

Solution Architect for Global Bioeconomy & Cleantech Opportunities

27.1.2017 Tommi Vuorinen Harri Joki VTT Technical Research

Centre of Finland

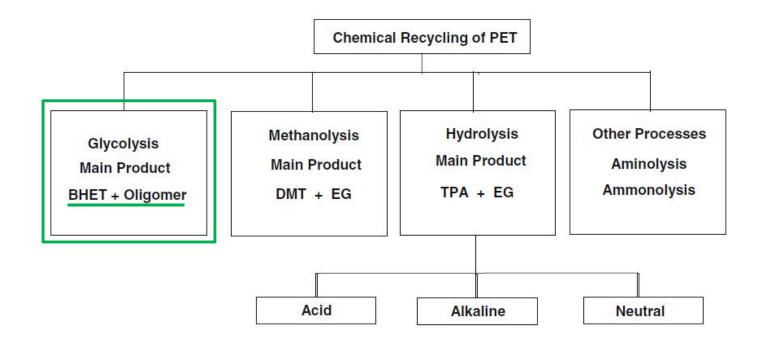
Report: PET glycolysis

ARVI Theme plastic and rubber

Subtask 4.1.1

Brief Literature review

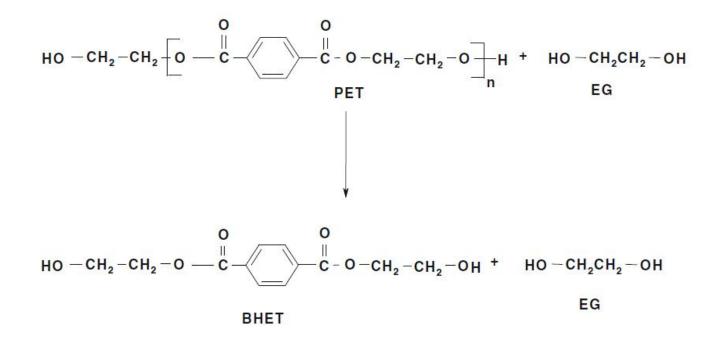
Experimental work and results



General Info on Poly(ethylene terephtalate)

- Poly(ethylene terephthalate) (PET) is formed by the reaction of terephthalic acid (TPA) and ethylene glycol (EG) or by the transesterification of dimethyl terephthalate and EG.
 - Starting materials are usually
 - BHET + EG or
 - DMT + EG
- Mechanical recycling may significantly decrease the PET properties.
- PET is a condensation polymer and thus it is possible to depolymerize it into its monomers and further depolymerize it to pristine polymer.

Chemical recycling routes for PET


[L] [

Glycolysis: Basic Information

- Glycolysis is chemical degradation of, e.g., polyester by glycol molecules in presence of trans-esterification catalysts, e.g., metal acetates. In the glycolytic reaction, ester linkages are broken and replaced with hydroxyl terminals.
- Most frequently used glycols are: ethylene glycol (EG), diethylene glycol (DEG), propylene glycol (PG), and dipropylene glycol (DPG).
- Reaction temperature range is 180 250 °C
- Reaction time range in 0.5 8 h
- Reaction pressure range 1 8 atm
- Catalyst: Zinc Acetate has been reported to be the most effective.

CGlycolysis: PET Depolymerization byEthylene Glycol

Glycolysis: Products

- The rection products of glycolysis are depending on the glycol used and reaction conditions.
- When EG is used and reaction is let to reach the end, the product is BHET.
- When PG is used the substitution of PG will take place and the products will have both 2-hydroxypropyl and 2hydroxyethyl terminals. The product will be "BHE/PT", i.e., a mixture of variants of bis(2-hydroxyethyl / 2-hydroxypropyl terephthalate).
- When the reaction has not reached the end or when equilibrium is formed, the products are polyester polyols with different lengths of ester oligomers including, for example 2 to 5 of primary polyester dimers (= dimer of terephthalic acid and ethylene glycol).

[l]

Experimantal: PET glycolysis setup

- Materials from Ekokem company:
 - Approx. 20 g of PET
 - 150 g of ethylene glycol (EG) or propylene glycol (PG)
 - Approx. 120 mg of zinc acetate dihydrate (0.5 w-% of ZnAc₂ for PET)
- Reaction vessel (Fig. 1):
 - 0.5 liter glass reactor with four neck cover equipped with an Allihn condenser and PTFE mixer; heated with an electromantle.
- Reaction conditions:
 - Temperature was approx. 190 °C (the electromantle was controlled with a thermostat set to 250 °C)
 - Reaction time was 3 5 hours at normal pressure.

[[]]

Summary of reactions

Reaction code	PET	Glycol and catalyst	Reaction temperature and time	Reaction products
EG1	Cleaned mixed color PET, 20 g	EG, 150 g ZnAc, 120 mg	190 °C, 5 h (EG was not boiling)	Solution and solid residual. According to FTIR and DSC, the solid residual is BHET.
PG1	Cleaned mixed color PET, 20 g	PG, 150 g ZnAc, 120 mg	188 °C, 5 h (PG was boiling)	Solution without residual. After distillation, a liquid/waxy residual with high viscosity was obtained. According to FTIR and DSC the residual was a mixture of polyester polyols with $1 - 4$ repeating polyester dimers.
PG2	Cleaned colorless rPET, 20 g	PG, 150 g ZnAc, 120 mg	188 °C, 3 h (PG was boiling)	Solution without residual. After distillation, a liquid/waxy residual with high viscosity was obtained with same properties as that from PG1. After water precipitation, a solid product with same properties as the distillation residuals from PG1 and PG2.
PG3	Non-cleaned mixed color PET from "SUM", 23 g	PG, 150 g ZnAc, 123 mg	188 °C, 5 h (PG was boiling)	Solution without residual. After water precipitation, a solid product with same properties as the distillation residual from PG2.

Summary

Summary

- Glycolysis of PET with EG resulted in a solid residual and reaction solution.
 - The FTIR and DSC analysis of the residual are supporting that the solid residual is BHET.
- Glycolysis of PET with PG resulted in almost no solid product. In the reaction solution there was a product component which was insoluble in water → precipitation took place when excess of water was added into the reaction solution.
- In addition to precipitation by water, reaction solutions were distilled in vacuum with rotary evaporator. The product was a sticky polyester wax with high viscosity and distinct odor.
- The FTIR analysis suggest that the water insoluble component and the distillation residual are similar compounds: polyester waxes with hydroxyl terminals, polyester polyols.
 - The gravimetric measurements suggest that the wax has approx. two repeating unit (dimer) of PET as its average molecule size.
- The DSC measurements reveal similar irreversible melting features for both distillation residual and water precipitates.
- It seems that the reaction product can be separated from the solution either by water precipitation or by distillation.
- The impurities had very small effect on the glycolysis reactions made in this project (PG1, PG2, and PG3).

Conclusions

- The reaction between cleaned PET and EG resulted in solid partly crystalline residual which consists most likely of BHET
- The reactions of different PET fractions with PG produced monomeric 2-hydroxypropyl terephthalate derivative and additionally longer polyester polyols with approximately 2 to 3 repeating polyester dimers and 2-hydroxypropyl terminals.
- In the reactions, the quality of PET starting material had only very small effect on the reaction and its products.

Future sights

- Next steps to proceed from PET glycolysis
 - Optimization of reaction conditions
 - Temperature, pressure, time
 - More define reaction products
 - Purity and separation
 - Scalability
- Possibilities for scale-up, cost calculation / feasibility study
- Comprehensive study on the possible uses of reaction products as recycled raw materials for the manufacture of:
 - unsaturated polyester
 - polyurethane
 - epoxy resin
 - alkyd resin
 - vinyl ester resin

