Jussi Kolehmainen

Predicting Complex Events in Sensor Data

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 08.08.2013

Thesis supervisor:

Prof. Ahti Salo

Thesis advisor:

M.Sc. (Tech.) Antti Aalto

A’, Aalto University

AALTO-YLIOPISTO DIPLOMITYON
PERUSTIETEIDEN KORKEAKOULU TIIVISTELMA

Tekija: Jussi Kolehmainen
Ty6n nimi: Monimutkaisten tapahtumien ennustaminen sensoridatasta

Paivamaara: 08.08.2013 Kieli: Englanti Sivumaara:7+74

Matematiikan ja systeemianalyysin laitos

Professuuri: Systeemi- ja operaatiotutkimus Koodi: T3020

Valvoja: Prof. Ahti Salo
Ohjaaja: DI Antti Aalto

Monimutkaisten tapahtumien prosessointi (CEP) on teknologia, joka analysoi
datavirtoja ja tunnistaa monimutkaisia tilanteita reaaliajassa. Tunnistettavat
tilanteet maaritellddn EPL-lauseilla, joiden kirjoittamiseen tarvitaan tutkittavaa
ilmiota tuntevia asiantuntijoita. Yhdessd matemaattisten ennustemenetelmien
kanssa CEP mahdollistaa tapahtumien ennustamisen ja niistd varoittamisen.

Téssd tyossa kiayn lapi mitd ennustava tapahtumaprosessointi on ja kuinka
eri komponenteista voidaan kasata jirjestelmid reaalimaailman tapahtumien
ennustamiseen. Matemaattisina tyokaluina kdytan kahta mallia: etdisyysmittaan
perustuvaa mallia ja piirrevektoriin perustuvaa mallia. Ensimméinen kiyttai
DTW:td etdisyysmittana ja k:n l&himméan naapurin (kNN) algoritmia luokit-
teluun. Jalkimmaéinen pohjautuu wavelet-analysiin ja tukivektorikoneisiin (SVM).

Kokeellisessd, osiossa esittelen taloautomaation sovellutuksena ennustavalle
tapahtumaprosessoinnille. Testeissd kiytidn todellisia sensoreita, joille ennustan
sisdilmayhdistyksen asettamien raja-arvojen ylityksid. Tamén lisdksi arvioin
rakentamani systeemin suorituskykya.

Hiilidioksidille ja haihtuville orgaanisille yhdisteille ensimmdéinen malli an-
taa oikeita halytyksid yli 75 %:ssa tapauksista ja pédsee alle 10 %:iin vadrien
halytysten osalta. Jalkimméinen malli toimii nopeammin, mutta sen konfigurointi
osoittautuu haastavaksi, minké takia tulokset ovat huonompia. Jatkotutkimusten
aiheiksi suosittelen erityisesti jarkevimpad tapahtumamééarittelyd ja systeemin
aikaparametrien parempaa optimointia.

Avainsanat: monimutkaisten tapahtumien prosessointi, ennustaminen, ym-
paristodata, taloautomaatio, tukivektorikoneet, wavelet-analyysi

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE MASTER’S THESIS

Author: Jussi Kolehmainen
Title: Predicting Complex Events in Sensor Data

Date: 08.08.2013 Language: English Number of pages:7+74

Department of Mathematics and System Analysis

Professorship: Systems and Operations Research Code: T3020

Supervisor: Prof. Ahti Salo
Advisor: M.Sc. (Tech.) Antti Aalto

Complex event processing (CEP) analyzes data streams and detects complicated
situations in real-time. Domain experts write effective EPL (event processing
language) queries to define complex events that are detected. In combination
with predictive analytics (PA), which uses mathematical models to predict the
future, a framework for predicting complex events can be designed.

In this thesis 1 describe how predictive event processing works and how a
proof-of-concept framework can be built. As prediction tools T use two models:
a distance-based model and a feature-based model. The former uses dynamic
time warping (DTW) and k-nearest neighbour (kNN) algorithm while the latter
employs wavelet analysis and support vector machines (SVMs).

As an application of predictive complex event processing I consider house
automation and present a real-life case study for the experimental section. The
goal is to predict when a certain variable exceeds a limit value for a certain period
of time. I also evaluate the performance of the system.

With two variables, CO, and VOC (volatile organic compounds), the first,
distance-based model performs better with correct alarm rate of over 75 % and
false alarm rate of under 10 %. The second, feature-based model turns out to
be faster but more difficult to configure properly. More meaningful complex
events and more thorough time parameter optimization are suggested for future
research.

Keywords: complex event processing, predictive analytics, environmental data,
house automation, support vector machines, wavelet analysis

Acknowledgements

First, I want to express my deepest gratitude towards my family who has always
supported and encoraged me in my studies. You have helped me to achieve yet
another goal in my life. Second, I want to thank my supervisor, Ahti Salo, and my
instructor, Antti Aalto, for guiding me through the writing process. Third, T want to
thank my employer HiQQ Finland and especially Jukka-Petri Sahlberg for permitting
me to write this thesis for the MMEA research program. I also want to thank the re-
search group of environmental informatics at the University of Eastern Finland and
especially Mauno Ronkkd for giving me access to their test data. All in all, thanks to
everyone who supported me and helped me through this long but rewarding process.

Albert Einstein once said: "Once we accept our limits, we go beyond them". This

thesis used to be one of them. Now I have to accept that my limits have once again
moved a big step further.

Otaniemi, 08.08.2013

Jussi Kolehmainen

Contents

Abstract (in Finnish)o Lo oo
Abstract e
Acknowledgements
Contents e
Symbols and abbreviations L L L

1 Introduction
1.1 Backgroundo
1.2 Motivation for Predictive Event Processing
1.3 Research Questions and The Scope of This Thesis
1.4 Structure of This Thesis

2 Complex Event Processing
2.1 Events and Patterns L oL 0
2.2 Overview of a General Event Processing System
2.3 CEP Engines and Processing Languages
2.4 Applications of CEP

3 Predictive Analytics

3.1 General

3.2 Combining CEP and PA

3.3 Predicting with Time Series Classification

3.4 Distance Based Time Series Classification
341 Lpnorms
3.4.2 Dynamic Time Warping
3.4.3 k-Nearest Neighbor Algorithm
3.4.4 Learning Vector Quantization

3.5 Feature Based Time Series Classification
3.5.1 Wavelet Analysis 0.
3.5.2 Haar Wavelet Decomposition for Time Series
3.5.3 Linear Classifiers
3.5.4 Support Vector Machines for Linearly Separable Classes
3.5.5 Support Vector Machines for Linearly Non-separable Classes .
3.5.6 Generalization of SVMs into Nonlinear Cases
3.5.7 Using SVM for Time Series Analysis

3.6 Parameter Selection and Model Validation

3.6.1 Cross Validation
3.6.2 Performance Measures
3.6.3 Computational Performance

4 Implementation and Experiments

4.1 CaseStudy
4.1.1 ASTEKA Project
4.1.2 Test House and Sensors
4.1.3 Test Data

4.2 TImplementation Lo Lo
4.2.1 Data Structures L oo
4.2.2 Predictive Event Processing Network
4.2.3 Data Flow and Performance Tuning
4.2.4 Machine Learning Libraries

4.3 MMEA Platform Architechture
4.3.1 Technology Overview
4.3.2 Integrating the Predictive Component

4.4 Experimental Design
4.4.1 Complex Event Definitions
4.4.2 Selecting Parameters and Running the Tests

5 Results

5.1 Goodness Indicatorso L
5.1.1 Classification With DTW and kNN
5.1.2 Classification with Wavelets and SVMs

5.2 Computational Performance

5.3 Discussion

6 Conclusions
References

Symbols and abbreviations

Symbols

ACy

ROC distance from optimal classifier

C SVM soft margin parameter

vy SVM kernel parameter

k kNN parameter

radius DTW warping path parameter
Abbreviations

DTW Dynamic Time Warping

DWT Discrete Wavelet Transform

EPA Event Processing Agent

EPN Complex Event Network

CEP Complex Event Processing

kNN k-Nearest Neighbor

PEPN Predictive Event Processing Network

ROC Receiving Operator Characteristics

SVM Support Vector Machine

P Positives, number positive instances

N Negatives, number of negative instances

TP True Positives

FP False Positives

TN True Negatives

FN False Negatives

TPR True Positive Rate

FPR False Positive Rate

TNR True Negative Rate

FNR False Negative Rate

vil

Chapter 1

Introduction

1.1 Background

As the size of the digital universe, that is, the total size of digital data in the world
is approaching zettabytes (trillion gigabytes) [22|, more and more ways are needed
to make sense of that information. One of the biggest technology trends in this
decade, big data refers to the analysis of large volumes of data. The definition of
the term big data varies a lot but some common characteristics can usually be found:
conventional database systems are not enough because the data is too big, moves
too fast or does not fit in the current data structures. [13]

Complex event processing (CEP) can be thought as a branch of big data in
which the speed of the data flow is too much for the ordinary databases to handle.
CEP tackles this issue by providing event-driven processing, for example pattern
detection and causality analysis, with extremely low latencies. [17]| It reverses the
idea of conventional databases: instead of running queries against an existing data
set, CEP uses predefined queries against which the data is run.

Despite these evident advantages of CEP in real-time data processing, it is only a
technological opportunity without domain expertise. Like a database expert writes
complex SQL queries that return the desired dataset, a CEP expert writes EPL
queries that filter the data flow in some way. However, it is possible to reduce the
amount of human work needed by extending a CEP engine with other advanced
technologies, such as machine learning (ML) and predictive analytics (PA). [21]
In this thesis, I will present a framework for predictive complex event processing
(PCEP) that is capable of predicting an event beforehand by learning the pattern
that precedes the event.

A promising field of application for complex event processing is ambient intelli-
gence, or house automation, which comprises smart homes that are able to change
the living environment depending on various indicators. |[3] Smart homes gather
information, for instance, about the whereabouts of the people living in them, air
quality and electricity consumption. From these factors the smart homes can then
adjust heating, ventilation and lights accordingly. CEP can provide an efficient
platform for this real-time data gathering and analysis. This thesis contains a real-
world study case from the field of house automation. By combining complex event

processing, predictive analytics, and sensor data, smart homes can be made to think
one step ahead.

The learning and prediction phase are implemented with relatively new tech-
niques, namely Wavelet Analysis and Support Vector Machines (SVMs). While
Fourier Transform captures only the frequency domain properties of a signal, wavelets
are localized in both time and frequency domains. [20] Thus, wavelets can be used
to extract informative patterns from sensor data. These patterns, then, are classified
with binary classifiers, SVMs, into patterns that precede certain events and patterns
that do not.

As a comparative method a k-Nearest Neighbor algorithm in combination with
Dynamic Time Warping (DTW) measure is used. DTW is an extension of Euclidean
Distance and it is more suitable for comparing time series.

This thesis is part of a five-year research program called The Measurement,
Monitoring and Environmental Assessment (MMEA). The program aims at creating
new tools for environmental data usage in both consumer and industry sector. The
environmental data available from sensor data producers will be made available to
data consumers in an open-source marketplace where the parties can connect with
their own software. [10]

1.2 Motivation for Predictive Event Processing

A system that is capable of predicting events instead of just detecting them can
prevent undesirable conditions from happening. An apparent field of application
where these undesirable conditions might be harmful for humans is house automa-
tion. Moreover, a system like this can save energy by adjusting control variables
more efficiently and provide the residents automated changes of the living conditions.
/52]

A good example of harmful living conditions is the rise in the concentration of
carbon monoxide, which is a highly toxic gas. Being completely colorless, odorless
and tasteless, it can only be detected with specific sensors. However, detecting the
risen concentration is not enough as the poisonous gas is already present and the
residents are in danger. By detecting the increase the house could alert the residents
and set the ventilation to full-speed. [65] Another example of harmful situation that
could be avoided with a predictive system is flood. The rise in the water level that
leads to a flood must be distinguished from the normal seasonal variation. [58]

An intelligent control of heating, especially floor heating, can create significant
energy savings because of the long delay between controlling the heating settings and
the actual heating effects. In a classical heating system, such as a radiator, the delay
does not need to be taken into account because it reacts to the control in minutes
and emits its energy to the surroundings. An intelligent floor heating, however,
requires predicting the future energy prices and outside temperatures, because the
floor should be heated during off-peak hours when the prices are lower or when
outside temperatures are about to fall. [§]

Comfortable living conditions are not achieved by merely avoiding harmful con-

ditions. A constant temperature, which increases living convenience remarkably,
cannot be maintained if the heating system does not adapt to substantial changes
in outside temperature beforehand. Also the concentration of volatile organic com-
pounds (VOC), which is one of the test cases in this thesis, should be kept as low as
possible in order to maintain good air quality. Again, a predictive component with
machine learning algorithms is needed to adjust the ventilation before the concen-
tration hits a critical level. The system should also adapt to the residents’ lifestyle
and schedule the changes in indoor air conditions accordingly. [52]

In addition to house automation, predictive event processing can be used in
such fields as financial markets and traffic control. As the stock market is nowadays
mostly run by automated algorithms, the speed of data processing is a critical factor.
Combined with predictive machine learning components, such system could attain
crucial advantage against its competitors. Traffic control system, in turn, could
predict traffic jams from past data. By varying speed limits and guiding vehicles to
less occupied roads, it could reduce emissions and travel times. [4]

1.3 Research Questions and The Scope of This The-
sis

Complex Event Processing (CEP) is mostly used for detecting known patterns in the
data stream. When CEP is used to analyze our surrounding world, it is relatively
easy to detect a certain situation that can be undesirable for humans, animals or
some materials. However, the actions to prevent those conditions from happening
should usually be taken long before that as it was mentioned in the previous section.

The main research question of this thesis is to formulate a framework for combin-
ing CEP and Predictive Analytics (PA). There is plenty of research done from both
areas but not many papers have dealt with combining them. The most important
inspiration for this thesis is the work done by Hungarian scientist Lajos Jeno Fiilop
and his colleagues at Nokia Siemens Network. They tried to detect and predict
the number of persons entering and leaving a building. Their application employed
decision tree algorithms, such as BFTree, for detecting conditions that precede a
traffic peak. [21]

One of the novel topics in this thesis is the data handling with CEP. The frame-
work not only detects the complex events with CEP but also creates sliding windows
for collecting the data training and labeling it into positive and negative samples.
The goal of this approach is to test the capabilities of CEP for more than just its
main purpose, detection of events that have already been occurred.

The two models used in this thesis were chosen by suggestions from research
papers and literature. The first model, which uses DTW and kNN, is a very simple
approach for time series classification. DTW has been used in many research appli-
cations and has been proven to achieve one of the smallest error rates with many
data sets (e.g. [32]).

The combination of Wavelets and SVMs were chosen as our second model because
it represents a much more modern approach. Even though Haar Wavelets were first

discovered in the early 1900s, the theory of Wavelets has been evolving still in the
2000s in the form of image compression and trend detection [60]. The Support
Vector Machines (SVMs) were first mentioned in 1979, but formally introduced by
Vladimig N. Vapnik as late as in 1995 [5].

In the light of past results with DTW and SVM based classification it would be
a big surprise if the latter would achieve better performance. [32]| |29] The main
reason for this is that tuning of both Wavelets and SVMs is much more challenging
task than using simple DTW and kNN based model which has only two parameters.

1.4 Structure of This Thesis

Chapters 2.1 and 2.2 present the principles of complex event processing (CEP).
Chapter 2.3 introduces a CEP Engine called Esper which is used in the experimental
part of this thesis. The Event Processing Language (EPL) for Esper is also reviewed.
Chapter 2.4 briefly reviews some applications of CEP.

Chapter 3.1 defines predictive analytics (PA) and Chapter 3.2 discusses how it
can be integrated with CEP. Chapter 3.3 formulates the problem for time series
prediction. Chapters 3.4 and 3.5 present mathematical models for time series pre-
diction. The former focuses on distance based methods while the latter describes
what feature based classification is. Chapter 3.6 shows how the performance of these
methods can be evaluated.

Chapter 4 begins with introducing the case study and the available test data.
Then, Chapter 4.2 continues with describing the implementation of a Predictive
Event Processing Network (PEPN). Chapter 4.3 briefly reviews the MMEA plat-
form architecture and explains how the predictive component could be integrated.
Chapter 4.4 defines the complex events we are trying to predict and presents meth-
ods for parameter tuning.

Chapter 5 presents the performance results of the classifiers. Then, it discusses
computational performance.

Chapter 6 sums up the results of this thesis and discusses further research pos-
sibilities from the field of predictive complex event processing.

Chapter 2

Complex Event Processing

2.1 Events and Patterns

One definition for an event is “anything that happens, or is contemplated as hap-
pening”. [37] According to this wide definition, there is a huge number of events
occurring around us all the time. Examples of these events include opening a door,
receiving a measurement value from a sensor and the ending of the World War II.
It can easily be seen that we need to further classify events in order to be able to
define a system for event processing.

Events can be divided into two groups: simple and complex events. [14] A
simple event is any single instance that comes into our system from sensors. Thus,
a simple event is a single measurement value. Complex events, on the other hand,
are derived from the single events and are something that we want to detect from
the event stream. They are the result of the event processing system. Examples of
complex events that we are interested in thesis are a single measurement variable
rising at a certain speed and a group of variables exceeding a threshold value for a
certain amount of time.

An event sequence is “a time-ordered sequence of events”. [62] For example, a
series of consecutive measurement values form an event sequence. An event pattern
is an event sequence with given values for the events. [37] Hence, a peak and a rise
in a variable are both event sequences but are classified as different event patterns.
In this thesis I assume that the complex events of our interest can be predicted by
detecting the event pattern that precedes the event.

2.2 Overview of a General Event Processing System

An outline of a complex event processing system is presented in Figure 2.1. The
inputs of the network are the event sources that produce simple events. They can
be, for instance, thermometers or movement sensors. An Event Processing Agent
(EPA) is a node in the network that consumes events, performs some predefined
tasks, and produces new events based on its rules and input events. Possible tasks
for an EPA include event filtering, aggregating and pattern detection. [21]

EPA 1 EPA 2 EPA3
v \J
EPA 4 SRR
EPA 6
Event Processing Network

PCE

Event
Sink

Figure 2.1: Event Processing Network.

All the nodes in the network are connected via event channels (arrows in the
figure). It is suggested that at this point the event channels are high-level abstrac-
tions and we do not limit the types they can handle nor the number of sources or
consumers attached to them. [14]

A group of interconnected EPAs form an Event Processing Network (EPN). An
EPN has the following properties: it can by dynamic (EPAs can be created and
destroyed), it may contain feedback loops and it can be distributed across multiple
physical computers. [37] However, in the study case of this thesis we do not need
any of those properties because the complex events we are interested in are rather
simple ones.

As a result, an EPN produces a Primary Complex Event (PCE) that goes to
the event sink. A PCE has the prefix primary in order to distinguish it from the
complex events passed between EPAs. A PCE is the event whose future occurrences
we are trying to predict in this thesis. The event sink represents all the parties who
are interested in the complex event in question, including both automated machines
that are triggered to perform some action and human workers who are notified when

something interesting happens. |21]

2.3 CEP Engines and Processing Languages

There is a wide range of Complex Event Processing Engines with different properties
available on the market. First started in the Bell Labs in the mid 90’s, the CEP
business sector has spanned into more than 20 widely used products from all the
major IT houses, such as IBM, Microsoft and Oracle. [59]

CEP engines can be divided into four subcategories based on abstraction type
for event detection and action triggering. In the first category, Data Stream Query
Languages, a SQL-like language is used to create relational queries against the data
stream. In the second category, Production Rule Languages, queries are based
on a set of condition-action pairs stored in the working memory. When a condition
becomes true, the corresponding actions is fired. In the third category, Composition-
Operator-Based Languages, operators are used to define complex causal queries
based on simple queries, such as whether or not a certain event happens. The
last category is rarer; the languages in it use logical XML formulas for automated
reasoning in a Semantic Web. [24]

Most CEP engines have several common features that are used to handle the
data stream. As all the events in CEP are somehow typed, filtering can be used
to select only the ones that we are interested in. Windows, specified either with
time interval or a number of events, allow us to use a subset of the stream for
processing. Data aggregation, conjunctions and disjunctions can be used to create
more abstract levels of events. Temporal and causal relationships between events are
efficient in reasoning complex sequences and patterns of events. Of course, negation
and counting methods are available for detecting the presence or absence of events.
[38]

In MMEA program, and consequently in this thesis, we use an open-source,
Java-based CEP engine called Esper. Esper has properties from the first three cate-
gories listed above. It uses Event Processing Language (EPL) to specify expressions
for pattern matching and for detecting the presence or absence of events [16]. A
standard EPL query is of the form

INSERT INTO

[stream]
SELECT

[attributes]
FROM

[stream]
WHERE

[condition]
GROUP BY

[attribute]
HAVING

[condition]

The SELECT clause is used to select which attributes we want to catch from
each event that matches our filter. The optional INSERT INTO clause puts these
attributes into a new stream. The FROM clause specifies the streams and cor-
responding time windows we are looking into. The WHERE clause can filter the
events, for example, by giving a threshold value for a certain event attribute. The
GROUP BY clause is used to aggregate several events of the same type into an
abstraction event, for instance, by event type. The HAVING clause is used filter
the aggregated events formed by GROUP BY. |24]

In Esper, Events can be POJOs (Plain Old Java Objects), Maps (key-value-
dictionaries) or XML documents. All event types have attributes that can further
have sub-attributes of any type. [16] In the following, I will present some examples
of Java POJOs in Esper.

Say we have the following Java class

public class Sensor {
int id;
String name;
Sensor[] groupSensors;

+

A Sensor has an identification number, name and a list of other sensor belonging
to the same group. Furthermore, say we have an event type called SensorEvent
which represents a single measurement that comes from a sensor:

public class SensorEvent {
Sensor sensor;
Timestamp timestamp;
Map<String, Double> measurements;

}

A SensorFvent has a reference to the sensor from which the event originated, a
timestamp that captures the exact point in time when the measurement was made
and a map that contains key-value pairs where the key is the variable name (e.g.
temperature) and the value is the measurement value (e.g. 10.9 degrees celsius).

Now we can refer to the event attributes in an EPL query in the following way:

Simple: SensorEvent.timestamp
measurement time

Nested: SensorEvent.sensor.id
sensor id

Indexed: SensorEvent.sensor.groupSensors[0].name
name of the first sensor in the same group

Mapped: SensorEvent.measurements(’temperature’)
value of the temperature measurement

Next, I will present some examples of the query types we might need in the study
case of this thesis. To select the name of the sensors that have the temperature
exceeding 20.0 degrees can be done using the following query:

SELECT

Sensor.name
FROM

SensorEvent
WHERE

measurements (’temperature’) > 20.0

To retrieve the average humidity from each sensor every 30 minutes we can use
a timed window:

SELECT

avg(measurements (’humidity’))
FROM

SensorEvent.win:time_batch(30 min)
GROUP BY

sensor.id

To define a sliding window of 30 minutes that is triggered on every new instance,
we can change the win:time_ batch to just win:time. A time interval can be defined
with timer:nterval. Combined with the patterns described below, it is useful, for
example, when a certain event has to happen within 10 minutes of another event.

As an example of event pattern detection, let’s assume we have a stream (called
Stream) of events: A; Ay B;. This example was originally shown in Esper Reference
[16]. Now the pattern

SELECT

every a=A -> b=B
FROM

Stream

matches each A followed by B ([A; Bi|, [A2 Bi]) but the pattern

SELECT

every a=A -> (b=B and not A)
FROM

Stream

matches every A followed by B but not A. In this case, the resulting event is
only [As By].

As one can see, by combining windows, relational clauses and SQIL-like proce-
dures, such as sub-queries and joins, we are able to define quite complex queries that
would be hard to implement in conventional programming methods. This thesis does
not focus much on the writing of effective EPL queries for detecting complex events,

10

but rather assumes that the queries have already been defined by some domain
expert.

By default, Esper uses system’s time when creating windows and handling causal-
ity. This behavior can be bypassed by turning Esper’s internal clock off and con-
stantly sending CurrentTimeEvent objects into the engine with a selected times-
tamp. |16]

2.4 Applications of CEP

Complex event processing (CEP) has found applications in many fields from Busi-
ness Process Monitoring (BPM) to intrusion detection in computer networks. In
this chapter I present some successful examples of using CEP for high-speed data
processing.

Radio frequency identification (RFID) is a technology for identifying physical
objects by equipping them with a remote-readable tags that can be read using radio-
frequency electromagnetic fields. Then, the lifespan of the object can be monitored
more accurately than with any other method. In big industrial companies this
produces a huge amount of data that has to processed and analyzed in real-time
in order to get the maximum benefit from the RFID technology. CEP provides a
great platform for filtering the RFID data, aggregating semantic information into
the data and routing the data to customers and suppliers. |61]

In the financial sector, where tremendous amounts of data are passed between
banks and customers constantly, it is no surprise that the data can be transferred and
processed effectively with CEP. Example use cases are detecting suspicious money
transfers and credit card frauds by monitoring where the credit card has been used
and how much money has been withdrawn with it. In stock market CEP can be
used to follow market trends and correlations between different stocks. [2]

Business process management (BPM) and CEP can be integrated to provide
valuable information to customer relationship management (CRM). By monitoring
real-time customer interactions, such as clicks in an e-commerce or comments on
a blog, business providers can create automated actions that personalize service to
each customer. Event-driven actions can even indicate the customer’s emotional
state, which may be used for targeted advertising. [33]

In combination with predictive analytics (PA), which we will discuss more in
chapter 3, CEP can be utilized to detect and locate failures in component based
systems by online tracking. Chen et al. [9] monitored the distribution between
signal and noise subspaces, and detected failures with online distribution learning
algorithms.

Chapter 3

Predictive Analytics

3.1 General

Predictive analytics (PA) is a broad field of applied mathematics. First, it includes
all the statistical models and empirical methods that are used to create empirical
predictions. Second, also predictive power, that is, methods for assessing the quality
of predictions is a part of PA. [51] Another purpose of PA is to guide theory building,
theory testing and relevance assessment. [11]

One way to classify PA methods is to divide them into predictive models, de-
scriptive models and decision models. Predictive models look for the most significant
explanatory variables with which they are able to predict the dependent variables.
Descriptive models, in turn, try to find as many relationships as possible, leading to
segmented models that describe the world as it is. Decision models use optimization
techniques to find the most optimal decision based on possible outcomes. [19]

Another way to classify PA methods is to distinguish between methods that
predict the present and methods that shape the future. Predicting the present means
applying patterns of current behavior with as much historic data as possible. These
methods use classification, regression, clustering and all data mining techniques
to predict similar occurrences in the future. Shaping the future has to do with
generating new standards after the underlying assumptions have changed. While
predicting the present can be thought as fitting a curve into the existing data,
shaping the future creates a totally new curve with new assumptions and anticipated
behaviors. [6] In this thesis, all the used methods can be classified as predicting the
present.

The methods of PA can also be divided into regression and machine learning
techniques. The simplest model is probably linear regression, which tries to find a
linear model between a set of independent variables and a dependent variable by
minimizing the squared error [40]. Time series models assume that the process we
are investigating has some kind of internal structure with autocorrelation, trend or
seasonal variation. This structure may be discovered with either time-domain or
frequency-domain analysis. [27] The former is based on auto-correlation and cross-
correlation analysis, while the latter is carried out with spectral or wavelet analysis,
which I will talk about more in chapter 3.5.

11

12

Machine learning algorithms form a model, based on clustering or historic data,
that is able to predict the class of the dependent value without necessarily know-
ing the exact mathematical structure behind it. As an example of clustering based
methods, unsupervised Artificial Neural Networks (ANNs) are biology-inspired com-
plex networks that evolve into a form that can classify new instances into a group
with the most similar instances. [39] Models based on historic data are called su-
pervised models and they can, for example, find a classifier function that separates
the training data most effectively. T will talk more about classifiers in chapter 3.5
when [introduce Support Vector Machines.

3.2 Combining CEP and PA

The work of Fulop et al. [21] lists several synergies and differences of CEP and PA
which are briefly summarized in this section.

Complex event processing (CEP) and Predictive Analytics (PA) are similar in
the sense that they try to somehow make sense of large datasets, either in real-time
or from historic data. The biggest differences between CEP and PA stem from the
timing of the reasoning process. While CEP processes data real-time and detects
the events only after they have occurred, PA, as the name suggests, tries to predict
events by detecting the patterns that lead to them.

A Value of the prediction

A B Time
Optimal prediction Event happens

Figure 3.1: Expected value of event detection as a function of time. An optimal
prediction is made at the point A. The event happens at the point B, after which
detecting the event is still valuable.

The (expected) value of detecting an event depends directly on time, which is

13

illustrated in Figure 3.1. Up to point A, value increases with increased accuracy.
This is because long time predictions are not usually accurate. Nevertheless, since
an early prediction is more useful than one that is made just a few seconds before,
the value begins to fall rapidly. After the point B where the event actually hap-
pens, detecting an event is still useful and the value decreases slowly. The optimal
prediction point A in Figure 3.1 motivates this thesis’ search for a predictive event
processing model.

Another difference between CEP and PA is the need for building rules that detect
patterns. CEP relies heavily on predefined rules that have to be implemented by a
domain expert that knows the complex event in question. This can be considered a
weak point of CEP. PA| in turn, aims at automating the rule creation. Of course, PA
methods need to be implement, too, but that happens before the model is crafted
into a certain scenario. The model should then adapt to different kinds of scenarios.
In CEP a specialized model is required for each different scenario.

There are several requirements that should be taken into consideration when
designing a predictive CEP system. First, CEP and PA components must be able to
communicate with each other so that CEP receives Primary Complex Event (PCE)
predictions from PA and PA receives predictors from CEP. Second, integrating the
PA component should not affect the existing CEP part nor its maintainability in
any way. [21]

There are two ways to overcome these requirements. The first is to introduce pre-
dictive event processing agents (PEPAs) into the Event Processing Network (EPN).
The second is to create a separate predictive event processing network (PEPN) that
is somehow connected to the original EPN. Only the latter of these options satisfied
the condition that the original EPN should not be affected in any way. The main-
tainability of EPN suffers greatly if PEPAs are mixed with original EPAs. [21| The
implementation chapter describes how this requirement is actually fulfilled.

3.3 Predicting with Time Series Classification

Our task is to predict whether or not a certain event will happen in a defined time
period in the future. Figure 3.2 shows an outline of this process. Let’s assume that
the complex event we are trying to predict occurs between tg; and tgs. Then,
in order to gain advantage from predictive analytics, the prediction should happen
before the warning time begins at tp,. We can define a prediction time period to be
the interval from ¢p; to tpo, which contains the event history available for making
the prediction. Thus, we can assume that the prediction happens at tps and uses
information from ¢p; to tpy. In Chapter 4 I will discuss how to choose the interval
lengths

windowLength = tpy —1tp; (3.1)
waitingInterval = tp; —tpo

eventInterval = tps—tg, 3.3)

14

Prediction Complex Event
mEn e1 e2 mEn ei ei+1 mEn ej-1 ej mEn mEn
| | | |
tp1 Prediction time tpo Warning time te 1 Event time teo

Figure 3.2: Timing of complex event prediction.

The event history h = {ej,...,e;} in the prediction interval is a multivariate
time series, that is, it contains a sequence of numerical vectors. [64] Each vector
contains the measurement values from different sensor at a certain point in time.
I will design the system so that the CEP engine receives every At seconds a new
event that contains the recent measurement values from all the available sensors.
The choice of At depends on the phenomenon investigated, an issue which T will
talk about more in Chapter 4.

We can formulate the prediction process as a binary classification task that
contains two classes:

1. Histories that precede an event
2. Histories that do not precede an event

We can denote theses classes by w; and w,. The task is to learn a classifier C,
which maps a history h into a class w: C : h — w, w € C, where

C = {wy,we}
= {“Event is not going to happen”, “Event is going to happen”
gomg gomg

Time series classification methods can be divided into different categories: dis-
tance based methods, feature based methods, model based methods and so on. Two
of these, distance based and feature based methods are investigated and tested in
this thesis.

From distance based methods I present L, norms and Dynamic Time Warping
(DTW) as distance measures in co-operation with k-Nearest Neighbor (kNN) and
Learning Vector Quantization as classification methods. The empirical section of
this thesis employs a model that uses DTW and kNN.

From feature based methods I present Fourier and Wavelet analyses for feature
extraction and then Support Vector Machines (SVMs) for classifying the feature
vectors.

15

3.4 Distance Based Time Series Classification

Distance based methods are probably the simplest way to classify time series. They
rely on a measure function that relates the time series to a single numeric value which
indicates the similarity between two different time series. Then, a classification
method can be used to separate different classes of time series. |64]

In this chapter I first present L, norms and Dynamic Time Warping (DTW)
as examples of measure functions. Then, k-nearest neighbors (kNN) and learning
vector quantization (LVQ) algorithms are formulated for classifying the time series.

3.4.1 L, norms

One way to classify time series is to calculate a distance measure between a new
time series and the existing labeled time series. Then, one can select the group with
has the lowest distance with the time series being classified. The easiest approach
is some L, norm which can be calculated for time series x = {x¢, 21, ..., 2,1} and

y = {y(]aylv "'7yn71} with [53]

D(x,y) = (i |7 — yi|p> N (3.4)

Then, one can use various algorithms, such as nearest neighbor classifiers or
decision trees, to classify the time series into different groups. Examples of L,
norms are Manhattan norm (p = 1), Euclidean norm (p = 2) and maximum norm
(p — o0). L, norms are very straightforward to calculate but requires normalization
of the signals in order to handle similar signals with different amplitudes. [46]

3.4.2 Dynamic Time Warping

L, norms cannot group signals that are, for example, in different phases, no matter
how similar they are. One way to overcome this problem is to use dynamic time
warping (DTW) algorithm. It measures the similarity between two signals that may
vary in time or speed by "warping" the axis of one time series so that the phases of
the signals match. [46] Let us denote a feature space, that is, available values for x;
and y; by F. A classical DTW algorithm begins by creating a matrix

O(Zvj) = c(xiayj)v (35)

where c is a local distance measure: ¢ : F X F — R that is the difference between
the two variables. In other words, the two time series being compared are laid on
the two axes of the matrix and the matrix contains the differences between the
corresponding values in the time series.

Then, by using dynamic programming, a monotonically increasing minimal path
from the bottom left corner of the matrix to the top right corner is searched. The
algorithm begins by calculating the cumulative matrix D beginning from the bottom

16

left corner of the cost matrix C. Then, the minimum path in the cumulative matrix
defines the optimal alignment between z and y. [41]

The difference between Euclidean distance and DTW distance is illustrated in
Figure 3.3. While Euclidean distance always compares the two time series point by
point, DTW distance warps the other time series so that the extrema of the two
time series are matched. This gives a more comprehensive similarity measure for
two time series.

Euclidean Distance

DTW

Figure 3.3: Difference between Euclidean Distance and Dynamic Time Warping.

The vertical lines in the figure illustrate the points in the time series that are
compared against each other. As can be seen, the algorithm matches the peaks and
the valleys with one another. A pseudo code is presented in the following:

Data: Cost function ¢, Width N, Height M

Result: Optimal Warping Path p

Calculate cumulative cost matrix D starting from bottom left corner;

Set n = N and m = M;

while n > 0 and m > 0 do

Move to neighbor with the smallest D(n, m);
Store movement to p;
Update n and m;

end

reverse p;

return p;

3.4.3 k-Nearest Neighbor Algorithm

Our classifying task consists of two classes as shown in Equation 3.4. Once we have
agreed on which distance measure we are using, we can use k-nearest neighbor (kNN)
algorithm to classify new time-series instances. In the experimental chapter of this

17

thesis I use Dynamic Time Warping (DTW) that was introduced in the previous
section.

The kNN algorithm is a supervised learning algorithm, which means that we
need a labeled teaching set to initialize the algorithm. [57] The time-series in the
teaching set have been labeled so that their label is either w; or ws depending on
which class they belong to.

Now for every new time-series instance we calculate the distance between the new
instance and all the instances in the teaching set. Then, we select the k instances
with the least distances to our new instance. These k instances vote for how the new
instance is classified: the class with most instances is chosen. Clearly, the parameter
k should be odd so that we avoid draws between the two classes. [28]

3.4.4 Learning Vector Quantization

Learning vector quantization (LVQ) is a supervised neural network that uses winner-
take-all prototype-based learning. The LVQ algorithm, first developed by Teuvo
Kohonen [34], is similar to the kNN except for the application of moving prototype
vectors. The M prototype vectors {z1, ..., zpr} are labeled vectors that represent the
classes C(z,,),m = 1,2, ..., M and can be selected randomly from the set of available
training vectors. Then, for each training vector x;,7 = 1, ..., N the nearest prototype
vector z,, is updated with the following rule:

o {zm + a(z; — z), if z,, and x; belong to the same class (3.6)

Zm — o(x; — 2p), if 2, and z; belong to different classes ’

where « is the learning rate. In other words, the closest prototype vector is
moved towards the instance if its from the same class as the prototype vector. In
the opposite case, the prototype vector is moved away from the instance. When
using the model with testing data, each new instance is classified with the same
class as the closest prototype vector.

Usually, the training vectors are iterated through multiple times for a better
convergence. On every iteration the value of a can be decreased so the algorithm
first takes larger steps and then gradually moves to smaller steps. By doing this it
first moves the prototype vectors to correct areas and then refines their positions.
[36]

3.5 Feature Based Time Series Classification

The aim of feature generation is to transform a sequence of time series data into a
single vector that has as few dimensions as possible but still contains the relevant
information about the time series for the classifying task. This process is a part of the
preprocessing step of machine learning. We do this in order to reduce dimensionality,
to increase learning accuracy and to improve result comprehensibility. [66]

There is a clear difference between feature selection and feature extraction. The
former means choosing a subset from the available variables and using that as a

18

feature vector, which is not an applicable method in the case of a time series as
each variable in our multivariate time series is of a too high dimensionality by itself.
The latter means mapping the available data into a lower dimensional space with
some algorithm. [66] In sections 3.5.1 and 3.5.2 I present a technique for feature
extraction by capturing a subset of the signal spectra with wavelet analysis.

Theoretically we could combine all the time series vectors from the prediction
interval into one large feature vector that is then used as an input for the classifier C'
However, as the prediction interval gets longer, we face the curse of dimensionality.
The longer the feature vector is, the sparser the data becomes and the less statisti-
cally significant the classifying is. Also, the volume of the data increases rapidly and
the processing becomes more and more demanding. [43] For this reason, I describe
a way to reduce the dimensionality of the feature vectors.

3.5.1 Wavelet Analysis

Wavelet analysis is a generalization of Fourier analysis which breaks the signal into
series of sines and cosines. This transformation reveals the frequency space proper-
ties but loses all the temporal information. [20] A Fourier transform of a function
x(t) is

Fy(t) = ao + Y _ axcos(kt) + bysin(kt), (3.7)
k=1
where
1 2m
o =5 i x(t)dt (3.8)
1 2
ay = —/ x(t)cos(kt)dt (3.9)
m™Jo
1 2m
be = = / 2(#)sin(kt)dt. (3.10)
T Jo

This corresponds to a mapping into the frequency space that is formed by or-
thogonal basis functions, sine and cosine. By orthogonality we mean that for a set
of signals ¥, (t), —0o < n < 0o, we have

(UVn(t), Ym(t)) =0, m#n (3.11)

We can generalize the idea of Fourier transform into any orthogonal basis of
signals 1, (t). The analysis part calculates the coefficients of the original signal z(t)

in the new space:
(z(t), ¥n(t))

N N ORI OIS (3.12)

Then, the original signal can be constructed from the coefficients by

oo

w(t) =D cathal(t), (3.13)

n=—oo

19

which is called the synthesis process.

Fourier transform reveals the frequency band of the signal while losing all the
temporal information about different frequencies. [20] Because of this Fourier trans-
form is applicable only to stationary signals f(¢) whose variance does not vary
with time. No information about the changes in variance are captured by Fourier
transformation and hence the method becomes useless with non-stationary signals.
Anomalies in time series data cause spectral variance and hence the signal is not
stationary. [29]

We can define the short time Fourier transform (STFT) as

[e.9]

STET(f,s) = / z(t)g(t — s)e 7™t (3.14)

—00

where f is frequency of z(t) and g(t) is a sliding window function, for example, a

box function
1 forl|t| <1/2
box(t) = orft| <1/2. (3.15)
0 elsewhere

This restricts the Fourier transform into one window at the time and thus
achieves time-localization which the ordinary Fourier transform lacks of. For com-
putational purposes we must discretize this by denoting f,, = n/T and s, = mT.
In this case our orthogonal basis functions are

Vpm(t) = 2T g(t — mT). (3.16)
Now the analysis part is

(@(t), vnm(t))
(Vnm (), Un (£)) (3.17)
1 [m+DT

= — x(t)e 72T gt (3.18)
T mT

n,m —

and the synthesis is

= Z Z Cnm@ ™ T g(t — mT). (3.19)

n=—0o0 MmM=—00

Unlike Fourier transform, wavelet transformation gives the signal localization
in both time and frequency spaces. It does this by using a concept called multi-
resolution analysis (MRA) which means that different frequencies are analyzed with
different resolutions. While Fourier transformation uses equally-sized windows for
all frequencies, Wavelet transformation uses longer time windows for low frequencies
and shorter time windows for high frequencies. This approach allows good localiza-
tion of high frequency components while preserving information about low frequency
contents of the signal. [20]

Continuous wavelet transform (CWT) for signal x(¢) is defined as

Co(a,b) = \/’; <t_b> dt, (3.20)

20

where a and b are scaling and positioning parameters and w(t) is a so-called mother
wavelet function. [20]

For computational purposes we must find a discrete wavelet transform (DWT).
By choosing the scales to be powers of 2 and the positions to be multiples of the
scales, we get an orthogonal basis of functions for CW'T:

w;k(t) = 222w (27t — k). (3.21)

These w;;(t) are called the baby wavelets. [44] As can be easily seen, baby
wavelets become narrower and higher as the j increases. The reverse is also true,
baby wavelets become wider and flatter as the j decreases. We can now define space
W; to contain all the signals z;(¢) that can be synthesized from baby wavelets w; ;(t)
with the j fixed:

2i(t) = Y cipwjx(t). (3.22)

Similarly, let V; to be the space of signals z(¢) that can be synthesized from baby
wavelets w; x(t) where ¢ < j and —oo < k < co. Then, from the definition of W}
and V; we have V;;; = W; + V. This is illustrated in figure 3.4.

i+1

Figure 3.4: Wavelet subspaces.

Thus, the spaces V; are nested inside each other, that is {0} C ... C V1 C V C
Vi C ... L% where L? contains all possible signals. The spaces W; are the differences
between adjacent spaces V; and V. Now we can divide the space V} as

Vo=V +W,
=V o+ W_o+W_,
=Vs+ Wi+ W+ W,

21

and the signal as

x(t) = Ai(t) + Di(t)
= Ay(t) + Ds(t) + Dy (1)
= As(t) + Ds(t) + Da(t) + Di(t)

)

where D;(t) € W_; is the detail at level ¢ and A;(t) € V_; is the approximation at
level i. This approach is called multi-resolution analysis (MRA) because on each
step we divide the frequency band into two pieces and then continue the process on
the lower half. At each stage the A;(t) corresponds to low-pass filtered signal and
the D;(t) to high-pass filtered signal. This way we get more detailed information
about the high frequencies. [44]

To facilitate the computations we can define a scaling function ¢(t) (sometimes
called the father wavelet) which produces the subspaces V;:

din(t) = V22t — k). (3.27)

Because Vy C Vi and W, C Vi, it is possible to construct the mother wavelet
and the scaling function in V; from the scaling function in V; as follows

Zho IV20(2t — n) (3.28)
Zm IV20(2t — n), (3.29)

where hg(n) and hi(n) are discrete time filter coefficients. These depend on the
choice of wavelet type and they will be defined later. Now we are able to define the

signal x(t) € V; using the mother wavelet and the scaling function in spaces V;_4
and Wj_l

x(t) = Z cAo (k) k(t) (3.30)
_Z(;A1)j—1.x(—I—ZCDl Jw; 1 4 (t) (3.31)

:Al() + Dy(t), (3.32)

where cAy(k), cAi(k) and ¢Dy (k) are the approximate and detail coefficients respec-
tively. Then, ¢;_1 can be further filtered to get the next level signals as shown in
equation 3.23. The coefficient values can be derived as follows

cAy(k) = (x(t), ¢j-14(1) (3.33)

= <Z cAo(n)ojn(t), <Z5j1,k(t)> (3.34)

n

= cAo(n) {@in(t), j-1x(t), (3.35)

n

22

which, by calculating the inner product simplifies to

cAi(k) = ho(n — 2k)cAq(n) (3.36)
Similarly, for ¢D; (k) we get
eDi(k) = hi(n — 2k)cAy(n) (3.37)
These two operations correspond to filters
cAo(n) — [ho(—n)| —> |1 2| — cAi(k) (3.38)
cAo(n) — | hi(—n)|— H 2 ‘ — ¢Dy(k), (3.39)

where the downsampling filter, || 2| means omitting every other value from the
signal. As shown in equation 3.23, we can further use the downsampling filters to
decompose the signal into more detail. This process is shown in Figure 3.5.

> hy(-n) —>{y2 —> cD,(K)
cA (k) —> » hq(-n) 2 |—> cD, (k)
> ho(-n) > CA1(k) > hy(-n) > *2 L > CD3(k)
> ho(-n) —>{ cA,K) eoeo

Y

v2 > cA,K)

ho(-n)

Figure 3.5: Wavelet coefficient decomposition using filters.

Now on level N our coefficients are
C = [cAy,cDy,cDy_1,...,cDq, D] (3.40)

The signal is now compressed by setting some of the detail coefficients to zero.
Of course, the energy of the signal is not completely preserved and the number of
zero coefficients depends on the application.

Next, we need to perform the synthesis part by opposite, upsampling filters.
This process is shown in Figure 3.6.

If no coefficients are set to zero in the analysis phase, the signal that is con-
structed in the synthesis phase is exactly the same as the original signal. By setting
some of the detail coefficients to zero before the synthesis, some energy of the signal
is lost but at the same time the signal is compressed to a smaller size.

23

cA(K)

Figure 3.6: Wavelet coefficient decomposition using filters.

3.5.2 Haar Wavelet Decomposition for Time Series

Haar wavelet [55] is the simplest possible wavelet and it has the following mother
wavelet

I, 0<t<1/2
Pt)y=< -1, 1/2<t<1. (3.41)

0, otherwise

Mﬂz{L V=t (3.42)

0, otherwise

For Haar wavelets the discrete time filter coefficients ho(n) and hq(n) are defined

hy — [% %] (3.43)

1 1

hi=|—,——=]| . 3.44

=7l 40

Now let’s assume we have a time-series x = (x1,Za, ..., xx) of length N = 2.
The 1-level Haar-Transform is

as

X < (A1|D1>, (345)

where

(3.46)

A, — ($1+$2 T3+ T4 xN—1+$N)
1 73 B NG

Ty — Ty XT3 — T4 IN-1 — TN
D, = ,) eens . 3.47
= (M5 =) (347

The former operation corresponds to a running average (trend) and the latter
to a running difference (fluctuation). Then, A; can be further decomposed into As
and D, by performing the same operation again:

24

This process is then repeated until a desired level is reached. The Wavelet can
be compressed by setting some of the detail coefficients to zero. The resulting vector
can now be used as a feature. In the next chapters I describe how these features
can be classified with first linear classifiers and then with support vector machines
(SVMs) that generalize into nonlinear cases.

3.5.3 Linear Classifiers

In this section I discuss the special case of linearly separable classes. If the input
space is linearly separable, we can use a linear hyperplane to separate the two
classes. [56] As explained in Chapter 3.3, we have two classes, w; and ws, for which
the [-dimensional hyperplane is

g(x) = wix +wy =0, (3.49)

where x is a feature vector, w is the weight vector, and wy is the threshold. The
threshold value is needed to cover the case of the hyperplane not crossing the origin.
We can extend the vectors into (I 4+ 1)-dimensional space by defining

x = [x",1]" (3.50)
w = [w’, wO}T. (3.51)

From now on the variables x and w refer to x’ and w’. Now the feature vectors
x have the properties

wix >0 Vx € wy (3.52)
wix <0 VX € ws. (3.53)

The problem is now the choice of the weight vector w. One way to tackle the
problem is the perception algorithm which defines a perception cost as

J(w)=> (6,w"x), (3.54)

xeY

where Y is the set of training vectors that are misclassified with the weigh vector w
and §, = —1ifx € wy and 0, = +1 if x € w,. Since the cost J(w) is always positive,
continuous and piecewise linear, it can be minimized with a gradient descent method

[56]:

w(t+1) = w(t)— ptagg) (3.55)
= w(t) — p Z JuX. (3.56)

The iteration is performed until all the training instances have been classified
correctly. A variation of perception algorithm loops through the training instances
one by one and updates the weight vector on each instance.

25

Even though the classes are not linearly separable, we can find an optimal linear
classifier that minimizes the classification error in some sense. One way to find the
optimal w is to use mean square error estimation which tries to minimize the cost

function
J(w) = Elly — x"wl], (3.57)
where y is the desired output; in this case y = 1 for w; and y = —1 for wy. [23]
A required condition for the minimum is
oJ
G—V(:V = 2E[x(y — x"w)] = 0. (3.58)

The optimal weigh vector is then
w = R, 'E[xy], (3.59)

where R, is the correlation matrix of x and E[xy| is the cross-correlation vector
that have to be estimated from the learning set.
Another way is to use least squares methods that use the cost function

N N
Jw)=Y (si—x{w)’=) ¢ (3.60)
i=1 i=1
Then, by differentiating with respect to w we get
N
in(yi —xiw) =0 (3.61)
i=1
N N
& O xx)w=> (xu) (3.62)
i=1 i=1
& (XI'X)w =Xy (3.63)
& w=(XTX)"X"y, (3.64)

where X = [x1,....,xnx]%, ¥ = [y1,...,yn]?, and XTX is sample correlation matrix

which can be estimated from the available data. 23]

3.5.4 Support Vector Machines for Linearly Separable Classes

The following three chapters follow the support vector machine chapters 3.7 and
4.18 discussed in the book Pattern recognition by Theodoridis and Koutroumbas
[57].

I first discuss the Support Vector Machines in case of two linearly separable
classes. Similarly to the previous section with linear classifiers, we design a hyper-

plane
g(x) = wlix +wy =0 (3.65)

When the hyperplane leaves maximal margins between the class instances and it-
self, the performance of classifier is optimal. This situation is depicted in Figure 3.7.

26

Figure 3.7: Maximum separating hyperplane between two linearly separable classes.

Thus, we should maximize the margin z which can be represented as z = |g(x)|/||w]|.
If we scale w and wy so that g(x) = 1 for the class w; and g(x) = —1 for the class
wy on the points that are closest to the hyperplane, we have a margin of 2/||w|| and
requirements

wix+wy>1,Vx € wy (3.66)

wix +wy < —1, Vx € wy (3.67)

We can form the problem as the following optimization problem
minimize J(w, wp) = %HWW (3.68)
subject to yi (W' x; +wo) >1,i=1,2,.... N (3.69)

where y; = 1 and yo = —1. The Karush-Kuhn-Tucker (KKT) conditions for this
nonlinear quadratic optimization problem are

Ly (W, wp, A) 0 (3.70)
Ly, (W,wg,A) = 0 (3.71)
N > 0,i=1,2.. N (3.72)
Nlyi(wlix; +wo) —1] = 0,i=1,2,..., N, (3.73)
where L(w,wp, A) is the Lagrangian function
1 N
L(w,wy, \) = —w'w — Z Ny (Wl + wg) — 1] (3.74)
2 i=1

Solving the first order differential equations in the KK'T conditions yields a dual

27

problem
maximize L(w,wy, \) (3.75)
N
subject to W = Z AiliX; (3.76)
i=1

N
> Ay =0 (3.77)
=1
A>0 (3.78)

By substituting the first two conditions into the Lagrangian L we further get

N
1
max (Z; i — 5 Z Ai/\jyz‘ijiTXj> (3.79)
1= (2%}

N

subject to Z Aiyi =0 (3.80)
i=1
A>0 (3.81)

As we can easily see, the function to be maximized does not depend on the
dimensionality of the input space because it contains the input vectors in the form
of a inner product. This allows us to easily generalize the method into non-separable
classes by mapping them into a higher-dimensional space in the next sections.

The Support Vectors are the points x; for which the Lagrangian multiplier \;
is not zero and which lie on one of the hyperplanes w’x + wy = +1. The optimal
hyperplane of SVM is unique because the cost function in equation 3.70 is strictly
convex.

3.5.5 Support Vector Machines for Linearly Non-separable
Classes

Now we turn to the case of classes that cannot be separated with a linear hyperplane.
In this case we introduce slack variables & > 0 that allow some points to fall on the
wrong side of the hyperplane. Now the equation 3.69 is replaced with

yilwix 4+ wo > 1 -, (3.82)
where the value of & defines the type of the point as follows:
1. & = 0 = Point is classified correctly.

2. 0 <& <1 = Point is classified correctly but it is on the wrong side of the
margin.

3. & > 1 = Point is misclassified.

28

Figure 3.8: A separating hyperplane between two classes that are non-separable. A
yellow ring marks a point that is classified correctly but that is on the wrong side
of the margin. A red square marks a point that is misclassified.

These three types are illustrated in figure 3.8. An yellow ring marks a point that
is classified correctly but that is on the wrong side of the margin (type 2). A red
square marks a point that is misclassified (type 3).

In this case our optimization problem can be stated as

N
1
minimize J(w,wo, §) = S ||w|[*+C Y I(&) (3.83)
2 =1
subject to y;[w'x; +wo] >1—&,i=1,2,..,. N (3.84)
&>0,i=1,2..N, (3.85)

where (&) = 1if & > 0 and I(§) = 0 if & = 0 and the parameter C' defines a
trade-off between maximizing the margin and minimizing the number of misclassified
points. Similarly to the previous section, we can build a dual problem that leads to
the problem

N
1
max <Zl Ai — 5 Z)\i)\jyiijiTXj> (3.86)
= 1,7

subject to0 < N\, < C,i=1,2,.... N (3.87)
N
> Ay =0. (3.88)
i=1

Again, the dimensionality of the input space disappears from the problem and
the input vectors appear only as inner products. There is a shortcut for calculating
these inner products with a kernel trick [31], which is described in the next section.

3.5.6 Generalization of SVMs into Nonlinear Cases

If the classes are not separable in the [-dimensional input space, we can find a
mapping x € R' — y € R* where k¥ > [. The choice of k is done so that the

29

Mappin
a pping
° ’
. .
|

Input space Feature space Input space

Figure 3.9: The main idea of Support Vector Machines. Classes are not linearly
separable in the input space. They are mapped into a higher-dimensional space
where a linear classifier can be formed. This classifier corresponds to a non-linear
classifier in the original input space.

original classes are linearly separable in the new, higher-dimensional space. This
situation is depicted in Figure 3.9. As mentioned in the previous chapters, our
optimization problems contain input vector x only as an inner product that is not
altered by the mapping.

In order to present the Mercer’s Theorem [31] that relates the inner product to a
kernel function, we need to explain some space related concepts. A Cauchy sequence
is defined as a sequence ay, as, ... for which

Ve c RIN >0 s.t. |ay —ay]| <€ m,n>N (3.89)

In other words, the elements of the sequence become arbitrarily close as the sequence
progresses. A complete space is a space where every Cauchy sequence converges to
a point that is also contained within the space. A Hilbert space, in turn, is a
generalization of Euclidean space into any finite or infinite number of dimensions.
It is a complete vector space that has inner product defined for measuring lengths
and angles. [12]

Mercer’s Theorem states that for each mapping x — ¢(x) € H, where H is a
Hilbert Space, we have a kernel function K(x,y) that is equivalent for the inner
product:

(0(x), 0(y)) = K(x,y). (3.90)

The kernel function must have the following properties
/s/sK<X’ y)9(x)g(y)dxdy = 0 (3.91)
/g(x)de < 400, Vg(x),x € 5, (3.92)
S

where S C R!. The opposite is also true: for any Kernel function satisfying the
conditions above there is a Hilbert space where the Kernel function is equivalent for

30

the inner product. The problem is now how to find the mapping ¢ when we have
selected the Kernel function.

Now we can replace the inner product in Equation 3.79 with the Kernel function
to get the optimization problem

1
% i,
subject to0 < \; < C,i=1,2,.... N (3.94)
> Ay =0. (3.95)

The resulting non-linear classifier is then

>0, =x€w

, (3.96)
<0, = x € wy,

N
g(x) = Z Aiyi K (%3, %) 4+ wo {
i=1

which is shown in Figure 3.10. Input vectors enter the network from the left. Then,
inner products are calculated in middle nodes, the number of which is N, the num-
ber of support vectors. An output node sums the components up and outputs a
single real number that determines the result of the classification according to equa-
tion 3.96.

3.5.7 Using SVM for Time Series Analysis

Before we can use our SVM classifier, we have to choose an appropriate kernel
function K (x,y) for classifying wavelet based feature vectors. In literature one of
the most used kernels is the Gaussian kernel [67], which is of the form

Ix —yIP?

St (3.97)

K(x,y) = exp
where 5 > 0 is a parameter chosen by the user. Gaussian kernel belongs to a family
of functions called radial basis functions (RBF) whose value depends only on the
distance between two points [50]

fxy) = f(llx =yl (3.98)

If we assume that the time series is generated by an AR(1)-process

xp = g(xr_1, .., Tr_k) + K, (3.99)

it can be shown that an ellipsoid with mean equal to the mean of the time series and
variance equal to p contains most of the data. The variable p is a Gaussian noise
component. Consequently, similar time windows are close to each other in the sense

of Euclidean Distance. This makes RBF Kernels promising for time series analysis.
[47]

31

Figure 3.10: SVM classifier as a network. Input vectors enter the network from the
left. Kernel functions calculate inner products in the middle nodes. Output node
combines sums the components up and outputs a single real number.

Another possibility is Polynomial Kernel that is of the form
K(xy) = (x"y +)%, (3.100)

which gives the Linear Kernel as a special case when d = 1. [50]
Subsequence Kernels look for informative subsequences that are similar in de-
pendent time windows. In this case the Kernel function becomes

K(xy) =Y K(sas,), (3.101)

Sz,Sy

where s, and s, are subsequences of x and y. There are (2)2 possible combinations
for time series of length n and subsequence of length k, so one must use another
algorithm for selecting the optimal subsequences. [47]

In thesis I use Gaussian RBF Kernels because of their widespread use and good
applicability to time series analysis. Ruping [47] compared Linear, RBF, Fourier,
Subsequence and Hidden Markov Model Kernels and came into conclusion that RBF
Kernels perform very well on time series learning tasks. However, he recommends
to investigate other possibilities in very specialized applications.

32

A well defined kernel function increases the performance of the SVM greatly and
thus Kernel selection is an important part of SVM development [20]. In the case
of RBF Kernels we must choose the value of v in 3.97. From now on I try to find
an optimal value for o, which then defines the ~ from v = 1/202. The value of o
should be chosen so that it minimizes the error

E(o) = Z l9(xi,0) — yil” (3.102)

A related theorem states that for a Support Vector Classifier (SVC) there exists
a range (04, o] for which

Ve>0 and Voy,09 € [04,05] (3.103)
N N
Z |9(x,01) — yil — Z 9(xi,02) — il | <, (3.104)
i=1 i=1

where g(x;, 0;) is the discriminant function from Equation 3.96 and y; is the desired
output (+1) [63]. In other words, there is a range for o where the Gaussian Kernel’s
generalization performance is stable.

To summarize our parameter estimation problem, we have two unknown param-
eters, Gaussian Kernel parameter v and SVM weighting parameter C' from 3.83.
Now there are two ways to find the optimal values for the parameters: gradient
search and grid search. Staelin [54] compared these two methods and came into the
conclusion that they both achieve similar results in terms of accuracy. The only
difference is clearly the computational cost that is much greater for the grid search.

To keep things simple, only the grid search is employed in this thesis. The grid
is formed as follows

Iny € {lnyy — ap,Inyg —ag+ 1,...,In7, ..., In v + ao} (3.105)
e e {0,1,...Co} (3.106)

where the parameters v and Cj have to be chosen. Jaakkola’s heuristics [30] give
us a initial guess for vy. Let S be our training set. Then, from the set

G = {Hxl - XjH ’ (Xivyi)7 (vayj) € S, Y; 7é y]} (3107)

we can compute
00 = O Jaakkola = median(G) (3.108)

and finally 7o = 1/02. The parameters ag and Cj are chosen in the implementation
chapter.

3.6 Parameter Selection and Model Validation

Our classifiers have several parameters that have to be chosen before using the
models. Moreover, we need to somehow assess the quality of the classifier with the
given parameter values so that an optimal model can be found.

33

In Chapter 3.6.1 I discuss how the available data should be divided into training
and test data, in Chapter 3.6.2 I present some basic measures for the classifier’s
performance and in Chapter 3.6.3 I shortly review the requirements for system’s
computational performance.

3.6.1 Cross Validation

If the available training set is used for both estimating the parameters and validating
the model, a problem called over-fitting will most probably be faced. It means that
the model learns the training set “too well” and doesn’t necessarily generalize and
perform well when facing totally new instances. To tackle this problem we can use
k-fold cross validation whose pseudo code goes as follows [15]:
Data: Training set .S, integer k
Result: Performance measure
partition S into k disjoint equal-sized subsets Sy, ..., Sg;
performances — empty array of length k;
fori=1—=kdo
train model with teaching set T
performances|i] = model performance with test set S;;
end
return average of values in performances array;
In other words, one part of the training data is separated at a time and used
only for testing. Then, the final performance measure is the average of the different
teaching and testing data sets.

3.6.2 Performance Measures

In this thesis our classifying task consists of two classes; w; contains time-series that
do not precede a complex event and ws contains those that do. For both classes we
either classify an instance correctly or not. Thus, we have 2 x 2 = 4 possibilities
that are in a tabular form

Pjedmted _class Total Instances
+|TP| FN [P
Actual class | FP TN N

In the table above the positive (+) cells correspond to the class wy and the nega-
tive (-) cells to the class w;. TP (True Positives) is the number of positive instances
that are classified as positive. FP (False Positives) is the number of positives in-
stances that are incorrectly classified as negative. Similarly, TN and FN are the
numbers of correctly and incorrectly classified negatives. [45]

34

Clearly, we have identities P = TP 4+ FN and N = FP + TN. Now we can
define further measures that are derived from the values in the previous table:

True Positive Rate (TPR) or Recall = TP/P
False Positive Rate (FPR) = FP/N
True Negative Rate (TNR) = TN/N
False Negative Rate (FNR) = FN/P
Precision = TP /(TP + FP)
Accuracy = (TP +TN)/(P + N)
Error Rate = (FP + FN)/(P +N)

By varying model parameters we can construct a ROC (receiving operator char-
acteristics) curve which is a sensitivity versus (1 - specificity) plot. Sensitivity is
a synonym for TPR and (1 - specificity) corresponds to FPR, both of which are
between 0 and 1. A completely random classifier achieves a ROC curve that is a
straight line from (0,0) to (1,1). Classifiers with better performance are found above
this line while worse performance results in a point below this line. [45] An example

of a ROC curve is illustrated in Figure 3.11.

1.0

05

TPR

00 £ |

0.0 05
FPR

1.0

Figure 3.11: ROC (receiving operator characteristics) curve. The AC, is the distance

from a classifier’s performance to that of a perfect classifier.

35

We still lack a single measure that could be used for ranking different classifiers.
Since a perfect classifier is the point (0,1) on the ROC curve, we can rank the
classifiers based on their distance to that point. Euclidean distance is defined as

ACy = /W - (1= TPR)? + (1 — W) - FPR?, (3.116)

where the parameter W € [0, 1] assigns relative importance to false positives and
false negatives. The value of AC, ranges from 0 for a perfect classifier to v/2 for a
completely incorrect one. [26]

To summarize, the parameter selection process goes like this:

1. Get parameters values one by one from the grid of available values
2. Calculate performance using cross validation and AC, as performance measure

3. Choose the parameters values with the best performance (highest accuracy or
lowest AC,)

3.6.3 Computational Performance

Computational performance is not one of the key concerns of this thesis but it is
still worth reviewing the possible bottlenecks and ways to improve performance. Not
only can the amount of data be huge in CEP, but also the latency with which it is
moving should be minimal. That said, our system is of no use if it cannot keep up
with new sensor data coming in.

At the core of our system is the Esper CEP Engine which, according to its
documentation [16], can manage over 500,000 events per second on a dual-core CPU
2 GHz processor with engine latency being less than 3 microseconds on average.
The processor on our own test machine is a quad-core CPU 2.5 GHz processor so
the performance should be at least at the same level.

It is important to note that training the model does not need to be real-time.
In a real-life application the model is trained with regular intervals as a background
process. While a new model is being trained, the old model can continue predicting.
When the new model is ready, the old model is replaced with it. For example, in
our test house this could be done once a month when the indoor air conditions have
changed because of, for instance, seasonal changes in the weather.

The prediction phase, in turn, has to be fast as new measurements are coming
in all the time. With our DTW and kNN model the prediction includes calculating
the DTW distance with each of the training vectors and then selecting k closest
ones. With our Wavelet and SVM model the prediction phase consists of the Haar
Wavelet transform that produces a feature vector and support vector evaluation that
classifies the feature vector.

Our computation performance tests evaluate the models’ time complexity with
respect to window sizes and the number of testing samples. Also the average exe-
cution times for classifying a single instance are measured.

Chapter 4

Implementation and Experiments

4.1 Case Study

4.1.1 ASTEKA Project

A member of the MMEA project, the research group of Environmental Informatics
at the University of Eastern Finland (Kuopio campus) has a project called ASTEKA.
The project aims at commercializing a monitoring system of living health and en-
ergy efficiency. [35] Basically, the project equips houses with sensors that provide
informative online data presentations for the resident of the house. By monitoring
different variables, such as energy consumption and C'O, levels, the house or the
resident could adjust the control variables accordingly.

Their first pilot was introduced at a living fare in Kuopio in the summer of 2010.
The pilot originally consisted of 11 houses each of which has sensors ranging from
CO, concentration and temperature to electricity and water consumption. The web
interface of the pilot shows daily, weekly and monthly consumption statistics and
charts which can be used to improve energy efficiency. [35] For example, one can
easily notice whether the sudden peak in electricity consumption is caused by falling
outside temperature or excessive oven usage.

4.1.2 Test House and Sensors

In this thesis I use data from one of the pilot houses. The house has three floors
and sensors in all of them. The layout of the first floor is presented in Figure 4.1.
The squares with numbers in them are sensor units which are listed in Table 4.1.

The second floor, which has only 2 sensor units, is shown in Figure 4.2 and its
sensors are listed in Table 4.2. Both the two sensors in the second floor are located
in bedrooms. However, bedroom 3 serves as a guest room and thus is empty most
of the time, which should be detected in the data easily.

In the basement most of the sensors are located in the boiler room which is
a well isolated space with no windows. The layout of the basement is presented
in Figure 4.3. The listing of the sensors in the basement is shown in Table 4.3.
An interesting detail in the basement is how the sensor unit 10 with humidity and

36

37

Bedroom 3
5 Living room

1

[=] 4]
Downstairs

Kitchen
Entrance i
Upstairs
e ————
6

Figure 4.1: Layout of the first floor and the locations of the sensor units.

temperature sensors is placed near the showers and the sauna. This should definitely
be shown somehow in the data from these sensors.

4.1.3 Test Data

The data from ASTEKA server is available via a Java library. The library allows one
to specify two dates and it downloads two types of files, sensor files and measurement
files. The sensor files are of the following form:

Filename: sensors8 11.txt
Header: SensorID:int; name:varchar(100)
Example line: 51;Temperature Fileplace (Har 1)

The file name contains to identification numbers: the former is a house ID and
the latter is sensor group ID. The header line specifies the columns used in the file
but since they are similar in each sensor file, they do not need to be read. The
example line shows that the columns are separated by a semicolon.

The measurement files are of the following form:

Filename: measurements8 11.txt

Header: unixtime(BIGINT); ID_8 11 51(DOUBLE), ID_8 11 52(DOUBLE):

Table 4.1: Sensors in the first floor of the test house

First floor

Room Group | Sensor ID | Variable Unit
Living room 1 51 Temperature °C
Living room 2 52 CcO ppm
Living room 3 815 PIR ON/OFF
815 Humidity %RH
817 Temperature °C
818 CO, OH ppm
Inner entrance | 4 53 Temperature ET °C
54 Humidity ET %RH
55 COq ppm
60 Electricity Wh
Inner entrance | 5 844 Small particles | count / ft*
845 Large particles count / ft?
Outer entrance | 6 56 Diff Pressure Pa
Bedroom 3 7 650 Temperature °C
651 Humidity %RH
652 COq ppm
789 VOC ppm

Table 4.2: Sensors in the second floor of the test house

Second floor

Room Group | Sensor ID | Variable Unit

Bedroom 1 | 8 644 Humidity %RH
645 Temperature | °C
646 COq ppm

Bedroom 2 | 9 647 Humidity %RH
648 Temperature | °C
649 COq ppm

38

Table 4.3: Sensors in the basement of the test house

39

Basement

Room Group | Sensor ID | Variable Unit

Dressing room | 10 57 Humidity %RH
58 Temperature °C
59 CO, ppm

Outside 11 772 Temperature °C

Boiler room 12 62 Water m3
773 Floor heating outgoing water °C
775 Floor heating °C
776 L1 indoor temperature, incoming °C
T Used water °C
778 Variable °C
779 Radiator outgoing water °C
783 Hot water %
784 Radiator indoor temperature °C
785 District heating incoming temperature | °C
786 District heating return temperature °C
787 District heating energy kWh
788 District heating water flux m3

40

Attic

Bedroom 3

Bedroom

Toilet Stairs

Bedroom 2

Lobby

Figure 4.2: Layout of the second floor and the locations of the sensor units.

Example line: 1356998401;21.0253;0.0032; ...

Like the sensor file names, the measurement file names contain a house ID and
a sensor group ID. Again, the header line specifies the columns found in the file.
The first column is always an Unix timestamp which tells how many seconds have
passed since 1.1.1970 until the the measurement was made. The rest of the columns
specify the IDs and the types of the values the sensor is emitting. The numbers in
pattern ID 8 11 51 are house ID, sensor group ID and sensor ID, respectively.
After that there is the variable type specified.

The complex events we are trying to detect are defined in Chapter 4.4.

4.2 Implementation

A test version of the predictive event processing network was created with Java
programming language. Java was chosen because of several reasons:

e Java is the main development language of MMEA platform
e Esper CEP Engine provides easy-to-use API for Java
e Test data is available via a Java library

e The performance of Java is sufficient

41

Utility
room
Garage Workroom
— —
12
Sauna Boiler
room
— - Aisle Stairs
10
Showers Dressing room
L J
11

Figure 4.3: Layout of the basement and the locations of the sensor units.

Unlike the MMEA platform that uses PostgreSQL and Amazon S3 as database
solutions, I have chosen MySQL as my development database because I am more
familiar with it. T use an ORM (Object-relational mapping) layer called Hibernate
between my program and the database. Thus, using a different database solution is
only a matter of changing the database adapter from MySQL to something else in
the Hibernate configuration file.

The goal of this chapter is to present a framework for integrating a predictive
component alongside with a Event Processing Network. The approach is quite
technical meaning that anyone with adequate skills in Java and Esper could replicate
the system and improve it with their own expertise.

4.2.1 Data Structures

The test data is mapped into four Java classes that directly correspond to tables
in my own MySQL database. This mapping is done with Hibernate library, which
allows the programmer to annotate, that is, add table specifications Java classes.
Then, Hibernate creates the database schema using these annotations. In the fol-
lowing I will describe these four classes in a compact form stating only the name of
the class and parameter types and names.

First class represents the house we are dealing with:

public class House {
int houseld;

42

String name;
Map<Integer, Sensor> sensors;
Set<MeasurementUnit> units;

T,

where, the parameter sensors is a map from sensor IDs to sensor objects and the
parameter units contains all the measurement events from that house.
The second class represents a single sensor:

public class Sensor {
House house;
int sensorld;
String name;

}

The third class represents a single measurement event which, in turn, may contain
multiple measurement values from different sensors:

public class MeasurementUnit implements TimedEvent {
House house;
Date timestamp;
Set<MeasurementValue> values;

+

The last class represents a single measurement value:

public class MeasurementValue {
Sensor sensor;
MeasurementUnit measurementUnit;
double value;

}

As can be seen, MeasurementUnit class implements an interface called TimedFE-
vent which is a common interface for all events in this thesis. It requires the class
to have a timestamp property that can be used to mark the occurrence of an event
in the time space. Objects from the class MeasurementUnit are the most important
ones because the event source emits them to the CEP engine. The processing of
these events is described in the following chapter.

4.2.2 Predictive Event Processing Network

The Predictive Event Processing Network (PEPN) is a separate network as described
in Chapter 3.2. In this thesis I have made the separation so clear that the two
networks even have their own Esper engines. In some publications (e.g. [21]) the
PEPN just integrates into the EPN’s engine but in this thesis’ approach some Event
Processing Agents (EPAs) connect to both networks and transfer data between
them.

43

The structure of the Event Processing Network (EPN) defines which Complex
Events the system captures and it depends on the phenomenon in question. However,
the structure of the PEPN is completely independent of the EPN meaning that the
framework presented here should, in theory, work for each Complex Event type that
is predictable with the predictive models used here. The phenomenon-specific EPNs
(and its EPAs) will be defined in experimental design chapter. The framework for
PEPN is presented in Figure 4.4.

On the left side of the figure there is the EPN that attaches to the event sources,
processes the data and outputs a Primary Complex Event (PCE) to the event sink.
In this concept we don’t place any restrictions for neither the format of input data
nor the structure of the data processing. However, the output of the EPN must
be unique, that is, only one type of output is allowed. Thus, the output can be
formalized as the following Java class

public class ComplexEvent {
Date timestamp;
String message;

T,

where the timestamp marks the time when the complex event takes place and the
message contains relevant information about the event type that can be shown to
the user when the event happens.

In Esper an event listener specifies an EPL and implements the interface

public interface Updatelistener {
public void update(EventBean[] newEvents, EventBean[] oldEvents);

}

When the EPL is triggered, the update method is called and the events entering
the window are given in newFvents array while the events leaving the window can
be found from oldEvents. |16] In this thesis, an Event Processing Agent (EPA) is
required to provide an EPL clause and to implement the interface above.

The Predictive Event Processing Network (PEPN) has four different Event EPAs
that collect and preprocess the incoming data.

CollectorEpa listens to EPN’s event sources and collects predictor vectors for
training and predicting phases. Its EPL is of the form

SELECT

value(’<sensorId>’) .value as value,

time
FROM

MeasurementUnit.win:time(<windowLength>)
OUTPUT SNAPSHOT

every <windowDifference>

Here the first select item uses MeasurementUnit’s getter for measurement values
and then uses its getter for value. The clause defines a sliding window whose length

44

is given as a parameter windowLength for the EPL. The last part, output snapshot
every windowDifference, triggers the update method with the given time interval.
Then, Esper’s pull APT allows us to iterate through the window’s contents. [16] This
EPL creates the predictor vectors that are then consumed by other EPAs.

Next, as can been from Figure 4.4, TrainingEpa and PredictingEpa use the pre-
dictors emitted by CollectorEpa as their input. In this case, the predictors are
instances of the class MeasurementVector, which is of the following form

public class MeasurementVector implements TimedEvent, LabeledSample {
Date timestamp;
Date endTimestamp;
List<Double> values;
Label label;
3,

where values list contains the measurement values between timestamp and end-
Timestamp. MeasurementVector is a time series which we are trying to classify. It
implements the interface LabeledSample which requires it to have a Label property.
The TrainingEpa listens also to the EPN’s ComplezEvents and its EPL is as follows

SELECT predictor.x*
FROM pattern[
every predictor=MeasurementVector
-> (timer:interval(<waitingTime>)
-> (timer:interval(<eventTime>) and <Negation>c=ComplexEvent))

],

which needs a bit clarification. The pattern in the EPL first looks for a Measure-
mentVector event from CollectorEPA. The every keyword initiates this lookup on
each event. When an event is found, the first timer waits an interval of length wait-
ingTime. Then, the second interval looks for an interval of length eventTime during
which a ComplexEvent is found. The variable Negation is either empty or “not ”,
which allows us to detect both positive and negative instances. For this purpose, we
can define two TrainingFEPAs: one for positive instances with Negation being empty
and one for negative instances with Negation set to “not ”.

Now the TrainingEPA collects the predictors but the next step is to decide when
to perform the actual training process. For this purpose a TrainingInvoker EPA,
which is not shown in the pictures as it “lives” inside the TrainingEPA. Tt declares
an EPL of the form

SELECT

FROM
pattern[every timer:interval(<trainingInterval>)],

which is triggered automatically based on the time variable trainingInterval. Then,
the update is called and it executes the training of the model.

45

Like the TrainingEpas, PredictorEPA is fed with predictors (Measurement Vec-
tors) as shown in Figure 4.4. Both TrainingEPAs and PredictorEPA communicate
directly with a specific model class that extends an abstract Model class. Sub-classes
of Model implement a certain model, in this case either a DTW and kNN-based one
or a Wavelet and SVM-based one. The Model collects labeled predictors from Train-
ingEPAs until its ¢rain() method is called.

The PredictorEpa, in turn, calls the Model’s classify(Measurement Vector)-method,
which returns the label for the given predictor. If the instance is classified as positive,
a notification event is sent to the PEPN, which is then captured by AlertingEPA.
Then, the AlertingEPA builds a ComplezEvent and outputs it to the original EPN.
In this way, the PEPN creates a warning for the EPN.

4.2.3 Data Flow and Performance Tuning

The event source reads a block of data from the database and sends it to both EPN
and PEPN as can be seen in Figure 4.4. Then, the event processing networks process
the data with their own EPAs. Without giving any thought to concurrency, this
approach faces the problem of blocking as the event source does not start reading
new data until the processing of old data is finished.

To solve this problem we use threads that are kind of lightweight processes. [42]
Unlike actual processes, threads share the same memory space and are actually
contained within one process. On a single-core processor the operating system can
use time slicing feature to allow threads to execute code almost concurrently. On
a multi-core processor the system’s capability for concurrent processes enhances
significantly.

Our system has four threads: main thread, event source thread, EPN thread
and PEPN thread. The last three threads are initialized and started from the
main thread. To exchange data between two threads we need a data structure
that supports concurrent processing. The data structure should be some kind of
queue as the event source fills it with data and the two networks read from it. The
Java programming language offers several implementations for concurrent queues.
A suitable choice is LinkedBlockingQueue, a First-In-First-Out (FIFO) queue, which
offers the following methods [42]

void put(Object) Inserts the specified element into this queue, waiting if neces-
sary for space to become available.

void take() Retrieves and removes the head of this queue, waiting if necessary
until an element becomes available.

In our system there are two of these queues: one between event source and EPN
and one between event source and PEPN. Now the event source can read a batch
of data from the database and call put(e) for each element. Then, both networks,
being in an infinite loop calling take(), start processing data as soon as it becomes
available.

46

4.2.4 Machine Learning Libraries

In this thesis I use two ready-made machine learning libraries: Java Machine Learn-
ing Library (Java-ML) [1] and Weka 3: Data Mining Software in Java [25]. This
approach allows me to concentrate not on the implementation of the algorithms
but on the proper use of the methods. More importantly, the algorithms used in
the libraries have already been optimized and tested properly by machine learning
experts.

Java-ML contains an implementations for Dynamic Time Warping (DTW) and
k-Nearest Neighbor (kNN) algorithms. Together with Java-ML’s CrossValidation
class, it is fairly easy to choose optimal parameter values. This algorithm, however,
lacks the possibility of receiving intermediate results. For this reason I created an
implementation by following the pseudo-code from section 3.6.1.

For a given set of parameters, the cross validation algorithm returns an instance
of the class PerformanceMeasure, which contains the variables TP, FP, TN and FN.
From these I calculate the value for the AC, as described in (109)-(116). Then, the
set of parameters with the lowest AC} is chosen.

Java-ML has a wrapper for LibSVM which is an efficient Support Vector Ma-
chine library [7]. The interface provides Java classes that call the fast underlying
C implementations. LibSVM comes with a class called GridSearch, which performs
the grid search for parameters C' and 7 as described in Chapter 3.5.7. Again, I
implemented the grid search in order to receive intermediate results.

In this thesis the Weka library is used to perform the wavelet transform and it
supports the Discrete Haar Wavelet Transform. The conversion between Weka and
Java-ML data formats is easy as their Instance classes provide getter and setter
method for plain double arrays that contain the vector data.

4.3 MMEA Platform Architechture

4.3.1 Technology Overview

MMEA platform is designed to use Service Oriented Architecture (SOA) which
means that different processes and components are implemented as independent
and flexible services. These loosely coupled services use one another through open
interfaces. This architecture pattern facilitates the integration of new components
into the system and allows the services to be distributed into several physical ma-
chines.

The MMEA platform runs on the Amazon Web Services (AWS) cloud which
consists of Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage
Service (S3). The former is a cloud computing platform where users can install
virtual servers called instances and the latter is a cloud storage service where users
can store application data through web services. Both services are billed as a pay-as-
you-go service which means that users can scale the computing resources whenever
needed and pay only for the resources used. By using a cloud-based approach the
costs and the amount of maintenance of physical servers can be eliminated.

47

The SOA principle in MMEA is implemented using an open-source Enterprise
Service Bus (ESB) from WSO2 software company. WSO2 ESB is a lightweight
and high performance integration layer between different services. It uses Java
Message Service (JMS) for exchanging messages between distributed and loosely-
coupled services. The ESB integrates the five other MMEA layers

Sensor Layer Connects to sensor systems with sensor-specific adapters
Storage Layer Stores data into a database and loads data from it

Model Layer Runs computations based on problem-specific models
Control Layer Provides interfaces for monitoring and managing the system
Presentation Layer Provides data for external applications

These layers are shown in Figure 4.5.

At the core of the application layer there is a component called publish/subscribe
which works over SOAP, an XML-based web service for messaging. External ap-
plications can publish their data feed and send their new data into the MMEA
platform. Other parties can subscribe to these feeds and utilize the data in their
processes, such as alarm services.

The MMEA platform has its own data format called MMEA Bus Message, which
is an XML-based message format. It has a separate XML schema for common plat-
form messages, sensor observation messages, forecast messages and complex event
messages. For example, a sensor observation message contains information about
the producer and the location of the sensor, as well as the measurand and the
observed value. The sensor layer adapters define XSLT (Extensible Stylesheet Lan-
guage Transformations) transformations from the producers’ data formats into the
MMEA Message Bus format.

4.3.2 Integrating the Predictive Component

The predictive complex event processing network must be integrated to the existing
platform architecture so that the platform remains easily maintainable. As can be
seen from the layer descriptions in the previous chapter, the MMEA platform has
a model layer, which is used to run computations on problem-specific models. The
predictive component can be integrated to this layer and run on the same physical
computational cluster.

Another, and perhaps a better way to integrate the predictive component is to
create an external application that is loosely coupled with the MMEA platform. In
this approach the CEP engine and the predictive component are running on separate
machine and use the publish /subscribe method provided by MMEA platform. Pre-
dictive component subscribes to feed that provides new sensor data. Then, having
analyzed the data, it can publish the complex events, that is, the alarms back to
the MMEA platform.

48

4.4 Experimental Design

In this section I first define the complex events that are predicted in the experimental
part. Then, I describe some test settings that are employed in this thesis.

4.4.1 Complex Event Definitions

A simple Complex Event is a sensor value exceeding a certain predefined limit for
a certain time. For each sensor type (temperature, C'Os, etc.) we can write a Java
classes

public class ValueClassification {
Set<Sensor> sensors;
List<ValueClassificationLimit> limits;

}
and

public class ValueClassificationLimit {
String name;
double limit;
int level;

}

The former represents a classification scale for one type of sensors and the latter
is an actual limit. The [imit attribute is the lower bound limit for an measurement
value to belong to that class. The level attribute gets integer values beginning from
0 and can be used to display only ClassificationEvents beginning from a given level.
It can be thought as severity of the event.

Now we can further define a complex event that rises from exceeding a classifi-
cation limit

public class ClassificationEvent extends ComplexEvent {
Date timestamp;
Sensor sensor;
ValueClassificationLimit limit;
String length;
3,

which is a sub-class of ComplexEvent. It contains all the relevant information about
the event: the timestamp of the event, the sensor that caused the event, the limit
value which was exceeded and the length of time window that triggered the event.

An Event Processing Agent (EPA) called ClassificationEPA loads the classifica-
tion limits from the database and builds the EPL clauses that detect the classification
events. Let’s say we have a sensor with SensorID 50 and the complex event happens
when the measurement value exceeds the value of 100 for 20 minutes. Then, the
following EPL detects the classification event of level 2 and builds a complex event
that is sent to the CEP engine

49

INSERT INTO

ClassificationEvent

SELECT
unit.timestamp AS time,
unit.value(’50’) .sensor AS value,
2 AS minLevel,
’20 min’ AS windowLength

FROM

pattern[
every (timer:interval(20 min)
and unit=MeasurementUnit(value(’50’).value > 100))

]

Next, we need to specify the limits for each measurand. For C'O, and VOC
(Volatile Organic Compounds) we can use the indoor air quality classes defined by
the Finnish Indoor Air Society. [49] The classification supports the evaluation of
construction and renovation processes from the air quality’s point of view.

Indoor Air Society has defined three classes, S1, S2 and S3, which describe the
indoor air quality in the following way

S1: Individual Excellent indoor air quality. No detectable odors or sources of
pollutants. Controllable temperatures with no overheating.

S2: Good Good indoor air quality. No disruptive odors or sources of pollutants.
No detectable breeze but overheating possible during summer.

S3: Satisfactory Air quality and temperature conditions fulfill construction re-
quirements.

For C'O, and VOC the class limits are shown in Table 4.4. For VOC the corre-
sponding values from our sensor are shown in parentheses.

Table 4.4: Air quality classifications for CO, and VOC.
Class | CO, (ppm) | VOC (ug/m?)
S1 0-700 0-200 (0-10)
S2 700-900 200-300 (10-20)
S3 900-1200 | 300-600 (20-30)
S4 >1200 =600 (>30)

The particle detector counts the number of small particles in two size groups:
particles with diameter between 1 um and 5 ym and particles with diameter greater
than 5 pm. The former group consists of fine dust, smoke, mold and bacteria while
the latter is made of coarse dust, pollen and dust mite casings. The detector in our
test house, Dylos DC1100, is calibrated to detect particles half the size mentioned
before, that is 0.5 ym and 2.5 pm.

50

On the backside of the particle detector device, there is an air quality chart
defined for the smaller particle size. This classification is presented in Table 4.6.
The first column defines the classification in our system. The other two columns
have been read from the device’s backside. In the range 0-300 three classes, excellent,
very good and good, have been combined into one class, PC1.

Table 4.5: Air quality classifications for CO; and VOC.

Class | Particle count Description
PC1 0-300 Good/Excellent
PC2 300-1050 Fair

PC3 1050-3000 Poor

PC4 >3000 Very Poor

Similar classifications can be defined for heating and electricity consumption by
determining the class ranges from the historical data. In more detail, the ranges
were chosen to cover most often occurring peak values during the turning of the
season. In this way, the most relevant complex events could be created for each
time period (time of year). The classes are presented in table 4.6

Table 4.6: Classifications for electricity and heating.

Electricity Class | Consumption (kW) | Heating Class | Consumption (kW)
EC1 0-2 HC1 0-10
EC2 2-3 HC2 10-20
EC3 4-5 HC3 20-30
EC4 =5 HC4 >30

4.4.2 Selecting Parameters and Running the Tests

Two different prediction schemes are tested. The first starts with a training period of
trainingDays days and continues with a series of testing periods of length testingDays
for the rest of the data. The latter first trains the model with trainingDays days
and then runs testingBatches single tests of length testingDays. This is process is
then repeated until the data ends.

A long data set may show radical changes in indoor air quality conditions. If
that is the case, then the second testing scheme which trains the model more often
should perform better. This is one of the main focus points of the experimental
section.

Our data collection phase has five different constants which were introduced in
the previous chapters. A clarification for the first three parameters was shown in
Figure 2.

windowLength Length of measurement vector that is used as a predictor.

ol

waitingInterval Part of the prediction horizon that is ignored.

eventInterval Part of the prediction horizon which determines the class of the
predictor depending whether or not a complex event happens within it.

windowDifference Determines how often a new predictor is created. Difference
between two predictors’ start points.

exceedTime Determines the minimum time interval that triggers a classification
event, that is, a sensor value exceeds a certain limit.

Depending on the sensor, a certain combination of these parameters works better.
For each sensor, each parameter is given a set of possible values. Then, the tests are
run for each combination of parameters and the best combination is selected. The
possible values are selected by inspecting the time series graph.

In addition to these parameters, the prediction models have parameters of their
own, too. Each training process is run as a grid search and the best combination of
the model parameters is used in the testing phase. For DT'W and kNN based model
those parameters are

radius Maximum deviation from the optimal path in DTW (see Chapter 3.4.2).
Possible values: 5 and 50.

k The only parameter for k-Nearest Neighbour algorithm (see Chapter 3.4.3). Pos-
sible values: 3, 7 and 15.

The selected possible values produce a total of 2 -3 = 6 combinations for the
grid search. The smaller the radius for DTW is, the less accurate the algorithm is
because the allowed deviation from the optimal path is smaller. The value of k for
kNN determines how sensitive the classifier is to noise; the larger the parameter is,
the less sensitive the classifier is to noise [18].

For SVM the parameter grids were presented in Chapter 3.7.6.

~v Parameter for the Gaussian Kernel. ay = 3
C Soft margin parameter. Cy =5

The selected values produce a total of 76 = 42 combinations for the grid search.

02

"yIoM)oN Su
N 8uIssen01d JueAr] aA1Ipald pue (NJH) JI0MIDN SuIssenold JueAy ' 2Ingi]

JUsA3 xajdwo)

JuaAg xa|dwo)

JuaAg s dwis

JuaAg s dwis

- Sensors
- Databases
- etc.

A

Data Sources:

System Alarms

S

Applications

N

\ L \V
Data Source Storage Control Presentation
Model Layer
Layer Layer Layer Layer

¢

¢

¢

¢

¢

Integration Layer

Figure 4.5: MMEA Platform layers.

53

Chapter 5

Results

5.1 Goodness Indicators

5.1.1 Classification With DTW and kNN

Variable: CO,; Concentration

The first test is performed with C'Os sensor from the bedroom 1 on the second floor
(group 8 and sensor ID 646 in Table 2). The test data is from November 1st, 2012
until February 28th, 2013. One example week from that four month period is shown
in Figure 5.1. The classification levels defined in Chapter 4.1 are shown in the figure
as well as one missing part that is covered with linear interpolation. For C'O, the
minimum level for an alert is set to S2, which is the red line in the picture.

Date
6.1 7.1 8.1 9.1 10.1 11.1 12.1
ZDDD 1 1 1 1 1 1 1

ppm)
=
e
(9]
(o]

= [

1500

: ——S3
- S2

(AL |'I U 'I. ' | .'u 1 'I [a ¥
7501 = — — — S S1
500 - :

= e
o M
=R
==

CO2 concentration
-
=
-
>.

250

B Sensor group: 8, id; 646

Figure 5.1: Example time series from C'Oy sensor. The S1, S2 and S3 mark the
classification limits.

54

%)

Table 5.1: Results for November 2012 with DTW and kNN model (W = 0.5). The
definition of ROC distance ACy is shown in (3.116). For each row the number of
positive samples is P = TP + FN = 134 and the number of negative samples is
N=FP =TN = 99,
radius | k | TP | FP | TN | FN | TPR | FPR | Accuracy | ACq4
5 3 110 | 18 | 81 | 24 | 0.92 | 0.13 0.82 0.16
5 71103 8 | 91 | 31 | 0.77 | 0.060 0.83 0.17
5 15101 9 | 90 | 33 | 0.75 | 0.067 0.82 0.18
50 3 (108 | 15 | 84 | 26 | 0.81 | 0.11 0.82 0.16
50 70102 7 | 92 | 32 | 0.76 | 0.052 0.83 0.17
50 15103 | 6 | 93 | 31 | 0.77 | 0.045 0.84 0.17

First, let us investigate the effects of DTW and kNN parameters on the classi-
fication results. It is reasonable to suppose that the values of radius and k should
have only a minor effect on the classification results. The time parameters were set
to the following values

e windowLength: 4 hours

windowDifference: 1 hour

waitingInterval: 30 min

eventInterval: 2 hours

exceedTime: 30 min

These values mean that a new four-hour predictor vector is created every hour.
This predictor is considered positive if the sensor value exceeds the limit value for
30 minutes within two hours after the predictor and a waiting time of 30 minutes.

A 30-day period from November 2012 with a total of 267,524 events was used
to test the six parameter combinations. The first 70 % of the data was used for
training and the rest for testing. The classification results are shown in Table 5.1.

As can be seen from the results, the parameters radius and &k do not have much
effect on the classifier performance. Thus, the simplest possible model is selected.
For the rest of the experiments values radius = 5 and k = 3 will be used.

Next, we perform the two experiments described in Chapter 4.4.2. The first test
trains the model with 14 days of data and then runs tests in batches of 7 days. The
second test runs three iterations, each beginning with a training period of 14 days
and then three 7-day test batches. The parameters are the same as in the previous
test except for the exceed Time which is now set to 1 hour.

The results from these experiments are shown in Table 5.2. As can be seen from
the table, there is no significant difference between constantly updating model and
using the the same model for all tests.

The C'O; consumption seems to be quite easy to predict with this data set
because the peaks are quite wide and they occur with constant intervals. The EPN

o6

Table 5.2: DTW and kNN based model. 1: Periodically trained model. 2: Model

that is trained only once.

Week | 1: Purpose | 1: Accuracy | 2: Purpose | 2: Accuracy
1 Training - Training -
2 Training - Training -
3 Testing 0.72 Testing 0.72
4 Testing 0.81 Testing 0.81
5) Testing 0.71 Testing 0.71
6 Training - Testing 0.75
7 Training - Testing 0.86
8 Testing 0.88 Testing 0.94
9 Testing 0.91 Testing 0.94
10 Testing 0.75 Testing 0.75
11 Training - Testing 0.84
12 Training - Testing 0.86
13 Testing 0.76 Testing 0.72
14 Testing 0.81 Testing 0.83
15 Testing 0.81 Testing 0.84

57

Table 5.3: Performance of DTW and kNN based model in the spring of 2013. The
mechanical ventilation system was installed in the beginning of April.

Start End P| N | TP | FP | TN | FN | TPR | TNR | Accuracy
01.03.13 | 08.03.13 | 42 | 61 | 19 1 60 | 23 | 045 | 0.98 0.77
08.03.13 | 15.03.13 | 17 | 70 | 7 1 69 | 10 | 041 | 0.99 0.87
15.03.13 | 22.03.13 | 11 | 76 | 2 2 74 9 0.18 | 0.97 0.87
29.03.13 | 06.04.13 | 32 | 57 | 25 0 57 7 0.78 | 1.00 0.92
06.04.13 | 13.04.13 | 2 |83] O 3 80 2 0.00 | 0.96 0.94
13.04.13 | 20.04.13 | 2 | 83| O 2 81 2 0.00 | 0.98 0.95
20.04.13 | 27.04.13 | 2 | 83| 1 1 82 1 0.50 | 0.99 0.98

is likely to capture two kinds of complex events: ones that actually precede peaks
and ones that are within a peak indicating that the peak will continue.

As of the beginning of April, 2013, the test house was equipped with a mechan-
ical ventilation system which improved the air quality significantly. This change
eliminates the periodic increase in C'Oy levels we tried to predict in the previous
tests. As a comparison, the model was evaluated with four one-week periods from
March and April, 2013. These results are shown in Table 5.3.

As can be seen from the number of positive testing samples in Table 5.3, the
COs levels decreased after the installation of mechanical ventilation system. Or at
least the periodic peaks disappeared. The model now struggles with positive sample
with TPR being much worse than in the previous tests. In the winter the average
TPR was 0.76 for the same model.

Variable: VOC

As a second test variable we are using Volatile Organic Compounds (VOC). The
sensor 1D is 789 and the group is 7. It is located in a bedroom in the first floor.

As the last chapter indicated, we would not get much advantage from parameter
optimization. Thus, we continue using the same values kK = 3 and radius = 5. A
sample week of the data is shown in Figure 5.2.

As the figure shows, this time the peaks that exceed the limit value (S1) are
much sharper. Thus, we first try to find the optimal time constants. The test data
is again from November, 2012.

Two time parameters, windowDifference and exceedTime, are kept as constants
with values 4 hours and 5 min respectively. A small exceedTime is required to detect
the sharp peaks. The prediction horizon parameters, windowLength, waitingInterval
and eventInterval are varied. For each combination a three-fold cross validation
is performed and average performances are calculated. The results are shown in
Table 5.4.

The results show that the model misclassifies too many positive samples as neg-
atives. The best parameter combinations are highlighted in the table. Clearly

o8

Date
15.11 16.11 17.11 18.11 19.11 20.11 21.11
4|:| 1 1 1 1 1 1 1
[y
=
4&; 30
e
]
[
3l
£ 20
i
w]
U
2 10

S1

Figure 5.2: VOC concentration.

Table 5.4: Cross validation performances for DTW and kNN based model with
different time parameters and VOC as measurand.

windowLength | waitingInterval | eventInterval | TPR | FPR | Accuracy | ACq
2 hours 30 min 1 hour 0.54 0.08 0.77 0.57
4 hours 0.56 | 0.05 0.79 0.54
8 hours 0.38 | 0.09 0.71 0.68
2 hours 1 hour 0.45 0.12 0.70 0.65
4 hours 0.55 | 0.08 0.76 0.58
8 hours 0.34 | 0.14 0.64 0.71
2 hours 2 hours 0.43 0.13 0.68 0.66
4 hours 0.48 | 0.07 0.73 0.62
8 hours 0.33 | 0.21 0.60 0.73
2 hours 30 min 2 hours 0.52 0.13 0.72 0.61
4 hours 0.55 | 0.09 0.75 0.58
8 hours 0.38 | 0.18 0.63 0.70
2 hours 1 hour 0.45 | 0.13 0.69 0.65
4 hours 0.57 | 0.08 0.77 0.57
8 hours 0.35 | 0.21 0.60 0.72
2 hours 2 hours 0.43 0.13 0.67 0.66
4 hours 0.50 | 0.14 0.70 0.63
8 hours 0.34 | 0.22 0.59 0.73

windowLength of 4 hours works best. Other two parameters do not show that clear
impact so we choose 30 min for waitingInterval and 1 hour for eventInterval because
they produce a simpler model.

The selected model is tested with data starting from the beginning of December
2012. Figure 5.3 shows True Positive Rate (TPR) and False Positive Rate (FPR)

for each week.

59

0.9 T
FPR ——
0.8 TPR

0.7 - -
0.6 - -
0.5 - i
0.4 -
03 i
0.2 - -

0.1 A~ o

Week

Figure 5.3: Weekly TPR and FPR for DTW and kNN based model starting from
the beginning of December 2012.

The FPR is very small as it was in the parameter selection, too. The TPR
maintains its level at 0.50-0.60 for five weeks and then drops significantly. Looking
at the data shows that the number of limit-exceeding peaks almost disappear in the
wintertime. Thus, it is very difficult for the model to predict these rare events.

5.1.2 Classification with Wavelets and SVMs
Variable: CO2

First, let us look at the product of the Haar Wavelet Transform. Figure 5.4 shows
the original time series and Haar Wavelets with three different levels, 1, 2 and 10.
The Weka Wavelet algorithm chooses the level from equation

log length)

5.1
log 2 (5:1)

level = ceil (

where length is the length of the time series and ceil() rounds the answer up to
the nearest integer. When the length of the time series is about 1000 points, the
equation gives 10 levels.

This time the model parameters, v and C should have a major impact on the
classification results. Hence, we will perform an actual cross validation with 5 folds
as described in Chapter 3.6.1. The data used is again from November 2012 so the
resulting classifier can be compared to the one in the previous chapter.

For each parameter combination a cross validation is performed. Then, an av-
erage ACy from Equation 3.116 is calculated for each parameter combination. The
best parameter combination is then used for training the model.

60

Original Time Series

930 T T T T T T T

920 i
910 L i
900 [/~ Yl e T
890 ™ . B
880 e B N | . 7
870 T | . e 1 b
860 L e g P e B
850 1 1 1 | 1 M 1
0 200 400 600 800 1000 1200 1400 1600
Haar Wavelet (level=1)
lg T T T T T T T
—— - — i
E | i
-]
§ r]
foo F]
-10 C I I I 1 I 1 1 il
0 200 400 600 800 1000 1200 1400 1600
Haar Wavelet (level=2)
1000 —————— 1 - T T T T T T
800] B
600 [B
400 |- | 4
200 [~ B
0 ‘ i
-200 - b
-400 - B
_600 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Haar Wavelet (level=10)
1000 T T T T T T T
800 b
600 |- b
400 B
200 |- b
0 Y 1 : | -
-200 - ’ b
_400 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Figure 5.4: Original time series and Haar Wavelets with three different levels, 1, 2
and 10.

For parameter v the grid values are calculated using the Jaakkola Heuristics
described in Equation 3.105 with ag set to five. This results in 11 different values
for . For parameter C we use a logarithmic grid {10}, i = —2,...6 to first find out
the correct magnitude for C.

The average accuracies and calculated ACys for C and v are shown in Figures 5.5
and 5.6. Each point in the graphs is an average value of all the test runs with the
given parameter value. There were a total of 55 runs for each value of C' and 45
runs for each value of ~.

The average classifier performance improves as C increases to one. After that
the accuracy decreases slowly. As the parameters might not be independent of each
other, these graphs alone can not be used to select the optimal values. Figure 5.7
shows accuracy as a function of both C' and ~. By inspecting the graphs a suitable
combination for the parameters could be C' = 10 and v = 0.05.

61

Accuracy —

ACd
0.8 N

07 i

0.6 / i

0.5 N

0.2 L L L L L L L
0.01 0.1 1 10 100 1000 10000 100000 1e+00¢

C

Figure 5.5: SVM classifier performance as a function of C.

0.8 : .. : e : .. : | : ..
. Accuracy
0.75 - ACd -

| |
0.65 _ ~\\\~\\\\;\\;\\;\ _
0.6 _ \;\\;\\;\ 1
0.5~ _
051 _
04T _
0.4 1 _
0.35 1 _
0.3 _

025 L L L L L | L L | L L L L
0.0001 0.001 0.01 0.1 1 10

gamma

Figure 5.6: SVM classifier performance as a function of .

Next, the Wavelet and SVM model is trained with 14 days of data. This can not
be done, however, with the same data we used for parameter selection because that
approach would end up with overfitting. The values for TPR, FPR and Accuracy
are shown in Figure 5.8.

The figure shows that the performance of this classifier varies much more than
that of the DTW and kNN model.

62

0.8
0.75
0.7
0.65
0.6
0.55

1000
10000

< 100000
10 1e+006

gamma

Figure 5.7: SVM classifier accuracy as a function of C' and ~.

1 T

FPR —
TPR
Accuracy

o 2 o o
o N ®» ©
T T T T

Week

Figure 5.8: Wavelet and SVM based model performance with C' = 10 and v = 0.05.

5.2 Computational Performance

Standard DTW algorithm has time complexity of O(N?), where N is the length
of the time series. However, the FastDTW library we are using promises time
complexity of O(N) [48]. The training phase of DTW and kNN is O(1) operation
and takes only a few milliseconds because no calculations are performed. The given
training set is simply saved into the model. Only when a new instance is classifier,
DTW algorithm is run against each training sample and then k& closest are selected
for voting.

63

450 T

400 [

350 -

300 -

250 -

200

Time (seconds)

150 -

100 -

50 -]

o - /\7”” 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Time series length

Figure 5.9: DTW and kNN based model’s performance as a function of time series
length.

Figure 5.9 shows the training time as a function of time series length. Different
time series lengths were acquired by varying the windowLength parameter from 10
minutes to 4 hours. The smaller the radius parameter is, the shorter the calculation
time is as the algorithm is stopped earlier. As the authors of FastDTW promised,
the time complexity is linear for relatively small time series (< 2000 data points).
For longer time series it soon becomes second-degree polynomial. [48]

The LibSVM promises time complexity of O(l), where [is the length of the time
series if no kernel evaluations are required and O(nl) when n kernel evaluations are
required [7]. To put it briefly, the SVM training should be linear.

5000 T T T T T T

T T T T
windowLength=1 hour
4500 -

4000
3500 -
3000 [~
2500 [~

Time (ms)

2000 -

1500 b
1000 [~ b

500 - - j

50 100 150 200 250 300 350 400 450 500 550 600
Testing set size

Figure 5.10: Wavelet and SVM based model’s performance as a function of training
set size.

Figure 5.10 shows the testing time of Wavelet and SVM based model when the
training set size is held constant at 139 data points. Clearly, increasing the number

64

of test instances increases the execution time linearly. This same applies for DTW
and kNN based model.

If the number of test instances is also increased, the time complexity of DTW and
kNN based model is no longer linear but rather follows a polynomial relationship,
possibly a second-degree one. This is because each extra testing instance must be
evaluated against each extra training set instance. The exact form of this polynomial
could be found by regression analysis.

Wavelet and SVM based model, on the other hand, remains at linear computa-
tional time despite the increased number of both training and testing samples. This
follows from the linear time requirements of both discrete Haar transform and

5.3 Discussion

The biggest difference between the two models was the computational time needed
to train and test the models. DTW and kNN based model takes about few minutes
while with Wavelet and SVM based model only a few seconds are enough.

Even though the FastDTW algorithm uses various methods, such as data ab-
straction and warping path constraints, to speed up the calculations, it still is a
relatively slow algorithm. There is no way to decrease the number of DTW calcula-
tions as each testing instance must be evaluated against each training instance.

Calculating the Discrete Haar Wavelet Transform for small time series is not
computationally demanding. Tt only consists of a series of addition and subtraction
operations until the desired level is achieved. Weka Wayvelet library doesn’t provide
any method to manually set to level up to which the transformation is performed.
It would be useful to evaluate the classifier performance as a function level used for
Haar Transform.

The core of LibSVM is written in C programming language which achieves better
performance than if it was written in pure Java. LibSVM uses two techniques,
shrinking and caching, to decrease the iteration time [7]. The shrinking method
identifies and removes some bounded elements resulting in a smaller optimization
problem. The quite advanced mathematics behind this method are not review here.
The caching method stores kernel evaluations into memory for later use and thus
avoids recalculations.

When it comes to classification performance, it was shown that regular peaks are
much more predictable than ones that occur relatively rarely. With C'Oy the DTW
and kNN based model achieved an acceptable performance with accuracy being over
80%, True Positive Rate (TPR) over 75% and False Positive Rate (FPR) under 10%.

When comparing a model that was trained once to a model that was trained with
regular intervals, no differences were found. The reason for these findings might be
that the signal was close to a stationary process whose mean and variance remained
about the same for the whole testing period. It was also shown that the installation
of mechanical ventilation system changed the indoor air conditions dramatically and
the performance of the classifier plummeted.

With VOC variable it was shown that the system’s time parameters have a

65

major impact on the performance. For example, the optimal choice of windowLength
parameter may increase the accuracy from about 60% to over 75%. The number
of indoor air particles decreased in the winter and the classifier failed heavily after
that.

The Wavelet and SVM based model is difficult to tune. In addition to system’s
time parameters, it has two parameters, C' and ~ that derive from the mathematical
equations. With C'O, it was shown that both these parameters have optimal values
that maximize the accuracy and minimize the AC,;. However, the testing accuracy
varied a lot compared to the first model. LibSVM provides additional parameters,
such as € for stopping the iteration and weight parameters for different classes, that
are sure to affect the observed performance but were not investigated here.

The second model is much more sensitive to the available data. Even small
changes in the time parameters transformed the classifier from a nearly perfect one
to a completely useless one. Especially with VOC, which has sharp peaks occurring
rarely, this model lacks some kind of dynamic time parameter tuning that would
optimize the length and the difference of the time windows on the go.

All in all, the results were quite close to my expectations. The easy-to-use DTW
and kNN based model outperformed the more sophisticated Wavelet and SVM based
model. The latter model, however, showed potential for predicting regular peaks in
less time then the first model. With a little bit more parameter tuning I am pretty
confident that Haar Wavelets and SVMs can work together with reasonable results.

Chapter 6

Conclusions

The goal of this thesis was to develop a framework for predictive complex event
processing. By combining CEP and Predictive Analytics (PA) the capabilities of
CEP for pattern detection can be taken a step further towards a real-time alarm
system. Building this kind of system consists of the following phases

1. Setting up the sensors

2. Enabling data flow into the CEP engine

3. Identifying the phenomena and describing them with EPL clauses

4. Building and configuring the predictive component to receive alarms
5. Taking necessary actions

The first phase, setting up the sensors, requires either setting up physical sensors
or simulating ones with a computer software. Since there were data available from
a real-life case, it was a easy choice to ask for a permission to use it. This choice,
nevertheless, came with a potential risk of the data being uninteresting or too com-
plicated. The two sensors, C'Oy and VOC were chosen for testing because of their
large value range. The consumption variables, such as electricity and heating, had
to be left out because their values were in pulses and not in their actual units. This
conversion would have caused too much extra work.

The second phase, the data flow from the sensors into the CEP engine can be
further divided into two phases: a data flow from the sensors into our predictive
framework and a data flow inside our predictive framework. The former begins with
wireless sensors emitting measurements to a server via a router. The latter consists
of downloading the data from the server and formatting them to Java objects that
can be inserted into the CEP engine.

At the core of the predictive framework is to Esper CEP engine which, as a state-
of-the-art open-source solution, is gaining more and more popularity among CEP
developers. In this thesis only a small fraction of Esper’s capabilities were used.
Only relatively simple EPLs with some temporal logic and timers were used. More

66

67

advanced features, such as context-dependent reasoning and direct database connec-
tions, could be used to extend the predictive framework into a more comprehensive
house automation software.

The third phase, writing the EPL clauses, requires domain experts to define
meaningful complex events. Since I do not have enough experience in environmental
issues, a very simple complex event type was chosen. Detecting a variable exceeding
a certain limit is, however, an important one according to the Finnish Indoor Society.
By their definition, the indoor air quality is solely determined by a set of limits for
different variables. [49]

The next step from our “simple complex events” would be to detect and predict
a combination of variables exceeding a limit. This would give a more comprehensive
image of the living conditions. Then, additional independent variables, such as
weekday and season, could be used to add cycle detection to the platform.

The fourth phase is the main focus point of this thesis. The predictive component
is a separate CEP network that listens to the original network’s inputs (measure-
ments) and outputs (complex events) [21]. The novel idea of this thesis was to
construct the predictors and their labels with CEP. All the previous work done
in this area builds the training and testing set manually, or at least they have no
mentions of using CEP for that.

The fifth phase requires domain expertise to define the necessary actions. When
it comes to limit exceeding complex events that we are investigating in this thesis, a
possible action could be opening a window. Other actions include adjusting heating,
cooling or ventilation. In case of an emergency situation, such as rising carbon
monoxide levels, a loud alarm should be played in order to alert the residents. Since
this system is already connected to the outside world, also the authorities could be
notified and called automatically in that case.

Taking necessary actions is closely tied with the time parameters in our predictive
framework. The time parameters, waitingTime and eventTime, define the prediction
horizon that begins with a warning interval. The warning interval corresponds to
the time needed to prevent the complex event from happening. Should a single topic
be chosen for additional research, it would definitely be a more thorough choice of
time parameters.

This thesis has two different intersections with real-life applications. First, the
motivation for this work stems from the MMEA research project which aims at cre-
ating a platform for environmental data exchange. The platform offers interfaces for
external applications that can make use of the real-time sensor data. The predictive
complex event processing platform that was developed in this thesis could be one of
these applications.

Second, this thesis uses test data from ASTEKA project which builds intelligent
houses that adapt to changing living conditions. Even though the real-life data
is with no doubt very challenging to start with, the framework developed in this
thesis showed some potential allowing smooth data flow and some promising result.
Actually, the most successful parts of this thesis are related to data handling and
integrating all the components together. With relatively little code actual sensor
data is used for prediction and alerts are shown to the user.

68

The problems that were faced during the experimental part were mainly related
to the applied methods and the available testing data. First, the used models,
especially the Wavelet and SVM based one, have a fairly large number of parameters
that affect the performance. For this reason each section in the results chapter is
built from different types of results. This approach shows a cross-section of what
kind of results can be achieved and how they can be represented in a tabular or a
visual form. The parameter optimization needs definitely more investigation before
the platform can be said to actually work.

Second, the available testing data was actual data from an actual test house. In
real-life the C'O, concentration is not the most interesting variable when it comes
to alerting the residents. However, a C'O; sensor located in a small room without
mechanical ventilation is sensitive enough to show a lot of regular variation which
our platform managed to predict very well. When the mechanical ventilation was
installed and the regular peaks disappeared, the performance of our model decreased
significantly.

As hypothesized before, the simpler DTW and kNN based model performed
better than the more complex Wavelet and SVM model. Our complex event type,
a variable exceeding a limit, can be predicted by detecting the rise in that variable.
DTW captures this kind of information better probably because it stretches the two
time series being compared so that the rising parts are matched. Wavelet transform,
on one hand, is able to detect this kind of patterns but, on the other hand, lacks
translation invariance, which means that the two signals might not be similar if they
are in different phases. There are some methods available to overcome this problem.
[55]

As already mentioned before, possible focus points for future research are

e Better evaluation of what kind of data and which variables can be predicted
e Defining more meaningful complex event with domain experts
e Optimizing model parameters more thoroughly

All of these were investigated to some extent but better results would definitely be
obtained by focusing more on these three points. In the light of these shortcomings
it is fair to say that the predictive framework developed in this thesis is just a
proof-of-concept and still quite far from a real-life application.

Bibliography

1]

2]

131

4]

[5]

6]

|7l

18]

19]

[10]

Abeel, T. & Van de Peer, Y. & Saeys, Y., Java-ml: A machine learning library,
Journal of Machine Learning Research 10 (2009), 931-934.

Adi, A. & Botzer, D. & Nechushtai, G. & Sharon, G., Services computing
workshops, Services Computing Workshops, IEEE, 2006, SCW ’06 Conference,
pp. 7-12.

Augusto, J. C. & Nugent, C. D. (ed.), The use of temporal reasoning and
management of complex events in smart homes, 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, Valencia, Spain, 2004.

Bellemans, T. & De Schutter, B. & De Moor, B., Model predictive control for
ramp metering of motorway traffic: A case study, ESAT-SCD (2006), 406—411.

Boswell, D., Introduction to support vector machines, Tech. report, Caltech
Institute of Technology, Pasadena, CA, USA, 2002.

Buytendijk, F. & Trepanier, L., Predictive analytics: Bringing the tools to the
data, Tech. report, Oracle Corporation, Redwood Shores, CA, USA, 2010.

C. Chang, C. & Lin, LIBSVM: A library for support vector machines, ACM
Transactions on Intelligent Systems & Technology 2 (2011), 27:1-27:27, Soft-
ware available at http://www.csie.ntu.edu.tw/"“cjlin/libsvm.

Chen, C. & Huang, Y. & Li, G., Hourly heating load prediction of radiant floor
heating system based on the BP neural network, Advanced Materials Research
243-249 (2011), 4913-4917.

Chen, H. & Jiang, G. & Ungureanu, C. & Yoshihira, K., Failure detection &
localization in component based systems by online tracking, ACM SIGKDD in-
ternation conference on Knowledge discovery in data mining, NEC Laboratories
America, Inc., Princeton, NJ, USA, 2006.

CLEEN Ltd, Measurement, monitoring and environmental efficiency as-
sessment - innovations through new thinking, MMEA factsheet, http://
www.cleen.fi/fi/Markkinointiviestint/MMEA_Factsheet_20120417.pdf,
2012.

69

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cleen.fi/fi/Markkinointiviestint/MMEA_Factsheet_20120417.pdf
http://www.cleen.fi/fi/Markkinointiviestint/MMEA_Factsheet_20120417.pdf

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22|

23]

[24]

70

Dubin, R., Theory building, New York: The Free Press, New York, NY, USA,
1969, ISBN 9780029076200.

DuChateau, P., Basic facts about Hilbert space, Tech. report, Colorado State
University, Fort Collins, CO, United States, 2002.

Dumbill, E., Big data, vol. 1, O’Reilly Media, Sebastopol, CA, USA, 2012, ISSN
2167-6461.

Edwards, M. & Etzion, O. & Ibrahim, M. & Iyer, S. & Lalanne, H.
& Moxey, C., A conceptual model for event processing systems, http:
//public.dhe.ibm.com/software/dw/webservices/ws-eventprocessing/
ws-eventprocessing-pdf.pdf, 2010.

Elkan, C., Evaluating classifiers, lecture notes, winter 2012, Tech. report, Uni-
versity of California, San Diego, CA, USA, 2012.

EsperTech Inc., Esper reference, Version 4.6.0, http://esper.codehaus.org/
esper-4.6.0/doc/reference/en-US/pdf/esper_reference.pdf.

Etzion, O. & Niblett, P., Fvent processing in action, Manning Publications Co.,
Greenwich, CT, USA, 2010, ISBN 9781935182214.

Everitt, B. S. & Landau, S. & Leese, M. & Stahl, D., Miscellaneous clustering
methods, in cluster analysis, 5 ed., John Wiley & Sons, Ltd, Chichester, UK,
2011, ISBN 9780470977811.

FICO, What are the types of predictive analytics?, http://dmblog.fico.com/
2006/06/what_are_the_ty.html, 2006, Blog.

Fong, K. M., Time series forecasting using wavelet and support vector machine,
Master’s thesis, Department of Mechanical Engineering, National University of
Singapore, 2004.

Filop, L. J. & Toth, G. & Vidacs, L. & Beszédes, 4. & Demeter, H. & Farkas,
L., Predictive complex event processing: A conceptual framework for combining

complex event processing € predictive analytics, BCI 12 Proceedings of the
Fifth Balkan Conference in Informatics (2012), 26-31.

Gantz, J. & Reinsel, D., Extracting value from chaos, http://www.emc.com/
collateral/analyst-reports/idc-extracting-value-from-chaos-ar.
pdf, 2011.

Gutierrez-Osuna, R., L17: linear discriminant functions, Tech. report, Texas
AM University, College Station, TX, USA, 2011.

Hai-Lam, B., Survey & comparison of event query languages using practi-
cal examples, Master’s thesis, Insitut fiir Informatik, Ludwig-Maximilians-
Universitat, Miinchen, 2008.

http://public.dhe.ibm.com/software/dw/webservices/ws-eventprocessing/ws-eventprocessing-pdf.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-eventprocessing/ws-eventprocessing-pdf.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-eventprocessing/ws-eventprocessing-pdf.pdf
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/pdf/esper_reference.pdf
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/pdf/esper_reference.pdf
http://dmblog.fico.com/2006/06/what_are_the_ty.html
http://dmblog.fico.com/2006/06/what_are_the_ty.html
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

[25]

[26]

27]

28]

29]

[30]

31]

32]

33]

[34]

[35]

[36]

37]

38

[39]

[40]

71

Hall, M., The WEKA data mining software: An update, ACM SIGKDD Explo-
rations Newsletter (2009), 10-18.

Hamilton, H., Knowledge discovery in databases, Computer Science 831: Lec-
ture Notes, University of Regina, Canada.

Hamilton, J .D., Time series analysis, Princeton University Press, Princeton,

NJ, USA, 1994, ISBN 978-0691042893.

Hastie, T., The elements of statistical learning, 2 ed., Springer, New York, NY,
USA, 2009, ISBN 978-0387848570.

Hautakangas, H. & Nieminen, J., Anomaly detection using one-class SVM with
wavelet packet decomposition, Master’s thesis, University of Jyviskyla, Depart-
ment of Mathematical Information Technology, Jyviskyla, Finland, 2011.

Jaakkola, T., Using the Fisher kernel method to detect remote protein homolo-
gies, ISMB-99, AAAT, 1999.

Jordan, M. 1., Advanced topics in learning and decision making: The kernel
trick, Tech. report, University of California, Berkeley, CA, USA, 2004.

Keogh, E. & Ratanamahatana, C. A., Fzxact indexing of dynamic time warping,
Knowledge and Information Systems 7 (2005), 358-386.

Kobielus, J., Really happy in real lime, http://www.
destinationcrm.com/Articles/Columns-Departments/Connect/
Really-Happy-in-Real-Time-50530.aspx, 2008, Article.

Kohonen, T. (ed.), The self-organizing map, Springer-Verlag New York, Inc.
Secaucus, NJ, USA, 1990, ISBN 3540679219.

Kolehmainen, M., Ympdristéinformatitkan asumisen energiatehokkuuteen ja
terveellisyyteen listtyvdt hankkeet, Lecture Notes, 2010, University of Eastern
Finland, Kuopio, Finland.

Li, J., Learning vector quantization & k-nearest neighbor, Tech. report, Penn
State University, University Park, PA, USA, 2008.

Luckham, D. & Schulte, W., Fvent processing glossary - version 1.1, Hoboken,
New Jersey: John Wiley & Sons, Inc., 2008, ISBN 978-0-470-53485-4.

Marcelo, M. & Bizarro, P. & Marques, P., A performance study of event pro-
cessing systems, Tech. report, CISUC, University of Coimbra, Portugal, 20009.

Mitchell, T.M., Machine learning, McGraw-Hill, New York, NY, USA, 1997,
ISBN 70070428077.

Montgomery, D. C. & Peck, E. A. & Vining G. G., Introduction to linear re-
gression analysis, Wiley, New York, NY, USA, 2012, ISBN 978-0-470-54281-1.

http://www.destinationcrm.com/Articles/Columns-Departments/Connect/Really-Happy-in-Real-Time-50530.aspx
http://www.destinationcrm.com/Articles/Columns-Departments/Connect/Really-Happy-in-Real-Time-50530.aspx
http://www.destinationcrm.com/Articles/Columns-Departments/Connect/Really-Happy-in-Real-Time-50530.aspx

41

42]

[43]

[44]

[45]

|46]

47]

48]

[49]

[50]

[51]

52|

[53]

[54]

[55]

72

Miiller, M., Information retrieval for music and motion, ch. 4, Springer, New
York, NY, USA, 2007, ISBN 978-3-540-74048-3.

Oracle Inc., Java platform, standard edition 6 API specification, http://docs.
oracle.com/javase/6/docs/api/, 2011.

Pascual-Montano, A., Dimensionality reduction, Tech. report, Complutense
University of Madrid, Madrid, Spain, 2007.

Phillips, W. J., Wawvelets € filter banks course notes, Tech. report, Dalhousie
University, Halifax, Canada, 2003.

Ramirez Pozo, A. T., Measuring the performance of a classifier, ch. 11, Univer-
sidade Federal do Parana, Curitiba, PR, Brazil, 2009.

Ratanamahatana, C. A. & Lin, J. & Gunopulos, D. & Keogh, E. & Vlachos,
M. & Das, G., Mining time series data, ch. 1, pp. 1069-1103, Springer, New
York, NY, USA, 2005, ISBN 978-0-387-24435-8.

Ruping, S., SVM kernels for time series analysis, LLWA 01 (2001), 43-50.

Salvador, S. & Chan, P., Toward accurate dynamic time warping in linear time
and space, 3rd Workshop on Mining Temporal & Sequential Data (2004), 561—
580.

Sateri, J., Sisdilmastoluokitus 2008: Sisdympdriston uudet tavoitearvot, Tech.
report, Sisdilmayhdistys ry., 2008.

Scholkopf, B. & Sung, K. & Burges, C. & Girosi, F. & Niyogi, P. & Poggio, T. &
Vapnik, V., Comparing support vector machines with gaussian kernels to radial
basis function classifiers, IEEE Transactions on Signal Processing 45 (1997),
no. 11, 2758 — 2765.

Shmueli, G., Predictive analytics in information systems research, Tech. report,
Robert H. Smith School of Business, University of Maryland, College Park, MD,
USA, 2010.

Skon, J-P. & Ronkko, M. & Raatikainen, M. & Juhola, M. & Framling, K. &
Kolehmainen, M., Research on computational intelligence for co-learning en-
abled healthy and sustainable housing, University of Eastern Finland, Kuopio,
Finland, Manuscript.

Smith, J. O., Mathematics of the discrete fourier transform (DFT), with audio
applications, 2 ed., W3K Publishing, 2007, ISBN 978-0974560748.

Staelin, C., Parameter selection for support vector machines, Tech. report, HP
Laboratories Israel, 2003.

Struzik, Z. R., The haar wavelet transform in the time series similarity
paradigm, Principles of Data Mining & Knowledge Discovery (1999), 12-22.

http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/

[56]

[57]

[58]

[59]

[60]

[61]

62]

63]

[64]

65]

|66]

[67]

73

Tappen, M., Lecture 6 - linear classification, Tech. report, University of Central
Florida, Orlando, FL, USA, 2010.

Theodoridis, S. & Koutroumbas, K., Pattern recognition, Academic Press,
Waltham, MA, USA, 2009, ISBN 9781597492720.

Verbunt, M. & Walser, A. & Gurtz, J. & Montani, A. & Schér, C., Probabilistic
flood forecasting with a limited-area ensemble prediction system: Selected case
studies, Journal of Hydrometeorology (2007), 897-909.

Vincent, P., The CEP market in 2011, http://www.thetibcoblog.com/2011/
03/04/the-cep-market-in-2011/, 2011, The TIBCO Blog.

Waisberg, 1., Fourier & beyond: The wavelet transform, Tech. report, Stanford
University, Stanford, CA, USA, 2011.

Wang, F. & Liu, S. & Liu, P. & Bai, Y., Bridging physical & virtual worlds:
Complex event processing for RFID data streams, Lecture Notes on Computer
Science, vol. 3896, 2006, Advances in Database Technology, pp. 588-607.

Weiss, G. M. & Hirsh, H., Fvent prediction: Learning from ambiguous ezamples,
Tech. report, Rutgers University, Department of Computer Science, 1998.

Wenjian, W. & Liang, M., An estimation of the optimal Gaussian kernel pa-
rameter for support vector classification, ISNN (1), Springer, New York, NY,
USA, 2008, ISBN 978-3-540-87732-5, pp. 627-635.

Xing, Z. & Pei, J. & Keogh, E., A brief survey on sequence classification, ACM
SIGKDD Explorations Newsletter 12 (2010), 40-48.

Yeganeh, B. & Shafie Pour Motlaghb, M. & Rashidib, Y. & Kamalanc, H., Pre-
diction of C'O concentrations based on a hybrid partial least square and support
vector machine model, Atmospheric Environment 55 (2012), 357-365.

Yu, L. & Liu, H., Feature selection for high-dimensional data: A fast
correlation-based filter solution, Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003), Washington, DC, USA, 2003.

Zhang, L. & Zhou, W. & Jiao, L., Wavelet support vector machine, Cybernetics
34 (2004), no. 1, 34-39.

http://www.thetibcoblog.com/2011/03/04/the-cep-market-in-2011/
http://www.thetibcoblog.com/2011/03/04/the-cep-market-in-2011/

	Abstract (in Finnish)
	Abstract
	Acknowledgements
	Contents
	Symbols and abbreviations
	Introduction
	Background
	Motivation for Predictive Event Processing
	Research Questions and The Scope of This Thesis
	Structure of This Thesis

	Complex Event Processing
	Events and Patterns
	Overview of a General Event Processing System
	CEP Engines and Processing Languages
	Applications of CEP

	Predictive Analytics
	General
	Combining CEP and PA
	Predicting with Time Series Classification
	Distance Based Time Series Classification
	Lp norms
	Dynamic Time Warping
	k-Nearest Neighbor Algorithm
	Learning Vector Quantization

	Feature Based Time Series Classification
	Wavelet Analysis
	Haar Wavelet Decomposition for Time Series
	Linear Classifiers
	Support Vector Machines for Linearly Separable Classes
	Support Vector Machines for Linearly Non-separable Classes
	Generalization of SVMs into Nonlinear Cases
	Using SVM for Time Series Analysis

	Parameter Selection and Model Validation
	Cross Validation
	Performance Measures
	Computational Performance

	Implementation and Experiments
	Case Study
	ASTEKA Project
	Test House and Sensors
	Test Data

	Implementation
	Data Structures
	Predictive Event Processing Network
	Data Flow and Performance Tuning
	Machine Learning Libraries

	MMEA Platform Architechture
	Technology Overview
	Integrating the Predictive Component

	Experimental Design
	Complex Event Definitions
	Selecting Parameters and Running the Tests

	Results
	Goodness Indicators
	Classification With DTW and kNN
	Classification with Wavelets and SVMs

	Computational Performance
	Discussion

	Conclusions
	References

