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Weather dependency in power generation?

» |nstantenous
= Wind power
= PV
= Non-electric storage possible
= CSP
= Lag of hours
= Run-of-river hydro
= \Wave power
» Lag of days/months
= Reservoir hydro
= Peat
= Very long lag:
= Bioenergy
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Weather dependecy in energy consumption?

» |ag of minutes to hours:
= Electric heating and cooling
= District heating and cooling
= Lighting
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Weather dependency in other energy
production?

* Transport fuel production?

» Heat/steam generation for industrial processes?
» Production of space heating?

* Production of space cooling?
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Hydro _ _
1. Variable power generation 25%
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Hydro
2. Electrification of Transport
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Hydro
3. Electrification of Heat
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Residential, commercial & manufacturing fuel use in US /L
[Quads] vIr

25

Energy from petroleum for chemicals

Petroleum use in transport fuel production

Biomass energy use in wood, paper & pulp

Smelting with coal

Process heating
15 - 1

CHP and cogeneration

Conventional boiler fuels

Appliances, commercial
Appliances, residential
Water heating, commercial

Water heating, residential

Space heating, commercial
5
Space heating, residential
I Other non-process use
M Facility HVAC

M Other process use
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M Machine drive
Process cooling and refrigeration 10



Wind Power Forecasting—  ¥77
Why Is it Important

= Economics
= Better forecasts mean lower operating reserves
= | ower operating reserves mean lower operating costs
= Avoid penalties for bad forecasts
= Reliability
= Situational awareness for operators
= System positioning for ramping events
» Preparation for extreme events
= Market Operation

» Understand need for and provide incentives for the right market
products with high VG penetration

= Align market rules with forecasting capabilities

03/05/16 11



Summary balancing costs

Increase in balancing cost
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= Integration costs 0.5 — 4.5 €/ MWh up to 20 % penetration level
= Integration costs are challenging to estimate for a single part of

Experience from Denmark/Spain/NL, cost of balancing

from electricity markets for wind power producers
or not; assumptions on thermal power costs

iea wind
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Annual Operating Cost

Savings ($M)
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Yy

Load Wind day-ahead
day-ahead

CAISO, 2011 2,6 % 13,0 %
NYISO, 2010 3,6 % 11,9 %
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Source: Zieher, Lange, Focke 2015, "Variable renewable energy forecasting”
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Figure 9: Solar power forecast for two days based on weather dependent combination. The dashed red line is the combination forecast, the thin coloured lines

are single NWP models. The black line is the observed production. Source: energy & meteo systems.
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Previento
Physical Model:
= Spatial refinement
* Thermal stratification
= Site-specific power curve

» Forecast uncertainty

© energy & meteo systems

Yeuterday

Tomarrow Twe Days Ahead




Source: Zieher, Lange, Focke 2015, "Variable renewable energy forecasting”
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Figure 11: Benefit of shortest-term prediction based on real-time data in a difficult weather situation: the shortest-term prediction for 1 hour ahead (red line)
is far closer to the real production (black line) compared to the most recent forecast only based on meteorological forecasting data (green line). Source: energy

& meteo systems.
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Source: Zieher, Lange, Focke 2015, "Variable renewable energy forecasting”
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Figure 12: Increase of the forecasting error (RMSE / installed power) of a medium sized regional wind portfolio over the prediction horizon of 240 hours (10
days). For the first few hours the benefit of real-time production data leads to a small forecasting error. After 10 hours the forecasting error increases nearly

linearly. Source: energy & meteo systems.



Source: Zieher, Lange, Focke 2015, "Variable renewable energy forecasting”
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Figure 14: Regional smoothing effects, i.e. decrease of relative forecasting error for a regional forecast (aggregate) compared to single sites. For example, a fore-
cast for region with a diameter of about 900 km has an RMSE/installed power which is only 42 percent of that of a single wind farm. Source: energy & meteo

systems.



TO REDUCE THE IMPACT OF WIND AND PV EDF DEPLOYED WIND (2007) AND

PV (2009) FORECAST TOOLS

= Agregation at national scale reduces forecasts errors
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Source: Zieher, Lange, Focke 2015, "Variable renewable energy forecasting”

Time scale of forecast Area of application Stakeholder

Trading on intraday energy market

Control of curtailment due to negative

Shortest-term

(0-6h)

market price Traders
Correct activation of regulation power

(secondary and tertiary reserve)

Influence of VRE on market price Speculators

Balancing
Unit re-dispatch

Curtailment of power plants

Trading on day-ahead energy market

Participation in regulation market

Short-term Influence of vVRE on market price

Grid operators, load dispatch centers,
independent system operators

Traders

(6-48h) Unit dispatch
Load flow calculations

DACF congestion forecast

Grid operators, load dispatch centers,
independent system operators

Day-ahead planning of maintenance

Trading on long-term markets

VRE operators

Traders

Medium-term 2DACF congestions forecast

(2 - 10 days)

Week-ahead planning

Grid operators, load dispatch centers,
independent system operators

Medium-term planning of maintenance

VRE operators



Megawatts
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Buildings and built-up areas in weather
models
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Contents

Uses of urban forecasting
The urban forecasting system
Examples of output

Further reading
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CF: Towns

Temperature (urban heat island)
Heating demand, cooling demand
Conditions of roads and pavements
Rainwater sewage loading

Freezing and thawing of soil

Local energy production: Solar, wind

Urban planning, (e.g. building density, vegetated roofs) and
local interpretation climate scenarios

3/25
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Air-surface interactions in NWP and climate models

Snow processes :
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The urban system

CF: Towns
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Roof

wall

e Conceptual model: array of "canyons”
o Horizontal scale upwards of a city block

Road

o All buildings have the same height and width located along

identical roads without intersections.

o All canyon orientations exists with the same probability.
Orientation effects for roads and walls can be taken into

account.

CF: Towns
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Roof

=

wall
e Conceptual model: array of "canyons" Road
¢ Realization

e The urban area is represented by three surfaces representing
roofs, walls and roads, all having separate energy budgets
accounting for radiation, turbulent fluxes of sensible and latent
heat, and conduction into the materials

e Snow may exist on roofs and roads

e Vegetation can be present in the roads

o Key parameters depend on canyon shape and construction
materials.

CF: Towns 7/25
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CF: Towns

Roof

wall [f|h

Road

Sky view factor of roads and walls:

Y, = [(h/W)Z—H]”2 —h/w

¥, = 3{h/w+1—[(h/w)2+1]""*}/(h/w)

Shadow effects of direct short wave radiation accounting for
orientation

Infinite number or reflections of scattered short wave radiation

Trapping of long wave radiation accounting for one
re-emission

8/25
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Controlled by aerodynamic resistances G I RREEREE
depending on roughness, wind speed, and indusy

stability RES,

Hg = Cppa(Tr — Ta)/RESR

LER = Lpa[qs(Tr, ps) — Ga]/ RESR o .".-,mc

Hr = Cppa(Tr — Tean)/ RES; T e

LE; = Lpa[qs(Tr, pS) — ean] / RES; f?%

Hh = Cpp a(TW N Tcan)/RESW a)  Aerodynamical ;eslstrances ) b)  wind profile

Hiop = CppalToan — Ta) / RESiop Figure 3. Scheme options for: (a) acrodynamic resistances: (b) wind profile within and above the

canyon.

LEiop = L(?a(%an - Qa)/RESmp

CF: Towns 9/25
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Town vegetation

Nature
Town Nature
Buidngs
Roads
Gardans

Fig. 1. Comparison of tiling approaches applied in TEB-ISBA (top)
and TEB-Veg (bottom) to compute surface fluxes for a SURFEX's
erid point containing pervious and impervious covers.

CF: Towns
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o Traffic: Prescribed, released into the canyon
e Industry: Prescribed, released into the atmosphere above
e Building space: Modelled, released through roofs and walls

CF: Towns 11/25
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e Option 1:
Temperature, humidity and wind in the canyon can be solved
diagnostically, assuming fluxes to be in balance

e Option 2:
Prognostic temperature, humidity and wind profiles in the
canyon controlled by a turbulence closure model

CF: Towns 12/25
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Buildings

CF: Towns

® Simple:
Heat conduction through walls and

roofs |
Prognostic internal temperature

Energy used for heating, simple

® Building Energy Model (Optional):
- Detailed HVAC system (heating,
cooling)

- Ventilation and infiltration
- Solar radiation through windows

- Vegetated roofs
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e ECOCLIMAP data base (Default)
More than 550 scenes, each with it's own mixture of plant
physical types and types of built-up areas.

e Set by user

CF: Towns 14/25
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Helsinki area in ECOCLIMAP

Urban covers

| | ‘ [
Different types of urban covers: Residential, Industrial and commercial, Parks and‘sp;orts I

facilities, Air ports, ports, rails, Mineral extraction sites, [ [ [l |
“”“HHH ‘

CF: Towns 15/25
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Street-level temperature on a hot summer’s day

12 August 2015 12 UTC: Screen temperature

Wy

Different types of urban covers: Residential, Industrial and commercial, Parks and s ports ‘ ‘ [

facilities, Air ports, ports, rails, Mineral extraction sites,

CF: Towns
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Street-level temperature on a cold winter's morning\

07 January 2016 07 UTC: Screen temperature Urban covers

1]

Oﬂﬁ [l
[
facilities, Air ports, ports, rails, Mineral extraction sites,

CF: Towns
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Daily mean anthropogenic heating Wm™* 7 Jan. 2016 Daily mean domestic heating per building volume Wm™* 7 Jan. 2016
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Left.: Daily mean energy usage for domestic, heating, traffic, and industry per town unit
area during 7.1.2016 06UTC - 8.1.2016 06UTC

Right.: Daily mean domestic heating per unit building volume during 7.1.2016 06UTC -
8.1.2016 06UTC
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B. Bueno et al.: De: and ion of a ing energy model 443
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Fig. 6. Daily-average heating (top) and cooling (bottom) energy  Fig, 8, Daily-average cooling energy consumption per unit of floor

demand per unit of floor area for winter and summer calculated by greq (top) and waste heat emissions per unit of urban area (bottom)
the coupled scheme and by BEM-TEB for the dense urban centre of caleulated by the coupled scheme and by BEM-TEB for the dense
Toulouse. urban centre of Toulouse.
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9 Volumetric heating and cooling, July 2011 - Dec 2012

+ + Hourly volumetric heating
-1+ « Daily volumetric heating

+ « Hourly volumetric cooling
Dayly volumetric cooling

Wm™

0.
=30

P
=10
Air temperature above roof tops

30

Default BEM settings

Urban characteristics from ECOCLOMAP-II

Meteorological forcing observed at Hotel Torni, July 2011- Dec 2012
CF: Towns

21/25



% FINNISH METEOROLOGICAL INSTITUTE

Temperature inside roads
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Default BEM settings
Urban characteristics from ECOCLOMAP-II
Meteorological forcing observed at Hotel Torni, July 2011- Dec 2012
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Input

Output

a: WEATHER
e NWP-model, or

e Climate model, or

e Observations

b: TOWN PROPERTIES

e automatically from
ECOCLIMAP data base, or

e specified by user

CF: Towns

Temperature of air and in
structures

Water and snow on
surfaces, generation of
runoff

Energy balance of
surfaces, including
radiative fluxes

Energy used for heating
and cooling of building
space

etc
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CF: Towns

[§ P Karsisto et al.

Seasonal surface urban energy balance and wintertime
stability simulated using three land-surface models in the
high-latitude city Helsinki.

Quart. J. Roy. Meteor. Soc. 142, 401-417, 2016

V. Masson et al.

The SURFEXv7.2 land and ocean surface platform for coupled
or offline simulation of earth surface variables and fluxes.
Geosci. Model Dev. 6, 563-582, 2013

B. Bueno et al

Development and evaluation of a building energy model
integrated in the TEB schem.

Geosci. Model Dev. 5, 433-448, 2012
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For Further Reading |

[ V.Masson

A physically based scheme for the urban energy budget i in
atmospheric models.

Bound. Layer Meteor. 94, 357397, 2000

CF: Towns
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Pros&Cons of Open Data,
what else you might need and what would be the costs

FMI Open Data Portal

FMI Open Data Portal follows INSPIRE requirements.

' Data
odels

The very same data portal works as Open Data and
INSPIRE portal.

@ FINNISH METEOROLOGICAL INSTITUTE
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Pros&Cons of Open Data,
what else you might need and what would be the costs

Registration is required to use View and Download
Services

. Working email address is the only mandatory
information

.~ After registration the user gets an AP| key which have to
be added into all requests

GET parameter rmi-apikey=_..&
Header mi-apikey; ...
Part of url nttp://wms fmi fiffmi-apikey/. . /wms?

One can create several AP| keys with one email

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,
what else you might need and what would be the costs

With one APl key it's allowed to

If all observations from one time step is calculated to as one,
little over 17 000 new data sets are published daily

So, with one API key it's allowed load everything once

View service can be used for testing but can not be used as a
back end for popular clients

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,

what else you might need and what would be the costs

* FMI Open data https://ilmatieteenlaitos.fi/avoin-data

limatieteen laitoksen aineistoista avattu:
saa-, meri- ja ilmastohavaintoja

saatutkakuvia ja salamahavaintoja

kansallisen saaennuste- ja merimallien tietoja.
Reaaliaikaiset havainnot:

Asemakohtaiset havainnot (esim. tuuli-, lampotila-, kosteus-, ilmanpaine-, sade-,
merivedenkorkeus- ja aallokkohavainnot)

Saatutkakuvia ja salamoiden paikannustiedot Suomen alueelta
Havaintojen aikasarjat:

liImastohavainnot vuodesta 1959 (asemakohtaisia paiva- ja kuukausiarvoja)
Meriveden korkeushavainnot vuodesta 1971

Aaltohavainnot vuodesta 2005

FINNISH METEOROLOGICAL INSTITUTE
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Pros&Cons of Open Data,
what else you might need and what would be the costs

* FMI Open data https://ilmatieteenlaitos.fi/avoin-data

Ennustemallit:

Kansallisen saamallin tuorein ennuste, joka sisaltaa mm. pintasaatietoja tunnin valein 2
vuorokauden ajalle

Merimallien (meriveden korkeus, virtaus ja aalto) tuoreimmat ennusteet

lImastonmuutosskenaariot 30-vuotisjaksoille 2010 - 2039, 2040 -2069 ja 2070-2099
(keskimaaraiset lampotilan ja sateen muutosarvot)

STUK datasets included

OPEN DATA is available on best effords basis => there may be
interruptions in operations for several days and/or missing data

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,
what else you might need and what would be the costs

FMI Closed Data interface (CD)

Technically identical to OD
Same API Key can be used both for OD and CD
Basic Contents identical to OD

Extra data sets on customer demand for example ECMWEF
forecasts (upto 14 days)

SLA per customer has not used until so far, but
Internal target availability 99.95% (last 3 months 99.4% ® )

=> 24/7 operations, considerably more computer power that on
oD

Number of requests per customer configurable (and controlled)

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,
what else you might need and what would be the costs

Closed Data interface (CD) HARMONIE 29APR2016 03 UTC. Temp inversion strength [C 100m™]
o ] . 29APR2016 04:00 UTC (aro38h12,2.5km)
* All data, which is available on OD is ) i Bt
free .. ¢ e
B gl '*.a:“* . B |

* Extra data sets have price tags -
especially data sets, which come
from other sources than FMI

 Examples of extra data sets:
e ECMWEF 14 day forecasts

* Special postprocesses forecast
model data such as probability
forecasts, special parameters like | |
height of inversion, lightness etc. s

e (%] (] N =23 m
e N [ + P [as]

T_inv_min:
0
T_inv_max:
10.5773

FINNISH METEOROLOGICAL INSTITUTE
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Pros&Cons of Open Data,
what else you might need and what would be the costs

max req/pv
200000
300000
400000
500000
600000
700000
800000
900000
1000000

max req/s

3
6
8
10
12
14
16
18
20

Closed Data interface (CD)

* Configurable max requests per day
and per second are basis of the
pricing

* This means in practise that the
customer could base all data
requests for their application from

FMI CD. No need for own data
interface

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,
what else you might need and what would be the costs

Class  max req/day
200000
300000
400000
500000
600000
700000
800000
900000

1000000

O 00O NO UL B WN -

max req/s

3
6
8
10
12
14
16
18
20

Closed Data interface (CD)

* Monthly prices ranging from
hundreds to several thousands €

* |f either of max /day or per second
requests are exceeded during one
month, pricing will be applied
according to the higher request
class

 Customers, who need data
reqularly and reliably, but only
small data sets per day will be
considered separately

% FINNISH METEOROLOGICAL INSTITUTE



Pros&Cons of Open Data,
what else you might need and what would be the costs
For contact:

Pirkko Pylkko
Pirkko.pylkko@fmi.fi
Gsm: 050 3401328

Finnish Meteorological Institute
Customer Services

Security
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