

Nitrogen recovery from forest industry side streams

Kati Mustonen, Katja Viitikko

Mapping of P&P side streams

Pulp and paper process streams were mapped

- Biosludge was chosen for further investigation
- Biosludge contains nitrogen 3-5%, which is mainly organically bound and most of it is not readily available for the plants

Results

- Ductor: 20% of organically bound nitrogen was convert to ammonium nitrogen. The share of the transposition should have been higher to be able to see the respond in cultivation tests.
- Adsorption: ammonium nitrogen can be attached to solids by adding geopolymer

 Drying and the drying temperature: higher the end solid content, more ammonium nitrogen is lost

Methods tested

 Ductor – predigestion to solubilize organically bound nitrogen as ammonium nitrogen

Adsorption: powdered metakaolin-geopolymer to attach the ammonium nitrogen into solid fraction of the biosludge

 Influence of drying and drying temperature on nitrogen content in the biosludge

Conclusions

- The most reasonable source for nitrogen recovery or utilization is biosludge that is originated from waste water treatment plant.
- Ammonium nitrogen content is so low in the biosludge that its recovery exclusively is not reasonable
- Most valuable outcome would be to find out the cost efficient solution for solubilizing higher share of organically bound nitrogen into ammonium nitrogen.

Contact information

Kati Mustonen
UPM, Northern Europe Research Center
Side Stream Efficiency
kati.mustonen@upm.com

