Solution Architect for Global Bioeconomy & Cleantech Opportunities

16.01.2016

Ivan Deviatkin

Doctoral student, Department of Sustainability Science, School of Energy Systems, Lappeenranta University of Technology Getting most out of the thermal drying of sewage sludge to stay within the planetary boundaries for the nitrogen cycle

Planetary boundaries

1.0-2.5 mg N/L – limit to prevent eutrophication.

To keep it such, the planetary nitrogen fixation boundary is set to 62-82 Mt N/year.

Currently, the fixation rate is 121 Mt N/year, where 82 Mt N comes from synthetic fertilizers.

Therefore, 20-26 Mt N from synthetic fertilizers should be avoided.

Where to get N, if not a synthetic one?

Stream	N content, mg/L
Liquid manure fractions	≈ 3,500
Digested manure	≈ 3,500
Organic waste	≈ 1,200
Reject water from WWTP	≈ 750
Industrial waste streams	*
Condensate from sludge drying	*

Great attention was drawn to N recovery from liquid flows neglecting direct recovery from gaseous flows!

van Eekert, M., Weijma, J., Verdoes, N., de Buisonje, F., Reitsma, B., van den Bulk, J., van Gastel, J., 2012. Explorative research on innovative nitrogen recovery.

Research idea (!) and questions (?)

(!) sludge drying and incineration is a common practice, so nitrogen recovery during thermal drying of sludge (and similar streams) was seen favorable.

(?) how much N is released from sewage sludge, digestate, and biosludge from a pulp and paper mill

- (?) what is the impact of T on the N release
- (?) which recovery methods could be practiced

(?) intensifying N release through condensate stripping

Nitrogen release during batch drying 1

Experimental setup on the Figure \rightarrow

Sewage sludge Digestate Biosludge Toikansuo WWTP, LPR Kouvolan Vesi Oy, Kouvola UPM Kymmene, LPR

Nitrogen species	Digestate	Exhaust fumes	Condensate
Total nitrogen (N _{tot})	Modified Kjeldahl test	n.d.	Nitrogen (total) cell test
Soluble nitrogen (N _{sol})	WE + Nitrogen (total) cell test	n.a.	n.d.
Ammonium (NH ₄ ⁺)	WE + Ion chromatography	n.a.	lon chromatography
Ammonia gas (NH ₃)	n.a.	FTIR	n.a.

Legend: a – vessel with sludge b – inlet pipe c – outlet pipe d – electric oven e – thermometer f – praparation unit g – Gasmet analyzer

Nitrogen release during batch drying 2

[l]

Nitrogen release during batch drying 3

Nitrogen release during continuous drying 1

Experimental setup on the Figure \rightarrow

Two (+1) tests. Feeding at 1.38 ± 0.17 kg/h. MC of raw sludge was $83.7\pm0.1\%$ and of dried sludge – $31.1\pm0.1\%$. Each experiment lasted for 8 hours.

Ammonia measurement at 2h, 4h, 5h, 6h, 7h, 8h. Acid traps for NH_3 capture. Ion chromatography.

Biochar was used for ammonia capture

arvi

Nitrogen release during continuous drying 2

General recovery methods

Adsorption on biochar: organic materials doped with N

Absorption:

- ammonium sulphate solution,
- ammonium nitrate solution,
- ammonium chloride solution,
- etc.

Aqua ammonia

Intensifying ammonia release

Thus, there is the need to release 30% N back for recovery!

arvi

Let us strip it!

What do we get after all?

Sludge is a reliable source of nitrogen as its amount is ever-growing worldwide.

When we incinerate sludge, we have a good possibility to recover nitrogen.

50-65% of soluble nitrogen is release as ammonia during the drying process.

Nitrogen released could be recovered by ad/absorption.

Moreover, great possibilities for symbiosis exist. The process could be retrofitted to:

- a sludge incineration plant to get nitrogen released;
- a WWTP for nitrogen stripping from condensate.

[l]

Future research needs

1. Technical study on recovery possibilities

2. Economical analysis

3. Environmental impact assessment

Solution Architect for Global Bioeconomy & Cleantech Opportunities

Thank you for your attention!

Questions?