜎2

𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

In both equations, the variances 𝜎2 can be approximated with the statistical 

estimates of variance, 𝑠2 and the standard uncertainty of the measurement can 

be calculated by 

𝑢 = 𝑠𝑚𝑒𝑎𝑠 = √𝑠2
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 + 𝑠2

𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

(Ramsey, Ellison 2007) lists five empirical methods applicable to the estimation 

of uncertainty: 

 Duplicate method; described below 
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 Sampling protocols; bias between protocols can be detected 

 Collaborative trial in sampling (CTS); bias between different samplers, 

when one protocol is applied 

 Sampling proficiency test (SPT); bias arising either from the sampling 

protocol or the sampler 

 Variographic analysis; described in detail in Section 3.4. 

In the duplicate method, the duplicate samples are obtained using a single 

sampling protocol and by a single sampler and it can be used for estimating 

the sampling and analytical precision. The sampling bias need to be estimated 

separately, or assumed to be negligible. Analytical bias can be obtained, if 

certified reference materials are included in the analytical process. The 

duplicate method uses 10%, or at least 8 duplicate samples of the sampling 

target. In the analysis stage, the test samples are also duplicated. This 

approach is called as a balanced design and it is illustrated in Figure 3. The 

analytical results of the duplicate samples are then applied in analysis of 

variance (ANOVA) or range calculation in order to estimate 𝑠𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 and 

𝑠𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠. The random component of the measurement uncertainty (u) can then 

be calculated according to model described above.  

 

 

Figure 3. Balanced experimental design for empirical estimation of uncertainty, redrawn from (Ramsey, Ellison 2007). 

The duplicate method often gives a reasonable reliable estimate of uncertainty 

as usually between-operator and between-protocol effect are much smaller 

than those caused by heterogeneity. A routine application of duplicate 

sampling can also be used for monitoring the ongoing sampling quality or 

representativeness. (Ramsey, Ellison 2007) 
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An illustrative example of the modeling approach and the empirical approach 

is given in (Lyn et al. 2007). They determined the measurement uncertainty, 

including both the analysis and sampling, of a contaminant in particulate 

matter. Due to the nature of the system, the modeling approach followed the 

Gy’s model. The empirical approach used the duplicate method and RANOVA. 

They found that the empirical approach provided a substantially lower 

uncertainty estimate than modeling approach (22.5% vs. 136%, respectively). 

One reason for the deviation is that the empirical method aims to estimate the 

uncertainty of a case-specific particular sampling target, whereas the modeling 

approach may use parameters that are not applicable to the present target 

under investigation. They concluded that empirical approach is applicable to 

routine estimation, but only the modeling approach can offer tools for reducing 

too high sampling uncertainty. 

(Lyn et al. 2003) extended the empirical approach to include also the error 

caused by the physical sample preparation step. They also used spike recovery 

trial data for the estimation of systematic errors in sample preparation. The 

methodology proposed was primarily aimed for method validation procedures 

where it may provide useful information about the uncertainty associated to 

sample preparation. 

2.3. Alternative methods fulfilling the GUM 

As the importance of uncertainty estimation has become more and more 

recognized, and the well-established methods have been proposed, the 

methodology keeps up developing further. GUM has been revised already 

several times and supplements have been published and are being prepared. 

The science community have pointed out some weaknesses of the original 

GUM and also proposed alternative methods, based on alternative theories, to 

measurement uncertainty estimation. Also new measurement applications, e.g. 

imaging measurements and virtual instruments have driven the urge for some 

revision of the uncertainty estimation methodology. This section gives a short 

overview of these alternative methods, which are also aimed at fulfilling the 

requirements of GUM. 

For example, GUM does not completely follow the classical statistics, but also 

uses the Bayesian statistics. (Kacker, Jones 2003) proposes a revision of the 

methods in GUM in order to provide a consistent viewpoint based on Bayesian 

statistics. Additionally, the original approach in GUM uses the first-order Taylor 
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expansion (i.e. linear approximation) of the measurement equation for the 

propagation of the confidence intervals. The confidence interval is represented 

by the standard deviation of a probability density function and the combination 

of those results as a Gaussian distribution based on the Central Limit Theorem. 

These assumptions may not be valid in some cases, e.g. if only few contributing 

terms exist or some of them are non-Gaussian. (Lovett, Ponci & Monti 2006) 

Alternative methods to the propagation of distributions have been presented. 

For example, (Lovett, Ponci & Monti 2006) applied the polynomial chaos theory 

for the representation and propagation of measurement uncertainty, which 

enables also describing probability distribution functions differing from the 

normal distribution. A numerical simulation method, Monte Carlo Method, uses 

the probability distributions of the input variables instead of their variances in 

the propagation. The Monte Carlo Method is presented below and has already 

been accepted by the standardization organizations.  

Some of the uncertainty components might not be probabilistic, but systematic 

or unknown, and should be modeled using alternative models and methods 

(Reznik, Dabke 2004). These kinds of input quantities are especially seen in 

intelligent measurements and other DSP (digital signal processing) 

measurements. They are indirect measurements, where the final measurement 

result is formed from a set of input signal samples through some processing. 

In the case of discontinuous relationship between the final measurement and 

the result of single measurement, or with high number of inputs (thousands in 

DSP), GUM might be troublesome (Ferrero, Salicone 2003). Hence, 

approaches based on Fuzzy variables have been proposed to overcome such 

problems and some of the literature is presented below. Some systematic error 

component can also be treated with the general methodology by increasing the 

expanded uncertainty to include bias. (O'Donnell, Hibbert 2005) demonstrates 

with simulation how the bias could be treated with this kind of approach. 

Yet another important type of uncertainty estimation problem concerns 

dynamic measurements. The calculation of stationary uncertainty can be 

extended to transient measurements, where the amplitude of the uncertainty 

of the input variables is time-dependent. The measurement system can be said 

to be a dynamic system if the response time of the system is comparable to or 

slower than the changes of the measurand. In a static system, the response of 

the system is much faster than the changes of the measurand. (Hessling 2009) 



 

18 

 

Examples of dynamic systems are accelerometers and transducer systems 

measuring force or pressure. Dynamic metrology is proposed and presented in 

(Hessling 2009) and references therein. It comprises the linear modeling of the 

measurement system and estimating the derivatives of the model in transform 

domain, hence utilizes the methods known in signal processing and control 

engineering. 

Monte Carlo method 

The traditional GUM approach presented in Section 2.1 assumes a Gaussian 

distribution or a scaled and shifted t-distribution of the output quantities 

(JCGM101 2008). A subclause to GUM, GUM supplement 1  (JCGM101 2008), 

presents an alternative approach on determining the probability distribution 

functions using the Monte Carlo method (MCM). The probability distribution 

function can be based on Bayes’ theorem or the principle of maximum entropy. 

MCM approach does not require the classification of the quantities into Type A 

or Type B, nor does it require the calculation of the sensitivity coefficients (and 

partial derivatives). MCM also provides a numerical representation of the 

distribution function and therefore the evaluation is not restricted onto assumed 

symmetric distributions as in traditional approach. As the resulting distribution 

might be asymmetric, a coverage factor may not be centered on the estimate. 

Hence the choice of the coverage factor requires some additional consideration 

when using MCM. (JCGM101 2008) The limitations of MCM might be the 

runtime with poor computational power, the difficult selection of the proper 

functions of inputs if the data is inaccurate or there is a lack of process 

understanding, and finally, the dependency between the accuracy of the result 

and the quality of the random number generator (Herrador, Asuero & González 

2005). (JCGM101 2008) lists the uncertainty evaluation problems, where the 

traditional approach may fail, but MCM approach should be applied: 

 the magnitudes of the contributory uncertainties are not approximately on 

the same level 

 the partial derivatives of the model are difficult or inconvenient to 

calculate 

 the probability density function for the output does not follow neither of 

the assumed distributions 

 an estimate and the associated standard uncertainty are approximately 

on the same magnitude 
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 the models are arbitrarily complicated 

 the probability density functions for the input quantities are asymmetric. 

It is also recommended that MCM is applied in order to validate the results of 

the traditional GUM. MCM can also be used to account the dynamic effects of 

the uncertainty (Hessling 2009). In addition to (JCGM101 2008), the reader is 

guided to (Cox, Harris & Siebert 2003, Herrador, Asuero & González 2005) for 

more information about applying Monte Carlo method in uncertainty estimation. 

Fuzzy approach 

Fuzzy variables and sets can be used to express the uncertainty of a 

measurement. Possibility theoretical approach allows considering both the 

random effects and the systematic effects. Therefore it extends the original 

GUM that assumes the systematic error is negligible or corrected in the 

measurement under investigation. Especially the uncertainty estimation of 

virtual instruments, or DSP based measurements, has driven the need for 

accounting systematic effects. The uncertainty estimation of such 

measurements is treated more detailed in Section 4.2. 

A fuzzy expression of measurement uncertainty, compatible with GUM, is given 

in (Mauris, Lasserre & Foulloy 2001). Some examples of the applicability of the 

fuzzy approach are given in (Reznik, Dabke 2004). (Urbanski, Wa̧sowski 2003) 

claim that the original fuzzy expression by (Mauris, Lasserre & Foulloy 2001) 

describes properly only the propagation of systematic error. Comprehensive 

description of both the statistical and systematic error component should 

therefore be based on random-fuzzy variables. (Urbanski, Wa̧sowski 2003) 

then adds that there is no theory comprising fuzzy random variables and they 

propose the t-norm based arithmetics to describe the propagation of statistical 

and systematic components. 

The lack of generality of the abovementioned fuzzy approaches is pointed out 

by (Ferrero, Salicone 2003, Ferrero, Salicone 2004). They propose a random-

fuzzy approach framed within the theory of the evidence as it combines the 

possibilistic and the probabilistic approaches. The concepts of the belief 

measure and the plausibility measure are used. In (Ferrero, Gamba & Salicone 

2004), an example of measurement uncertainty estimation of a DSP-based 

instrument is given by the means of both the random-fuzzy variables and GUM. 

They also suggest that the usage of random-fuzzy variables enables an online 
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estimation of the uncertainty. A more recent summary of the theory of evidence 

and uncertainty estimation is given in (Salicone 2013). 
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3. Theory of Sampling 

Theory of Sampling (TOS), developed by Pierre Gy, extends the analysis of 

sampling uncertainty as it includes both the errors of correct sampling as well 

as the errors of incorrect sampling. Incorrect sampling errors are due to 

incorrectly designed sampling equipment or procedures. Correct sampling 

errors arise from the heterogeneity of the material in sampling targets. Usually, 

a properly taken increment is called ‘a sample’ from which one can draw a valid 

conclusion concerning the properties of the whole lot. ‘A specimen’ is a sample 

with incorrect sampling, where such conclusions cannot be made. (Minkkinen, 

Esbensen 2009) The definition of a correct sampling process or procedure is: 

“All fragments, or group of fragments, or increments of the lot, must have an 

equal, non-zero probability of ending up in the sample, while elements foreign 

to the lot must have a zero probability of ending up in the sample. The 

increment or the sample must not be altered in any way.”  

TOS aims to answer the following questions so that a certain level of 

uncertainty is achieved with minimal costs; 1) How should the samples be cut 

from the process stream? 2) How many samples should be taken? 3) How 

often samples should be taken? 4) Which sampling strategy should be used? 

The basis of the estimation of the uncertainty is the identification of the error 

sources. (Paakkunainen, Reinikainen & Minkkinen 2007) 

The complete description of TOS is given in textbooks by Gy (French and 

English). A more compact description and the history of TOS can be found from 

the five articles published in 2004 in Chemometrics and Intelligent Laboratory 

Systems (Gy 2004a, Gy 2004b, Gy 2004c, Gy 2004d, Gy 2004e). This review 

and tutorial avoid repeating that material and mainly relies on other references. 

3.1. Sources of sampling and estimation error 

In TOS, there are seven error sources of sampling, presented in Figure 4. Most 

methods used in estimation of sampling error deal only with one of them, the 

Fundamental Sampling Error (FSE). In order to understand the origin and 

consequences of correct (and incorrect) sampling, an overview of all error 

sources is needed. (Petersen, Minkkinen & Esbensen 2005) 

The total error of an analytical result is the Global Estimation Error (GEE), 

consisting of two fundamental contributions: the Total Analytical Error (TAE) 

and the Total Sampling Error (TSE). According to [Petersen et al. 2005] TAE 
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is should be familiar to all chemists and other analysts. TAE can be estimated 

with the approach presented in Section 2. TSE arises from material 

heterogeneity and the sampling process itself, where the former one sets the 

limits on the achievable performance of the results. Often, the latter one is 

purposely increased as the emphasis of sampling is on obtaining a small 

sample with minimum time and effort with least expense and most direct or 

simplest procedure. This kind of procedure, most probably leading to a non-

representative sample, is denoted “Grab sampling”. (Petersen, Minkkinen & 

Esbensen 2005) 

All sampling operations include Fundamental Sampling Error (FSE) and 

Grouping and Segregation Error (GSE). FSE is due to the lot heterogeneity, 

i.e. is inherent to the material properties and it depends on the number of critical 

particles in the samples. Especially for solids, powders and particulate 

materials at low concentrations, FSE can be very large. On the opposite, for 

homogeneous gases and liquids, FSE is very small. (Minkkinen 2004) Only 

way to reduce FSE is to physically (e.g. comminution of particles) improve the 

lot characteristics so that more representative sampling can be obtained. FSE 

can be estimated only to an order of magnitude and only to a lot that can be 

thoroughly mixed before sampling. However, it is very useful for any sampling 

stages after primary sampling. If the required uncertainty level is predefined, 

FSE can be used on estimating the variance of a given sampling step and 

minimum sample size. (Petersen, Minkkinen & Esbensen 2005) 

GSE is related to both the sampling process (e.g. due to sampling mass) and 

the material heterogeneity as it arises from the composition and spatial 

distribution heterogeneity of the lot material. GSE is at its minimum when 

individual fragments are selected to form the sample. Naturally, in practical 

situations this is impossible as usually the neighboring fragments of an 

extracted fragment is more likely to be extracted too etc. However, the 

contribution of grouping can be minimized by decreasing the size of the 

increments. The contribution of segregation can be reduced by a proper mixing. 

Ideal mixing would minimize GSE and therefore give a lower possible residual 

heterogeneity. If this is not possible, composite sampling is preferable. 

(Petersen, Minkkinen & Esbensen 2005) 

Abovementioned errors are unavoidable i.e. they also occur in correct 

sampling. Incorrect Sampling Errors (ISE, PME in the figure) consists of 
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Increment Delimitation Error (IDE), Increment Extraction Error (IEE or IXE) and 

Increment Preparation Error (IPE). IDE occurs when the actual shape of the 

extracted increment deviated from the correct geometrically delimited 

increment, e.g. the entire slice of the whole stream cannot be extracted. 

Usually, complete sampling is enabled and IDE is avoided by stopping the 

stream (conveyer belt) for calibration purposes. IEE arises e.g. from particles 

falling on the wrong side of the sampling device so that some particle sizes or 

gas components are over-/underrepresented in the extracted sample. IPEs are 

random events of human error, contamination, adhesion, moisture uptake etc. 

between the actual extraction of the sample and the analysis and they do not 

follow any statistical distributions. (Petersen, Minkkinen & Esbensen 2005) 

In Figure 4, also abbreviations SWE and PSE exist. SWE, the sample 

weighting error is caused if the flow-rate of the process stream is ignored. Point 

selection error (PSE) is raised from using a discrete sampling of a continuous 

process with random and cyclic drifts. PSE is therefore divided into long-term 

point selection error (PSE1) and periodic point selection error (PSE2). The size 

of total PSE depends on the sample selection strategy and the degree of auto-

correlation. (Paakkunainen et al. 2007) In 1-D sampling, the point selection 

errors may also be called the time fluctuation error (TFE) and the cyclic 

fluctuation error (CFE) (Esbensen et al. 2007). 

 

 
Figure 4. Sampling error components according to Gy, redrawn from (Paakkunainen, Reinikainen & Minkkinen 2007). 
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3.2. Sampling strategies 

There is a guideline of seven practical sampling principles (sampling unit 

operations) to be followed in order to identify and minimize the errors of 

sampling (Petersen, Minkkinen & Esbensen 2005). Table 1 presents the 

principles and their demand. 

 
Table 1. Sampling unit operation according to (Petersen, Minkkinen & Esbensen 2005). 

 UNIT OPERATION DEMAND 

1 Heterogeneity characterization when new sampling operation is initiated 
2 Mixing before all further sampling steps always 
3 Prefer composite sampling always 
4 Only use representative mass reduction always 
5 Comminution whenever necessary if needed 
6 Perform variographic analysis of 1-D heterogeneity when new sampling operation is initiated 
7 Turn 2-D and 3-D lots into 1-D equivalents if possible in order to apply TOS 

 

In addition to above presented principles, a sampling plan should be optimized 

in order to minimize FSE and GSE. In the case of 1-D process streams, two 

more sampling errors related to the short- and long-range periodic fluctuations 

should also be minimized. A useful tool for the latter one is variographic 

analysis presented in Section 3.4. (Petersen, Minkkinen & Esbensen 2005) 

Another list of the crucial aspects of sample collection in order to produce the 

best practicable effort to obtain a representative sample is given in (Lambkin, 

Nortcliff & White 2004): 

 identification of the population to be sampled; 

 ensuring an adequate number of samples; 

 determining the frequency and timing of sampling events; 

 determining the sampling pattern (regular, random or stratified random); 
and, 

 sub-sampling. 
 

The sampling plan depends on the required accuracy level, the heterogeneity 

of the material, the degree of mixing, variability between the batches and time. 

Statistical analysis of the data can be used to determine the aspects 

concerning the sampling plan (Lambkin, Nortcliff & White 2004): 

 the mass and number of increments; 

 the mass of a composite sample; 

 the intervals for sampling on a mass or time basis; 
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 whether sampling should be random or fixed-interval; and, 

 the bias and the precision associated with routine sampling. 
 
The three most fundamental sampling strategies, or patterns are: regular 

sampling, stratified sampling and random sampling. In random sampling, the 

samples are taken randomly from the whole lot. In systematic sampling, the lot 

is divided into sub-lots of equal size and then a sample is taken at a fixed 

interval. In stratified sampling, the lot is divided in a similar manner, but 

samples are taken randomly from each sub-lot. Figure 5 illustrates the 

sampling strategies. 

 
 

 
Figure 5. Sample selection strategies. 

 

Random sampling usually gives the highest standard deviation of the lot mean 

and the systematic sampling the lowest. However, if the sampling interval is 

equal to the harmonic multiple of the process periodic fluctuations, the 

systematic sampling will be biased and provide the highest standard deviation. 

Therefore, stratified sampling is recommended if no reliable information about 

the periodicity is available. (Paakkunainen, Reinikainen & Minkkinen 2007) 

All sampling strategies can also be used to form a composite sample if 

estimating the mean value of the lot is of interest. The sampling strategy affects 

also the variance of the mean (based on the composite sample) and the 

uncertainty can therefore be decreased with a proper selection of the sampling 

strategy. 
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3.3. Estimating the sampling error 

The global estimation error can be expressed as [Esbensen et al. 2012]: 

𝐺𝐸𝐸 = 𝑇𝐴𝐸 + 𝑃𝑆𝐸1 + 𝑃𝑆𝐸2 + ∑(𝐹𝑆𝐸𝑛 + 𝐺𝑆𝐸𝑛 + 𝐼𝐷𝐸𝑛 + 𝐼𝐸𝐸𝑛 + 𝐼𝑃𝐸𝑛)

𝑛

 

In some cases, FSE can be estimated if the necessary material properties are 

known using e.g. particle distribution models etc. In practical sampling, the 

conditions of correct sampling can seldom be obeyed and FSE cannot 

therefore be estimated solely. If the lot consist of a single unit with a randomly 

distributed property i.e. the sampling target is 0-D, and the correct sampling is 

used, the variance of FSE can be estimated from the variance of the mean of 

n replicate samples (Paakkunainen, Reinikainen & Minkkinen 2007). Also for 

lots consisting of several well-defined sub-lots of equal or unequal sizes, a 

variance estimate can be calculated from the replicate samples using the 

analysis of variance (ANOVA). Such lots are for example bags, barrels, wagon 

loads when there is no serial correlation between these units. (Paakkunainen, 

Reinikainen & Minkkinen 2007) 

If the sampling target is 1-D, and if the sample preparation and size reduction 

by splitting are carried out correctly, fundamental sampling error models can 

be used for estimating the variance components generated by these steps. 

Further, if the expectance value for the number of critical particles in the sample 

can be estimated as a function of sample size, the uncertainty of the sample 

can be estimated using Poisson distribution or binomial distribution as a 

sampling model. (Minkkinen 2004) FSE estimation based on such models is 

demonstrated in (Korpelainen et al. 2002, Minkkinen 2004, Petersen, 

Esbensen 2005). 

(Wagner, Esbensen 2011) give a comprehensive example of identifying 

sampling errors and estimating the uncertainty related to sampling procedures. 

The example comes from the CO2 emission of a coal fired power plant 

including the whole pathway from fuel to emission. They found that the power 

plant had some un-ideal sampling devices and principles both in the primary 

sampling stage and also in the mass reduction stage. After the identifying and 

estimation of the sampling errors, the uncertainty of the CO2 emission was 

increased i.e. the emissions were underestimated with the default sampling 

procedures. They concluded, and their results showed, that there is clearly 
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room for unspecified uncertainties as the EU guidelines do not account 

representative sampling. 

In most sampling cases, such as process sampling, the combined contribution 

of FSE, GSE, TAE and IPE can be estimated experimentally from the 

variographic analysis. Together they form the minimum possible error (MPE). 

The variographic analysis is presented in detail in the following section with 

references given to wide range of applications. Variographic analysis is 

particularly useful in situations where large-scale spatial and/or temporal 

variation can be quantified and modeled (Ramsey, Ellison 2007). The 

distinction between variographic analysis and time-series analysis is that time-

series analysis is primarily concerned with behavior that can be fully modeled 

by a sum of periodic functions, without specific MPE regards to the errors 

(Esbensen et al. 2007). 

3.4. Variographic analysis 

Variogram 

Variographic analysis, or statistics of auto-correlated series can especially be 

used on identifying the point selection errors i.e. long-term and periodic 

fluctuation errors PSE1 and PSE2. Variogram characterizes the standard 

deviations of the sampling with different sampling intervals and/or sampling 

strategy. If no auto-correlation exists, the sampling strategies (random, 

systematic, stratified) provide the same sampling variance. (Paakkunainen, 

Reinikainen & Minkkinen 2007) Another important advantage of variographic 

modeling is that the compositing takes place in spreadsheets and does not 

require renewed sampling (Minkkinen, Esbensen 2013). 

An example of an experimental variogram, the result of a variographic analysis, 

is presented in Figure 6. The descriptions of the basic characters of the 

variogram are given before the actual calculation is presented. There are three 

fundamental features that carry all the important primary information related to 

sampling errors and process dynamics (Esbensen, Paoletti & Minkkinen 2012): 

 The Sill; the sill is the upper-bounding value in y-axis. It represents the 

variance calculated from all experimental heterogeneity values, for all 

lags and practically corresponds to the maximum variance of the data 

series under investigation. (Esbensen et al. 2007) adds that the time 

series is no longer correlated after the sill. 
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 The Range; the range is the lag distance beyond which the variogram 

function levels off and reaches the sill. Samples taken at lags below the 

range are autocorrelated to a larger and larger degree as the lags get 

smaller i.e. the process variation is characterized better and with lower 

TSE. If the sampling lag is beyond the range, there is no autocorrelation 

and the data can be considered as a random process on estimating the 

mean. 

 The Nugget Effect; the nugget effect reflects the variance in a 0-D 

situation i.e. the minimum possible error, including the analytical error. 

The nugget effect does not have a physical meaning as it is an 

extrapolated value to zero lag, representing two distinct samples taken 

at the same location at the same time.  

 

 

Figure 6. An example of experimental variogram, based on the representation given in (Esbensen, Paoletti & Minkkinen 2012). 

It should be noted, that in natural and industrial systems the variogram usually 

is much more difficult to be interpreted. In such systems, there are always 

significant scatter when assessing the sill level, the range and the nugget effect 

in the variogram (Esbensen et al. 2007). 

Calculation of the variogram 

Variographic analysis requires at least 30 samples taken with a systematic 

selection mode. The interval should be substantially (at least 1/3) smaller than 

the assumed adequate routine sampling interval. (Paakkunainen, Reinikainen 

& Minkkinen 2007) In (Heikka, Minkkinen 1998) it is mentioned that the 
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variogram is underestimated in the first few multiples of the sampling interval 

and insignificant for the sampling intervals of five times larger than the 

experimental one. In summation, a sampling interval less than 1/5 of the 

expected sampling interval is recommended for the experiments. (Esbensen et 

al. 2007) mention that the experimental variogram can only be based on one 

series of maximum of some 40 to 60 samples. In (Minkkinen, Esbensen 2013), 

it is recommended that number of increments in a variogram should not be less 

than 60, preferably more than 100. Nevertheless, from the analytical results, 

the experimental heterogeneity (relative heterogeneity contribution) is first 

defined as: 

ℎ𝑛 =
𝑎𝑛 − 𝑎𝐿

𝑎𝐿
∙

𝑀𝑛

𝑀𝑛
̅̅ ̅̅

 

Where ℎ𝑛 is the heterogeneity of a sample n, 𝑎𝑛 the analytical result and 𝑀𝑛 is 

the size of sample n. 𝑀𝑛
̅̅ ̅̅  is the mean sample size and 𝑎𝐿 the weighted mean 

of the lot. If the samples are taken with a cross-stream sample cutter, the 

sample masses can be weighed. If equal sample volumes are taken, as often 

in process analysis, or when process analyzers are used, the flow-rate at 

sampling time should be recorded and used as the sample size. 

(Paakkunainen, Reinikainen & Minkkinen 2007) The heterogeneity 

compensates for variation in the fragment masses, which is a major distinction 

from classical statistics where all units contribute equally (Petersen, Esbensen 

2005). The weighted mean of the lot with N samples can be calculated: 

𝑎𝐿 =
∑ 𝑀𝑛𝑎𝑛

∑ 𝑀𝑛
=

1

𝑁
∑

𝑀𝑛

𝑀𝑛
̅̅ ̅̅

𝑎𝑛 

The experimental variogram, 𝑣(𝑗), summarizes the relationship between the 

mean squared difference between the samples and the lag distance of the 

corresponding points at which the samples were collected (Esbensen, Paoletti 

& Minkkinen 2012): 

𝑣(𝑗) =
1

2(𝑁 − 𝑗)
∑(ℎ𝑛+𝑗 − ℎ𝑗)

2

𝑁/2

𝑛=1

≈
1

2(𝑁 − 𝑗)𝑎𝐿
2 ∑(𝑎𝑛+𝑗 − 𝑎𝑗)

2

𝑁/2

𝑛=1

 

The equation shows that the samples can be characterized also by analytical 

concentrations 𝑎𝑛. In the equations above, the time series 𝑎(𝑡) can also be 
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replaced with a continuous function of space, 𝑎(𝑥), as the time and space are 

conceptually equivalent to their treatment in variographic analysis. (Esbensen, 

Paoletti & Minkkinen 2012) The lag parameter, j, is described by a division of 

an inter-sample interval 𝜃 and the smallest interval sampled 𝜃𝑚𝑖𝑛: 

𝑗 =
𝜃

𝜃𝑚𝑖𝑛
 

Finally, for a complete variogram, also the nugget effect needs to be calculated. 

In geostatistics, the intercept 𝑣(0) is usually extrapolated e.g. graphically from 

the variogram to zero lag. This approach is recommendable especially for 

periodic processes. Another way defining 𝑣(0) is to perform a separate 

experiment with the shortest possible sample interval. The latter method, giving 

a more reliable estimate, is recommended if short sampling intervals are of 

interest. If long intervals (e.g. j>5) are to be studied and strong auto-correlation 

expected, the exact value of 𝑣(0) is less important. (Heikka, Minkkinen 1997, 

Paakkunainen, Reinikainen & Minkkinen 2007) The separate experiments 

should include an adequate amount of samples taken with the highest possible 

sampling frequency. The estimate for the nugget effect can then be obtained 

from a (short-range) variogram calculated from this data. (Petersen, Esbensen 

2005) Comparison of some methods of estimating the nugget effect value is 

presented in (Heikka, Minkkinen 1997). 

The number of samples in the variographic analysis is restricted, as mentioned 

above. However, when process measurements are used, the amount of data 

is huge. The obvious solution is to compress the data by averaging so that the 

total amount of data points is reduced to an appropriate level. However, a 

variogram based on a full data set might be useful in ensuring the periodic 

behavior of the process (Petersen, Esbensen 2005). The periodicity can be 

confirmed by executing Fourier analysis to the variogram, the heterogeneities 

and the original data and comparing the resulting periodograms 

(Paakkunainen, Reinikainen & Minkkinen 2007). 

Applying the variographic analysis on estimating the variance estimates for 

different sampling strategies require some numerical integration. The auxiliary 

functions related to variographical analysis are presented e.g. in (Gy 2004c, 

Petersen, Esbensen 2005). The generation of these functions can be based 

either on point-to-point calculation of the variogram or algebraic modeling. 
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Variograms in practice 

As mentioned before, variographic analysis can be used for determining a 

suitable sampling interval of systematic sampling. This has been demonstrated 

e.g. in (Paakkunainen, Reinikainen & Minkkinen 2007, Kohonen, Alatalo & 

Reinikainen 2012). An example is given in Section 4.1. 

It was also mentioned that different sampling strategies (random, stratified, 

systematic) can be compared using variogram. This has also been done in 

many studies (Heikka, Minkkinen 1998, Petersen, Esbensen 2005, 

Paakkunainen, Reinikainen & Minkkinen 2007, Minkkinen, Esbensen 2009, 

Kohonen, Alatalo & Reinikainen 2012) and one of them is demonstrated in 

Section 4.1. (Petersen, Esbensen 2005) also demonstrated how many 

increments should be included in a suitable composite sample in their 

examples. Composite sampling and variographic analysis has also been 

combined in (Esbensen et al. 2007, Minkkinen, Esbensen 2009). 

(Paakkunainen et al. 2007) applied variograph to a missing sample problem. 

They studied how reliable the variogram is if the data includes systematic gaps. 

They also determined how the uncertainty generated by gaps can be estimated 

when time-averages of auto-correlated time series measurements are 

reported. Their example came from a simulated data and from combustion 

processes where the missing gaps of NOx-data were generated. It was found 

that random missing gaps in periodic data make the uncertainty estimation very 

challenging and the most appropriate sampling strategy cannot be chosen 

based on variogram. If only systematic gaps are present, the problem can be 

solved by linear interpolation, or more preferably by composite sampling. 

(Heikka, Minkkinen 1998) suggested that experimental variograms can be 

calculated also from fewer samples i.e. data collected from normal operation 

and the variogram can be estimated using cubic smoothing spline function. If 

this estimated variogram shows some clear changes compared with some 

earlier, properly executed variographical analysis, it indicates that some 

process changes have taken place and a full experimental analysis should be 

conducted. 

(Paakkunainen, Reinikainen & Minkkinen 2007) put also an effort to estimate 

systematic errors with variographic analysis. For this purpose, the variograms 

of the combustion process measurements and reference measurements were 
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compared. The behavior of variograms indicated that there was a drift in an 

analyzer of one of the examples. Both examples also showed a difference 

between the process measurement and reference measurement, but it cannot 

be concluded if the difference is due to instrument calibration or sampling 

system. 

A simulation study on the effect of different correct sampling errors is presented 

in (Minkkinen, Esbensen 2009). The affecting factors simulated were: 

 analyte concentration with 5 levels 

 heterogeneity type with 7 levels; randomly distributed analyte particles, 

analyte particles in randomly distributed clusters of 2, 4, 6, 16, and 32 

particles, segregated/grading lot 

 sample size consisting of different amount of particles with 6 levels 

 sampling type (composite sampling, grab sampling) 

 sampling strategy (random-, stratified- and systematic sampling) 

(Minkkinen, Esbensen 2009) presents the simulator in detail as well as high 

number of results. The results illustrate the difficulty of comparing and 

interpreting distributions when the sampling conditions are not fully comparable 

and specified. They also show the clear advantage of using composite 

sampling especially when the sample increments are smaller than the cluster 

size. The simulations also show the effect and relation of GSE and FSE; if an 

apparent cluster size can be determined, this can be regarded as an effective 

“particle” and a particle distribution models can be used for estimating FSE. If 

such determination cannot be made, GSE will be neglected and the models 

will give underestimated sampling variances. 

Variographic analysis can be extended to bilinear projections i.e. PCA, PCR, 

PLSR scores could be used for variographic characterization instead of 

individual variables (that might be correlating etc.). (Minkkinen, Esbensen 

2013) presents such extension to PCA scores calculated from air quality 

monitoring data and soil heterogeneity characterization data. They also 

recommended to plot the time (or spatial) axis simultaneously for the scores 

and the corresponding variogram for the more comprehensive interpretation of 

the results. (Kohonen, Alatalo & Reinikainen 2012) have used a multivariate 

extension of variography to spectral measurements in a semibatch 
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crystallization process. The variogram of PCA scores showed to be applicable 

but only for as an indicative tool. 

The results of several variographic examples in (Esbensen et al. 2007) 

demonstrate how composite sampling is more effective on decreasing the total 

sampling error than optimizing the sampling interval. They studied the effect of 

outliers in the data and the corresponding variogram. Outliers may influence 

variograms significantly by masking the true variogram. Therefore it is 

important to be able to recognize and delete the outliers. (Esbensen et al. 2007) 

also showed the importance of pre-treating the original data series by de-

trending or time-segmentation of the data in order to reveal the hidden data 

structures through variograms. This kind of pre-treatment corresponds with the 

geostatistical prerequisite of stationarity. They also suggested that both the 

original data and the pre-treated data should be analyzed with variography 

simultaneously. 

The variogram was efficiently used as a process analytical tool (PAT) in 

(Esbensen et al. 2007). An example given from a biogas process monitoring 

revealed a trend of seven days and 21 days. The former one was related to 

weekends, when a constant pre-mix of the feedstock cannot be guaranteed. 

The latter one provided new process insight as it was connected with the raw 

material logistics from certain suppliers. Variography was used for a corporate 

quality control (QC) in an example given in (Esbensen, Mortensen 2009). Six 

manufacturing plants of the same corporate aimed to produce the same 

product with similar properties. Variographical analysis revealed distinctions 

between the processes which were assumed to operate with equal reliably and 

efficiency. Three plants with high sill levels were assigned to take a complete 

TOS analysis. One plant also had to take actions against the periodic variability 

observed in the analysis. 

Heikka and Minkkinen have aimed at estimating the limiting value of the 

variogram (the nugget effect) more precisely with spline functions (Heikka, 

Minkkinen 1997, Heikka, Minkkinen 1998). They also found in their analysis of 

pulp bleaching plant data that the limiting values of the variograms were high 

due to periodicity and random noise. Additionally, they concluded that if the 

variogram increases slowly, more precise laboratory measurements are 

beneficial on the process monitoring and controlling point of view. If the 
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variogram increases quickly, the control should rely only on the quick process 

analyzers. 

There exists another theory related to variographic analysis. (Heikka 1996) 

compares the Gy’s sampling theory and the one introduced by Kateman and 

Müskens. The latter theory is based on the autocorrelation analysis and 

equations derived from properties of stationary, stochastic processes with 

normally distributed properties, hence corresponding to the non-periodic 

continuous component of Gy’s integration error (Heikka 1996). 
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4. Applications 

4.1. TOS and variographic analysis 

TOS and variographic analysis was first developed into soil science and mining 

operations. The theories belong to a branch of statistics focusing on spatial and 

spatiotemporal datasets called geostatistics. Nowadays, geostatistics have 

been applied in a large number of studies in various fields. In this literature 

review, the focus is on variographic analysis in process- and environmental 

engineering related applications and process measurements. The references 

cited in this review involved the following applications (some of those also 

outside of process engineering applications): 

 Chlorine dioxide and chlorite residuals in pulp bleaching and variographic 

analysis (Heikka, Minkkinen 1997, Heikka, Minkkinen 1998) 

 Sulfur discharge in wastewater and variographic analysis 

(Paakkunainen, Reinikainen & Minkkinen 2007) 

 NOx emissions from a combustion process and variographic analysis 

(Paakkunainen et al. 2007), (Paakkunainen, Reinikainen & Minkkinen 

2007) 

 CO measurements from a combustion process and variographic analysis 

(Paakkunainen et al. 2007) 

 Variance estimation of the sulfur emission sources in a pulp mill and 

variographic analysis (Minkkinen 2004) 

 Yield (CH4) and pollutant (H2S) level monitoring of a biogas plant and 

variographic analysis (Esbensen et al. 2007) 

 Trade prices of zink and spot prices for crude oil and variographical 

analysis (Esbensen et al. 2007) 

 Flotation plant feed and variographic analysis (Esbensen et al. 2007) 

 Online pressure, temperature and oxygen concentration of the feed water 

in a power plant and variographic analysis (Petersen, Esbensen 2005) 

 Spectral instruments in semibatch chrystallization process and 

variographic analysis (Kohonen, Alatalo & Reinikainen 2012) 

 Air quality monitoring and variographic analysis (Minkkinen, Esbensen 

2013) 

 Soil heterogeneity characterization and variographic analysis 

(Minkkinen, Esbensen 2013) 
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 Uranium content of the feed in a uranium ore processing plant and 

variographic analysis (Gy 2004c) 

 Feed to a cement kiln and variographic analysis (Gy 2004c) 

 Chromite concentration estimation from SEM images and TOS 

(Korpelainen et al. 2002) 

 Sampling procedures for CO2 emissions estimation in a coal power plant 

and TOS (Wagner, Esbensen 2011) 

Two examples are represented here in more detail. The first one illustrates how 

variographic analysis can be used for determining a sampling plan. The second 

one shows how the periodicity of the data affects the selection of sampling 

strategy. 

(Paakkunainen, Reinikainen & Minkkinen 2007) uses variographic analysis to 

improve the estimation of the confidence interval of sulfur discharge in 

wastewater over a one-year period. For the analysis, they collected one water 

sample daily for a one-month period. The heterogeneity data from 

(Paakkunainen, Reinikainen & Minkkinen 2007) is reinterpreted in Figure 7 and 

the corresponding variogram, as well as the relative standard deviations for two 

different sampling strategies are calculated. The standard deviation of the 

heterogeneities i.e. the relative standard deviation of the process is 28.2%. The 

variogram shows no periodicity and therefore the interpretation of it is 

straightforward. If one sample in a week is collected (i.e. 7 day sampling 

interval, 52 samples in a year), the relative standard deviation with systematic 

sampling is 7.8%. This results as a relative standard deviation of the annual 

sulfur discharge of 0.078/sqrt(52)=1.1%. If the sampling interval is halved (3.5 

day sampling interval, 104 samples in a year), the relative standard deviation 

with systematic sampling is 5.8% and the corresponding uncertainty in the 

annual estimate would be 0.058/sqrt(104)=0.57%. However, if one assumes 

that the results follow a normal distribution, random sampling is used and an 

acceptable relative standard deviation is 1.1%, the required number of samples 

would be 0.282^2/0.011^2=657. 



 

37 

 

 

Figure 7. Variographical analysis of sulfur discharge. Heterogeneity data interpreted from (Paakkunainen, Reinikainen & 
Minkkinen 2007). 

The second example is a simulated example originally presented in (Petersen, 

Esbensen 2005). In this variographic experiment, samples are taken every 

minute for a one hour period and the concentrations of one component are 

analyzed. The variogram in Figure 8 indicates a cyclic behavior with a period 

around 13 minutes, a behavior that cannot be seen in the analytical results. 

Sampling with such a period should be avoided. The auxiliary functions are 

utilized to provide the variances and standard deviations of the sampling with 

different sampling strategies. The x-axis is reversed in this presentation in order 

to show the number of increments in a composite sample and the 

corresponding variance (or standard deviation). The analysis shows that 

instead randomly sampling the process once an hour, using a composite 

sample of 10 increments decreases the absolute standard deviation from a 

value higher than 3 to a value near 0.5. This relates to sampling the process 

every 6 minutes. Due to the cyclic behavior of the process, the stratified random 

sampling is preferable. 
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Figure 8. Variographical analysis of simulated data. Analytical results interpreted from (Petersen, Esbensen 2005). 

4.2. Uncertainty estimation for virtual instruments 

Extending the uncertainty estimation into automation systems requires 

studying e.g. the uncertainty components in an automation system and in the 

data transfer network. A practical example has been given in (Koivisto 2003). 

More generally, the virtual measurement can include a large amount of 

uncertainty sources. A comprehensive metrological characterization of the 

virtual measurement instrument is given in (Caldara, Nuccio & Spataro 2000) 

and (Nuccio, Spataro 2002). The problem may be decomposed in a following 

way: 

 Transducers and signal conditioning accessories; their error are 

predominant in comparison with other sources, but also case-sensitive 

i.e. no general treatment can be made, but separate analysis of 

particulate situations is required (Nuccio, Spataro 2002). 

 Acquisition board (sampler, analog-to-digital conversion, clock 

generator); the systematic and random uncertainty sources are 

presented in Figure 9. 

 General-purpose computer 

 Software (data acquisition board control, digital signal processing, user 

interface); errors arise from bias of processing algorithms, rounding 

phenomena (finite wordlength) 
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Figure 9. Uncertainty sources of the A/D conversion process, redrawn from (Nuccio, Spataro 2002). 

The A/D-conversion comprises many uncertainty sources, as presented in 

Figure 9. The temperature drift in that Figure refers to the temperature drift of 

the onboard calibration reference. Pre-gain offset, gain and post-gain offset are 

all affected by their temperature drifts. Some of the uncertainties are usually 

provided as a Type B uncertainty by the manufacturers, but defining the others 

may require using Monte Carlo Simulation. (Caldara, Nuccio & Spataro 2000) 

gives a simulated example of uncertainty estimation of a virtual instrument. 

(Nuccio, Spataro 2002) compares the uncertainty estimates gained from their 

theoretical approach, from a numerical method and from an experimental 

method. The A/D-conversion and its uncertainty have also been discussed in 

(Clemens 2000), where the typical random errors and A/D errors were 

combined non-additively. 

The uncertainties arising from the software, i.e. from digital signal elaboration 

algorithms, are treated in (Betta, Liguori & Pietrosanto 1999). They proposed 

a white box-approach to the uncertainty estimation of the output signal in time-

domain. In (Betta, Liguori & Pietrosanto 2000), the authors extended the 

uncertainty estimation to DFT-based (discrete Fourier transform) instruments. 

(De Santo et al. 2004) have made uncertainty estimation to digital images using 

the abovementioned white-box approach. In their study, (De Santo et al. 2004) 

decomposed the image-based measurement problem into image acquisition, 

image processing and measurement extraction. 

(Locci, Muscas & Ghiani 2002) suggest an auto-evaluation of bias and 

uncertainty of a virtual instrument. They consider the uncertainties arising from 

the data acquisition and A/D-conversion system including quantization, noise, 
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offset and gain error. They also make a numerical comparison of GUM, MCM 

and mathematical evaluation of the central moments of the random variables. 

Evaluation of the uncertainty and fit-for-purpose (FFP) of the on-site 

measurements is presented in [Boon & Ramsey 2012]. On-site measurements 

have similarities to intelligent measurements as they take an advantage of 

more cost-efficient sampling by increasing the number of samples and also the 

disadvantages are similar, e.g. less-sensitive detection limits. FFP analysis, 

presenting also one solution to the compositing of samples, is presented in the 

next Section. 
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5. Fit-for-purpose 

A sampling plan is not only guided by the uncertainty of the measurement, but 

also by the costs of the measurement. Naturally, minimizing the costs is an 

intriguing option for economic point-of-view. Therefore, if a certain uncertainty 

limit exists, or is set by legislation, the sampling plan can be optimized by 

minimizing the costs with the boundary condition to fulfill the limits. However, 

in decision making, the optimization of the sampling plan is more difficult. Some 

level of precision is of course required, but it is more important to be able to 

have a measurement result (estimate + uncertainty) that can be used as a basis 

of a reliable decision making. Naturally, time is valuable in decision making, so 

sometimes it is beneficial to have more samples in less time, although the 

uncertainty is higher. Therefore, the loss function should take into account the 

costs of the investigation and the possible losses due to misclassification as a 

function of the measurement uncertainty (Ramsey, Boon 2012). Higher 

uncertainty could, for example, lead to a wider threshold for action levels. 

This kind of evaluation of the measurement on its ultimate purpose is one of 

the three approaches listed for judging fitness-for-purpose (FFP) of 

measurements using uncertainty (Ramsey, Ellison 2007). The two other are: 

1) Setting a maximum value of uncertainty considered acceptable and 2) 

Comparing the measurement variance to the variance of the measurements 

between the different sampling targets; e.g. locating targets with significantly 

higher concentrations, indicated by the low impact of measurement variance 

on the total variance. However, considering the ultimate purpose is the most 

generally applicable. This is the FFP considered in this review. It should be 

noted that in a wider sense, the FFP of analytical methods may consist of 

characteristics such as selectivity, repeatability, linearity, sensitivity, limit of 

detections, robustness, trueness. 

(Ramsey, Boon 2012) compared the FFP of in-situ and ex-situ measurements 

in geochemical measurements, where the ex-situ laboratory measurements 

may take even days with several sample handling and mass reduction steps. 

They listed some of the pros and cons of in-situ and ex-situ measurements, 

which are presented in Table 2. The random component was estimated using 

the duplicate method, the systematic component was estimated using certified 

reference materials and the bias between the measurements was modeled 

using maximum likelihood estimation. The FFP evaluation was based on the 
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OCLI method (optimized contaminated land investigation), that uses a cost 

function based upon not just the cost of taking the measurements (sampling 

and chemical analysis), but also on the costs arising from the consequences 

of misclassification of two types. The first one, the false positive, represents a 

case where the land is erroneously classified as contaminated when it is not. 

The second one, the false negative, classifies the land erroneously as 

uncontaminated. Both misclassifications may lead to extra costs as land might 

be remediated needlessly, contamination left in place may be detected later on 

lead to delays in site development or contamination has human health effects, 

or subsequent litigation. 

In (Boon, Ramsey 2012), FFP of in-situ and ex-situ geochemical 

measurements was determined and the measurement method was then 

adjusted to really achieve FFP. The methods were similar to those in (Ramsey, 

Boon 2012). The adjusting was made by increasing the mass i.e. the number 

of increments in the composite samples. Assuming a representative sampling, 

the dependence on the sampling variance and number of increments is: 

𝑛2

𝑛1
= (

𝑠1

𝑠2
)

2

 𝑛2 = (
𝑠1

𝑠2
)

2

𝑛1 

Where 𝑛1 and 𝑛2 are the number of increments in the composite sample and 

𝑠1and 𝑠2 are the standard deviations of those composite samples. The optimal 

uncertainty for FFP measurement, 𝑠2, is attained from the RANOVA analysis. 

It should be noted, that if both the sampling uncertainty and analytical 

uncertainty are important (i.e. at comparable level), adjusting the sampling plan 

has a smaller effect on the total uncertainty and 𝑠2 used in equation should be 

determined as 𝑠2,𝑛𝑒𝑤 = 𝑠𝑞𝑟𝑡(𝑠2,𝑜𝑙𝑑
2 − 𝑠𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

2). 

In their first case study, (Boon, Ramsey 2012) found that the on-site 

measurements comprising of three increments would be FFP for avoiding 

false-positive classification. However, avoiding false-negative classification in 

an optimal manner (FFP) was found to be impractical, as the composite sample 

should include 147 increments. In the second case study, they found that 14 

increments should be taken instead of 5 increments in the composite sample 

in order to achieve FFP measurement for avoiding false positives. The original 

sampling plan was already more than FFP for avoiding false negatives, so the 
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increased amount of increments in the composite sample would also be more 

than FFP. 

Table 2. Comparison of in-situ and ex-situ measurements (Ramsey, Boon 2012). 

 Pros Cons 

In-

situ 

 Lower cost 

 Accuracy 

 Immediate estimates 

 Higher sampling densities 

 Less sample preparation 

 Less storage and waste 

 Spatial heterogeneity preserved 

 

- Less reliable 
- Resolution of detection limits 
- Training 

Ex-

situ 

 Reproducibility 

 Traceability 

 Quality control 

- Losses of analyte in mass 
reduction and processing 

 

Instead of using time-series analysis for the variance estimation, the fit-for-

purpose evaluation can also be based on the variance estimates from 

variographic analysis. In (Minkkinen 2004), examples of optimizing a nested 

sampling plan are given. The optimization can be made with respect to the 

costs of the investigation for preset variance, or with respect to the minimum 

variance for preset costs. A numerical example of the former one concerns with 

the determination of cobalt in nickel cathodes (equal strata). A numerical 

example of the latter one optimizes the allocations of emission control 

measurements to estimate the sulfur balance of a pulp mill (unequal strata). 

The results then recommend the optimized sampling protocols (sampling 

frequency and allocation, sample masses). 
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