
Recursive dynamic modelling in changing operating conditions

Esko K. Juuso

Control Engineering Group, Faculty of Technology, University of Oulu, Finland

esko.juuso@oulu.fi

Abstract

Changing operating condition may require updates for the

dynamic models. Recursive updates are needed especially

when sufficient information about the new situations is

not available. In machine diagnostics and prognostics, the

analysis starts from good conditions and new phenomena

activated with time may considerably change the model.

In biological wastewater treatment processes, the condi-

tion of the biomass drastically changes during the oper-

ation of the treatment process. Measurents based on the

image analysis of the biomass condition is recently in-

cluded. Recursive modelling is clearly needed in these sit-

uations. The usual approach is to modify the model equa-

tions. However, the interactions do not necessarily change

if the meanings of the variables are modified. This paper

keeps the model equations constant and modifies the non-

linear scaling of the variables by extending the data-driven

scaling to a recursive approach. The recursive methodol-

ogy is tested in two applications: machine diagnostics and

wastewater treatment.

Keywords: intelligent modelling, recursive statistical

analysis, adaptive modelling, prognostics, transitions

1 Introduction

Changing operating conditions need to be taken into ac-

count in prognostics since new phenomena activate grad-

ually with time. In the condition-based maintenance

(CBM), the most obvious and widely used form of prog-

nostics is to predict how much time is left before a failure

occurs. The time left before observing a failure is usually

called remaining useful life (RUL) (Jardine et al., 2006).

It is even better if the maintenance actions are taken be-

fore the failure occurs, especially when a fault or a failure

is catastrophic. Dynamic models include hazard functions

and stochastic processes for the process states which ac-

tivate with time. A time-dependent proportional hazard

model (PHM) has a hazard function of the form

h(t) = h0(t)exp(
n

∑
j=1

η jx j(t)) (1)

where h0(t) is a baseline hazard function, x j(t), j =
1, . . . ,m, are covariates which are functions of time and

η j(t), j = 1, . . . ,m are coefficients. The baseline haz-

ard function h0(t) can be in non-parametric or parametric

form, e.g. a Weibull hazard function, which is the haz-

ard function of the Weibull distribution. The covariates

x j(t), j = 1, . . . ,m, can be any condition variables such

as health indicators and features in condition monitoring.

(Jardine et al., 2006)

In biological wastewater treatment in pulp and paper in-

dustry, a lot of process measurements are available, but

measurement sets do not include sufficient information

on the special features of the influent nor on the mi-

crobial composition of the sludge (Juuso, 2009a). Ac-

tivated Sludge Models provide a basis for phenomeno-

logical modelling and can be linked to process expertise

(Henze et al., 1987; Lindblom, 2003). Their use has been

limited by complexity of the models. Hybrid models with

a cascade approach are needed in biological wastewater

treatment to cover different operating conditions. The

condition of the biomass need to modelled as well (Juuso,

2009a).

Many variables are normally measured in a plant, but

some of them are strongly cross-correlated. Data-based

analysis is needed for variable selection (Teppola et al.,

1997; Mujunen et al., 1998; Oliveira-Esquerre et al., 2002)

and for detection of operating conditions has used in

(Heikkinen et al., 2008b) to analyse specialised submod-

els. As the sludge settling properties have remarkable

effects on the treatment results, the modelling of the di-

luted sludge volume index (DSVI) is important (Heikki-

nen et al., 2008b). Heikkinen et al. (2008a) used models

for predicting the chemical oxygen demand (COD) of the

effluent in an industrial activated sludge plant. Image anal-

ysis has been studied in (Tomperi et al., 2015) to find out

dependencies to the process variables of the plant and to

the quality of the treated wastewater.

The main idea of time series modelling is to fit the

waveform data to a parametric time series model and ex-

tract features based on this parametric model, where the

output at time t can depend on many signal values y from

previous time instants. The amount of signals should be

chosen according to the appropriate time delays (Ljung,

1999). Fuzzy and neural models are based on the same

structures. The most common structure for the input-

output models is the NARX /Nonlinear AutoRegressive
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with eXogenous input model, where the input and output

values are chosen according to appropriate system orders,

as in the ARX model. The regressor vector consists of

a finite number of past inputs and outputs (Babuška and

Verbruggen, 2003). Another possibility is to use recurrent

networks, e.g. Elman networks are two-layer feedforward

networks, with the addition of a feedback connection from

the output of the hidden layer to its input (Elman, 1990).

The basic form of the linguistic equation (LE) model is

a static mapping in the same way as fuzzy set systems and

neural networks, and therefore dynamic models will in-

clude several inputs and outputs originating from a single

variable (Juuso, 2004). External dynamic models provide

the dynamic behaviour, and LE models are developed for

a defined sampling interval in the same way as in vari-

ous identification approaches discussed in (Ljung, 1999).

Nonlinear scaling reduces the number of input and output

signals needed for the modelling of nonlinear systems. For

the default LE model, all the degrees of the polynomials

become very low:

Y (t)+a1Y (t −1) = b1U(t −nk)+ e(t) (2)

for the scaled variables Y and U .

The nonlinear scaling maps from the operation area

of the (sub)system, defined with feasible ranges, to the

linguistic values represented inside a real-valued interval

[-2,2]. The feasible range is defined by a membership

function, and membership functions for finer partitions

can be generated from membership definitions (Juuso

et al., 1993). The basic scaling approach presented in

(Juuso, 2004) has been improved later: a new constraint

handling was introduced in (Juuso, 2009b), and a new

skewness based methodology was presented for signal

processing in (Juuso and Lahdelma, 2010).

Recursive modelling can be done by including new

model components as in (1) or by modifying the coeffi-

cients as is done in identification. The highly complex

model structures, which are based on data fitting, can be

difficult to understand. In LE models, the structure is kept

compact, see (2), to keep process insight clear.

This paper combines compact model structures with the

data-driven analysis of variable meanings and discusses

results and requirements in two applications: machine di-

agnostics and wastewater treatment.

2 Nonlinear scaling

Scaling functions are monotonously increasing functions

x j = f (X j) where x j is the variable and X j the correspond-

ing scaled variable. The function f () consist of two sec-

ond order polynomials, one for the negative values of X j

and one for the positive values, repectively. The corre-

sponding inverse functions x j = f−1(X j) based on square

root functions are used for scaling to the range [-2, 2],

denoted linguistification. In LE models, the results are

scaled to the real values by using the function f ().

The parameters of the functions are extracted from

measurements by using generalised norms and moments.

The support area is defined by the minimum and max-

imum values of the variable, i.e. the support area is

[min(x j),max(x j)] for each variable j, j = 1, . . . ,m. The

central tendency value, c j, divides the support area into

two parts, and the core area is defined by the central ten-

dency values of the lower and the upper part, (cl) j and

(ch) j, correspondingly. This means that the core area of

the variable j defined by [(cl) j,(ch) j] is within the support

area.

2.1 Generalised norms

The corner points can be extracted from measurements

with generalised norms defined by

||τ M
p
j ||p = (τ M

p
j )

1/p = [
1

N

N

∑
i=1

(x j)
p
i ]

1/p, (3)

where p 6= 0, is calculated from N values of a sample, τ is

the sample time. With a real-valued order p ∈ ℜ this norm

can be used as a central tendency value if ||τ M
p
j ||p ∈ℜ, i.e.

x j > 0 when p < 0, and x j ≥ 0 when p > 0. For variables

with only negative values, the norm is the opposite of the

norm obtained for the absolute values. If a variable has

both positive and negative values, each norm is an average

of two norms where the data sets are made positive and

negative by subtracting a value xL < min((x j)) and a value

xH > max(x j)), respectively (Juuso, 2011). These norms

generalise the earlier analysis based on arithmetic means

or medians (Juuso, 2004).

The computation of the norms can be divided into the

computation of equal sized sub-blocks, i.e. the norm for

several samples can be obtained as the norm of the norms

of the individual samples:

||Ksτ M
p
j ||p = {

1

Ks

Ks

∑
i=1

[(τ M
p
j )

1/p

i ]p}1/p = [
1

Ks

Ks

∑
i=1

[(τ M
p
j )i]

1/p,

(4)

where Ks is the number of samples {x j}
N
i=1. In automation

and data collection systems, the sub-blocks are normally

used for arithmetic mean (p = 1).

2.2 Parameters

The generalised skewness γ
p
3 is used when choosing ap-

propriate methods for defining the central tendency. The

central tendency value and the core area are based on the

normalised moment

γ
p
k =

1

Nσ k
j

N

∑
i=1

[(x j)i −||τ M
p
j ||p]

k (5)

where k is a positive integer. The standard deviation σ j,

which is calculated about the origin, is used to obtain a

dimensionless feature. (Juuso and Lahdelma, 2010) The
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central tendency value is chosen by the point where the

skewness changes from positive to negative, i.e. γ
p
3 = 0.

Then the data set is divided into two parts: a lower part

and an upper part. The same analysis is done for these

two data sets. The estimates for the corner points, (cl) j

and (ch) j, are the points where γ
p
3 = 0 for the lower and

upper data sets, respectively.

3 Recursive modelling

Recursive data analysis facilitates the adaptation of the

functions to changing operating conditions, also the or-

ders of the norms are re-analysed if needed. The existing

scaling functions provide a basis for assessing the qual-

ity of the new data: outliers should be excluded, but the

suspicious values may mean that the operating conditions

are changing. In this research, the scaling functions are

extended for analysing outliers and suspicious values to

select data for the adaptive scaling. Different operating

areas can be analysed from previous measurements with

various clustering methods and the statistical process con-

trol (SPC) provides additional tools for detecting changes,

anomalies and novelties in connection with the operation.

3.1 Data selection

Process data often contains outliers, which must be re-

moved before generating the feasible area, because the

procedure described above is sensitive to them. This is

the idea in medians and trimmed means, which are used

for the data samples containing outliers. A good estimate

for the support area can be obtained with the generalised

norms (3) with large negative and large positive orders

since these features are less sensitive to the outliers than

the minimum and maximum values. Discarding values at

the high and low end can be used together with the gener-

alised norms if there are obvious outliers. Trimming does

not need to be the same for the low and high values.

Clear outliers need to be excluded in both the first anal-

ysis and the subsequent adaptation steps. In linear scaling,

the z-score values outside the range [−3, 3] are often con-

sidered as an indication of an outlier. This is a feasible

solution for the normal distribution, but it is not optimal

for steeper and wider distributions. The effect of the shape

factor is presented in Figure 1.

For LE models, the scaled values X j are in the range

[−2, 2] (Figure 2), and this is also the range for the

monotonous increase if α
−
j = α

+
j = 1

3
. The minimum and

maximum points depend on the shape factors: the maxi-

mum point in the linguistic range

(X j)max =−
b+j

2 a+j
=

3−α
+
j

2 (α+
j −1)

, (6)

which goes to infinity when α
+
j → 1, and the upper poly-

nomial does not have any maximum point when α
+
j > 1.

Figure 1. Relative score values for the core, support, suspicious

and outlier areas as a function of the shape factor α
+
j = 3.

Figure 2. Scaled score values for the core, support, suspicious

and outlier areas as a function of the shape factor α
+
j = 3.

3.2 Adaptation

The parameters of the nonlinear scaling functions can be

recursively updated with (4) by including new equal sized

sub-blocks in calculations. The number of samples Ks can

be increasing or fixed with some forgetting, and weight-

ing of the individual samples can be used in the analy-

sis. If the definitions should cover all the operating ar-

eas, also suspicious values are included as extensions of

the support area. In each adaptation step, the acceptable

ranges of the shape factors α
−
j and α

+
j are checked and

corrected if needed. The orders (pl) j, (p0) j and (ph) j of

the corresponding norms are re-analysed if the distribution

is changing considerably with new measurements.

Since the search of these points is performed by using

the order of the moment, the resulting orders (pl) j, (p0) j

and (ph) j are good estimates when additional data sets are

used. The norm values are recursively updated with (4),

and a new search for the orders is done only if the values

change considerably (Juuso, 2011).

Data values are classified with fuzzy logic to three cat-

egories: (1) extended area, (2) new operating area, or
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(3) outliers. Decision is based on the difference of the

feasibility areas of the recent data and the current defi-

nitions. Outliers were discussed in the previous section.

High overlap supports the extension alternative. Lower

and lower overlap proposes a new operating area. The ap-

proach goes smoothly and requires several new data points

to change the parameters. The window of the short re-

cent time period depends on the process. The decisions

should be based on expert knowledge, especially when re-

ally drastic changes are detected.

3.3 LE Models

The same model, e.g. (2), is used all the time, even with

same coefficients. The recursive adaptation is principally

done by updating for the parameters of the scaling func-

tions. The coefficients are updated in the second level,

and naturally, it also possible to include more equations

if needed. The solution is more compact than repeated

regression analysis to get the coefficients of the models.

Naturally, the scaling approach can be enhanced with re-

gression if needed.

4 Applications

The approach is aimed for processes where the online

modelling is needed to adapt in new situations without suf-

ficient information needed in predefined adaptation.

4.1 Prognostics

Remaining useful life (RUL) is a conditional random vari-

able, which is estimated by using the current age and the

past condition profile up to the current moment. The fail-

ure is assumed as a case where the fault defined by the

condition variables reaches a predetermined level. The

need for detailed prognostics could be detected by mon-

itoring indices with SPC. The indication could be given

when the index exceeds the warning level. (Lahdelma and

Juuso, 2011)

Trend monitoring of vibration features is a more useful

maintenance tool than a one-time survey of absolute mag-

nitudes (Kaufman, 1975). Models have been presented for

the increase of vibrations with the machine operation time,

e.g. according to (Sankar and Xistris, 1972; Collacott,

1977) the increase is first linear and turns into exponential

when 75 % of the machine life time is exceeded. How-

ever, the life time is not known as it varies from machine

to machine. Degradation curves can be based on time se-

ries analysis where time series models are developed to

trend the condition variables for failure prediction. A dy-

namic model can also be used. Heng et al. (2009) used a

feedforward neural network.

Trends from two paper machines are analysed in

(Lahdelma and Juuso, 2011). In the first case, the reso-

nance of the press section resulted in a fast increase of the

root mean square velocity, vrms. The machine speed was

reduced 4 %, and a breakdown and an additional stoppage

were avoided. The machine operated with reduced speed

for two weeks, and the same or lower vibration level was

kept for one week. In the second case, resin problems of

a press roll in the felt washer were seen as a typical trend

represented by

ln
vrms(t)

(vrms)0
= b0 +b1t +b2t2, (7)

where b0, b1 and b2 are constants. The velocity vrms is

growing with an accelerating speed (Figure 3). The mod-

els for the periods one and two are linear in a semilogarith-

mic scale, but the model for the whole data set requires the

quadratic term.

Figure 3. Exponential models vrms (Lahdelma and Juuso, 2011).

Figure 4. Recursive adaptation in prognostics.

In prognostics, the scaling functions are expanding

when the new phenomena activate (Figure 4). The first

models do not predict a failure: they are only used to de-

tect the need for the update. Later, the LE models, which

are in Figure 4 shown as lines, predict well the failure. In

the beginning, the time window includes only good op-

eration. Since the window is continuously increased, it

contains the whole data only in the end.
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Figure 5. Treatment results of an activated sludge treatment plant: reduction of chemical oxygen demand (COD) and diluted sludge

volume index (DSVI), see (Juuso, 2010).

In prognostics, the data points do not always cover the

whole area of operation, e.g. only the close neighbour-

hood of the normal operation point may be covered, or we

would like to extend the model of upper part later to the

lower part. In fault diagnosis, only one part may be in use.

In these cases, expert knowledge is used in extending the

feasible range or selecting the methodologies.

4.2 Wastewater treatment

Biological water treatment depends strongly on the oper-

ating conditions. Load and nutrient levels should be bal-

anced since both an exceptionally high load and excess nu-

trients cause problems. The operating conditions are mod-

ified by oxygen, temperature and flow. The worst case,

which includes both low reduction and settling problems,

arise when there multiple warnings and alarms (Figure 5).

Correspondingly, good reduction and very good settling is

achieved when there were very few warnings. As it takes

some time to lose good conditions and recover from prob-

lematic conditions, the intelligent indices are useful for

supervisory control.

In wastewater treatment, all the alternative decisions are

feasible. Drastic changes take place, but they start with

smooth changes (Figure 5). Strong transitions are espe-

cially seen in settling: different operating conditions are

seen in the parameters of the scaling functions of the mea-

surements: temperature, oxygen, flow and nutrient feed.

A moving window is suited for these applications to recur-

sively update the parameters of the scaling functions. The

coefficients and variables of the model are the same in all

operating conditions. The new measurements reported in

(Tomperi et al., 2015) are included in the analysis.

5 Conclusions

Changing operating condition can be handled by updating

the scaling functions without specific information about

the new situations. The recursive analysis operates well

and the nature of the process can be taken into account.

In machine diagnostics and prognostics, the scaling func-

tions are expanded when new phenomena activate. In

wastewater treatment, drastic changes require completely

new parameters. The model equations are not changed.
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