
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Weiming Wu

Design and Implementation of

a Shared Task Queue Groupware

Master’s Thesis

Espoo, September 15, 2015

Supervisor: Docent Tomi Janhunen

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Weiming Wu

Title:
Design and Implementation of a Shared Task Queue Groupware

Date: September 15, 2015 Pages: 88

Professorship: Theoretical Computer Science Code: T-119

Supervisor: Docent Tomi Janhunen

Instructor:

Cooperation between workers in the same company or several companies has
become increasingly important nowadays. The cooperation on some task usually
involves sharing information about the following steps involved in the task as
well as negotiation between workers who are considered to form a group. There
is already software for helping people to work together and program components
that can support cooperation in a particular application. Typically, they are
either too specific for a certain task or too complex to configure.

In this thesis, we design groupware for handling task queues within and between
companies. The groupware o↵ers a protocol for workers in the same company
to work together and to handle tasks in the shared queue. It also supports
cooperation between workers in di↵erent companies. The workers cooperate in
an asynchronous way but see the updates of the task queue state in real time.
Information about the shared task queue is made consistent across all clients who
may be physically distributed.

The thesis also compares di↵erent ways to design groupware that implements the
shared task queue. A concurrency control algorithm for the application is adopted
from literature and implemented. Finally, the correctness of concurrency control
algorithm is assessed by developing a formal model in the Promela language and
by examining the state space using the Spin model checker.

Keywords: computer supported cooperative work, distributed systems,
cooperation, software, groupware, concurrency control, archi-
tecture

Language: English

ii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor
Docent Tomi Janhunen for the continuous support of my thesis writing. His
guidance helped me in the writing of this thesis and his rigorous working
attitude gave me the best lesson in my working attitude.

Besides my supervisor, I would like to thank Tommi Junttila who helped
a lot in my thesis writing and gave me an essential favor for working out the
algorithm in this thesis.

My sincere thanks also goes to Assistant Professor Ari Serkkola for of-
fering me the opportunities to write my thesis in his group and leading me
working on diverse exciting projects.

I will never forget to thank my fellow colleague Abel Terefe, who has
worked with me together in implementing our project systems and also com-
panied me through the long period of thesis writing.

And my friends, for pointing out the lights in my future life when I feel
mixed-up about my future, reminding me of pressure when I forgot moving
on and giving me a hand when I got into di�culties.

Last but not least, I would like to thank my parents for trying to support
me with the best they can do all these years and my girl friend for giving me
the best spiritual supporting.

Espoo, September 15, 2015

Weiming Wu

iii

Abbreviations and Acronyms

CSCW Computer Supported Cooperative Work
HTTP Hypertext Transfer Protocol
URL Uniform Resource Locator
URI Uniform Resource Identifier
REST Representational State Transfer
JSON JavaScript Object Notation
OT Operational Transformation
GOT Generic Operational Transformation
AJAX Asynchronous JavaScript and XML
HTML HyperText Markup Language

iv

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Structure of the Thesis . 2

2 Background 4
2.1 Groupware Systems . 4

2.1.1 Groupware System as a Research Field 5
2.1.2 Requirements of a Groupware 7
2.1.3 Challenges in Groupware Design and Implementation . 9

2.2 Collaborative Application Approches 11
2.2.1 Collaboration Transparency 11
2.2.2 Collaboration Awareness 12

2.3 Groupware Architectures . 13
2.3.1 Centralised Architecture 13
2.3.2 Replicated Architecture 14

3 Project Requirements 16
3.1 RESTful API . 16
3.2 O✏ine Operation . 18
3.3 Late Joining Users . 19
3.4 Non-blocking IO . 20
3.5 System Scalability . 22
3.6 Real-Time Cooperation . 23
3.7 High Availability . 24

4 System Architecture 26
4.1 Components . 27
4.2 Centralised Architecture . 29
4.3 Replicated Architecture . 32
4.4 Combined Architecture . 36

v

5 Concurrency Control Algorithm 40
5.1 Operational Transformation Model 41

5.1.1 Challenges in Concurrency Control of Groupware . . . 41
5.1.2 Operation Transformation Algorithm 43

5.2 Centralised Operational Transformation 47
5.2.1 Transformation Matrix 47
5.2.2 Auxiliary Operations 49
5.2.3 Adopted Operational Transformation Algorithm 50

6 Implementation 54
6.1 Distributed Group Task Queue Overview 54
6.2 Server Side Component . 56
6.3 Client Side Component . 58
6.4 Communication API Component 59

7 Testing and Evaluation 61
7.1 Concurrency Control Verification 61

8 Conclusions 67
8.1 Conclusions . 67
8.2 Future Work . 70

A Promela Code for Evaluation 75

vi

Chapter 1

Introduction

By the development of information technology, computers have become in-
volved in many aspects of our life, especially in our working life. Over the
years, computers in companies have been o↵ering various kinds of support,
in document management, presentation, employee management, storing sys-
tem, and so on. The use of computers has greatly eased the way people
work and improved the productiveness of a single employee in a company.
Last decade has witnessed a huge economical growth, partly because of the
involvement of the information technology in working environments [25].

As the technologies continue to progress, software developers accumu-
lated more and more experiences in software design and implementation.
The computer software is also becoming increasingly convenient and pow-
erful. Besides supporting the work of single employees, computer software
nowadays focuses more on supporting collaborative work [32]. Such software
is called collaborative software or groupware. The most popular groupware
for collaborative work would be the email system, for message transmission
between users [12]. Other groupware include the online shopping system,
chat software, and online conference system. The most popular and success-
ful recent groupware system might be the Google Document, a groupware
used for online text editing by a group of users.

However the development of groupware is far more complicated than the
building of single-user applications. The groupware would involve several
users, usually distributed in di↵erent computers and in various physical loca-
tions. Each user will only know the situation of himself and conflicts between
the users would be very common. A groupware is considered useless when
the conflicts between users can not be solved [18, 20].

In this thesis, we aim at presenting a software solution for a shared
task queue application. The shared task queue application is a groupware
system where users can add element, i.e. tasks into the queue, remove items

1

CHAPTER 1. INTRODUCTION 2

from the queue, and modify the items in the queue. The queue is shared be-
tween all users and the content of the queue should be consistent when viewed
by di↵erent clients. The application needs to be highly interactive, updates
should be feasible in real-time and the clients should be highly distributed.

To o↵er a software solution for this groupware application, the thesis
should address several problems. Firstly, we intend to find a concurrency
control model for our shared task queue groupware. As it is the case
in all groupware applications, concurrency control models form a necessary
part in designing the application. Though traditional concurrency control
methods have been researched for several decades, they might not be appro-
priate in the situation of groupware application. Also, although concurrency
control problem has been addressed in every groupware application that has
been developed, concurrency control models have to be adopted to the needs
of each unique application. So, to present a software solution for our group
shared task, we need have an eye on the concurrency control models in group-
ware applications [18].

Secondly, we target at designing the architecture of the groupware
application. Architecture design is necessary in every software application,
but architecture in groupware application is more important. It will a↵ect
the way the components in the application are deployed and also have pro-
found e↵ects on the user experience of the user interface. Most importantly,
it almost decides how the concurrency control is going to work and how com-
plicated it would be [15]. So, to o↵er a solution for the groupware application,
we need to research and compare the architectures that can be applied to
our application.

1.1 Structure of the Thesis

The rest of this thesis is structured as follows. In Chapter 2, we give an
overview of literature essential for the groupware design, including group-
ware system definition, general approaches for groupware solutions, system
architectures and concurrency control algorithms contained in groupware.
Chapter 3 will present an introduction to the key features and the require-
ments for the shared task queue application. In Chapter 4, we document the
architecture designed for the group task queue application and discuss the
major architectural decisions that were made. Chapter 5 describes the imple-
mentation of the concurrency control algorithm and contains some discussion
about the algorithm selection. Then in Chapter 6, the implementation de-
tails of the whole system are presented. The following chapter, i.e., Chapter
7 will present the evaluation in the correctness of the concurrency control

CHAPTER 1. INTRODUCTION 3

algorithm. Finally, Chapter 8 concludes the thesis.

Chapter 2

Background

Groupware applications are quite unfamiliar compared to single user appli-
cations. In this chapter, we will first introduce the concepts of a groupware
system and then explore the ways developers usually choose to design how
a groupware application should work. Finally an introduction to groupware
architecture will be presented.

2.1 Groupware Systems

By the development of our society, the tasks people need to perform become
increasingly complex. Software has long been a solution for using comput-
ers to support finishing complicated tasks, which greatly frees people from
doing large amount of tedious repeated work. However, computers’ pow-
erful processors and fast memories make them so adequate in performing
those repeated task that soon one witnessed a saturation in the need of more
powerful processors and more advanced memories. As a result, the rapid
development of computer hardware in the last decade has had little influence
on the development of computer supported repeated work [19]. At the same
time, the trend of work also changed greatly. Modern jobs require more so-
cial skills and cooperation. The complexity of modern jobs is featured by
complex problem solving and decision making activities, rule interpretation,
cooperative work processes, and so on. The increasing demands for flexibil-
ity, production time and complexity in work itself make modern jobs involve
an inescapable aspect of contingency. Also, as the development of industries,
the division of work is never more detailed than nowadays, which makes it
necessary that large amount of people with di↵erent competence are involved
in the same task. So, there is an huge requirement of cooperation in modern
jobs. Moreover, the ways people choose to work are diverse. There are ideas

4

CHAPTER 2. BACKGROUND 5

like adding more flexibility to working hours, making many people choose to
work at home for a certain day rather than working in the company o�ce
everyday. And, due to the trend of globalization, people involved in the same
task may be located in di↵erent parts of the world. As a result, the means
to support cooperation are necessary. All the above described requirements
call for the development of cooperative work arrangements. Cooperative
work arrangements require the di↵erentiation and combination of special-
ities and techniques, mutual critical assessments, and the combination of
perspectives. Such arrangements include meshing, allocating and scheduling
all involved actors’ activities and resources, the complexity of which will in-
crease tremendously as the number of people involved in increases. Thus,
using computer for supporting cooperative work arrangement becomes nec-
essary [10, 19, 23, 30]. These reasons stimulated the research of Computer
Supported Cooperative Work (CSCW) for the last decade. Computer-based
support for cooperative work can o↵er better communication facilities, which
will address the geolocation problem and improve monitoring methodology
and awareness mechanisms for collaborating people. Also, with techniques
such as concurrency control and scheduling algorithms, the complexity of
activity coordination can be greatly reduced.

2.1.1 Groupware System as a Research Field

Groupware is a type of software that is designed to support collaboration,
within and between companies. The goal of such software is to help peo-
ple participating in the same task work together e�ciently and cooperate
smoothly, regardless of various competence and geographical location of the
participants. The most common experience of using groupware might be the
use of e-mail, where people are exchanging information in an unstructured
way [8, 19]. Other groupware packages that might be familiar to people
are Lotus Notes, Microsoft Exchange, or Google Document. But what is
the specific definition of groupware? Even though groupware has developed
greatly in the last two decades, the definition of groupware is still in confu-
sion and debate. The term groupware was first proposed by Peter and Trudy
Jonson-Lenz, on their research notes, in October 4, 1978 and published the
first definition as “intentional group processes plus software to support the
group” in [24]. Later, in 1988, Peter and Trudy Jonson-Lenz gave a more
detailed definition in [23]. In this definition, groupware is a generic term for
specialized computerised aids that are designed for working groups. It also
specified that groupware can involve software, hardware, services, and/or
group process support. However, this definition excludes software that is
not designed for the purpose of collaboration, such as e-mail. In 1991, Ellis

CHAPTER 2. BACKGROUND 6

gave a broader definition as “computer-based systems that support groups
of people engaged in a common task (or goal) and that provide an interface
to a shared environment” in [16]. Even broader groupware definitions can be
found in [30] and [10].

Various definitions imply that groupware may be interpreted di↵erently
by various people. Researchers have been arguing a lot about what should
be considered as a groupware in [1, 17, 19], and the controversial opinions
vary a lot. However, all definitions emphasise the support of collaboration.
Groupware emphasizes the use of computers to facilitate human interaction
[16], which implies the users of the software work together. The goal of
groupware is to solve problems for working groups in communication, collab-
oration, and coordination, which are also the three fundamental elements of
human interaction.

The research on groupware has also been considered as a problem of
system design. In [19], Grudin suggests that groupware should stress the im-
portance of “workplace democracy”, though this might not be appropriate
in all developing processes. So-called Participatory Design has been used in
the design process of groupware applications, but people are more focusing
on the challenges related to sociology when design a groupware application.
In [22] Hughes et al. argue that “A new theoretico-empirical terrain is being
formed as much in the sociology of work and organisations as elsewhere, and
the interdisciplinary confrontations invoked in CSCW can be a formative in-
fluence”. The sociological approaches focus on techniques for analysing the
cooperation itself and emphasise a deeper understanding of the work and a
new aspect of viewing the work, which is more tightly related to the coop-
erative software design compared to traditional systems design approaches.
Schmidt and Bannon [35] even proposed as the definition of groupware that
the building of information systems supporting cooperative work should fo-
cus on understanding the nature of cooperative work. This basically defined
that the research field of groupware is devoted to exploring and support-
ing cooperative work arrangements’ requirements. Thus, groupware research
area is basically a design oriented research area.

The complexity of designing a groupware application is another research
problem. Cooperative work is essentially distributed and various distributed
factors cause a variety of concerns related to collaboration arrangements.
The design process of a groupware is tightly related to the distribution of
collaborative activities, i.e., time and space, the number of participants, the
specialization of participants, the interdependence of di↵erent distributed
parts, and the uncertainty degree of the work. The complexity of coopera-
tion arrangements will increase as the distributed properties of cooperative
work increases. The complexity grows drastically when collaborative work in-

CHAPTER 2. BACKGROUND 7

volves multiple actors, di↵erent actors are responsible for the various aspects
of the work and the interdependencies among those aspects are strong. The
situation is even worse in software design, as the interdependencies among
each aspect are invisible during software design [5, 7]. The traditional strat-
egy for handling these complexities is to divide the cooperative activities into
a tree like hierarchy, in which the tasks are defined and processed from top
to bottom and finally the divided atomically fragmented tasks are addressed
sequentially. Due to the unavoidable invisible interdependencies among those
atomic fragments, multiple levels of management are required by this strat-
egy, which will collapse in complicated working fields.

2.1.2 Requirements of a Groupware

Cooperative work involves multiple participants and the cooperation between
the participants is an essential part to fulfil the task. As has been illustrated
above, the cooperation arrangement task is complicated in most cooperative
works. As pieces of groupware are applications used to o↵er computerised
support to cooperation, groupware technologies o↵er features to solve social
aspects of teamwork. The features of a groupware may have a strong e↵ect
on the team’s cooperation e�ciency, collaborative work result, and even the
behavior or user experience of each individual inside the team. According to
[15, 16, 18] several requirements of the groupware, from psychological, social,
and cultural aspects, can be considered as essential parts to judge whether a
groupware is successful or not.

Appropriate user interaction handling is the first requirement of
groupware. Since groupware is designed to solve cooperative work problems,
the interaction between users and the application is also in a form of cooper-
ation. Di↵erent from the way that people interact with computers in single
user applications, the interactive environment of groupware has certain new
interaction requirements. Depending on the specific use cases, the interaction
between team members can be synchronous or asynchronous. Synchronous
way of interaction treats every interaction with the groupware by the team
members as a sequence. The operations are handled one by one and the
processed result can be seen immediately. While in asynchronized way of
interaction, the interaction with the groupware by the team members may
be processed at the same time. Multiple operations are supported in a way
that no members of the team are blocked in waiting for processed results.
Interaction in groupware is also treated in an implicit or explicit way. In an
implicit way of interaction, the team members can treat the application as an
single-user application and ignore all others. The interaction of other users
in the same team will not a↵ect your operations or you can ignore others’

CHAPTER 2. BACKGROUND 8

operation. In explicit way of handling interaction, the interactions of oth-
ers in the team are direct and one user’s next operation is based on others’
operations.

The second requirement is handling coordination among users in

the same team. As a solution of cooperative work, the support of coop-
eration in groupware mainly lies in the handling of coordinations. It can
be treated as an implicit way of communication between the users in the
same group. The coordination method between group members varies from
application to application. The intensiveness of the coordination is strongly
a↵ected by the size of the group doing the same task. Generally speak-
ing, simple tasks with a small group usually do not need much coordination
while complicated tasks with a large group will require intensive coordina-
tion support from the groupware. Also, the way that users coordinate is
strongly connected to user’s experience of certain applications. For exam-
ple, in Google document editing, every group member can input their own
words into the text without much e↵ect from other users. While in Google
Conference, only one user’s screen can be seen by all others.

Support of distribution is another requirement of groupware. Giving
support to the distribution of group members is necessary in groupware. This
is due to the reality that collaborative tasks need the contribution of every
member in the team. For the cases that all members of the group belong to
the same company, the same application needs to be run on the computer
of each team member. Thus, the application needs to distribute the task
to every user’s computer. This implies specific requirements on techniques.
For example, how to make the application run in the same state on every
member’s computer and address problems related to various operating system
supports. For the cases that members in the same group may live in di↵erent
countries and cultures, besides more strict requirements on the distributed
techniques, the application must also take time zones, border crossing and
social, cultural and political di↵erences into consideration.

Visualization consistency might be the most important requirement
of groupware. To avoid confusion between group members, an appropriate
way of showing the application view is vital to the success of a groupware ap-
plication. The main requirement here is the information consistency, thus, all
the users related to the same task should get the same information. However,
a strict what-you-see-is-what-I-see policy is not necessary, since applications
run on di↵erent computers may present the information in di↵erent ways
as a result of various roles in the same task [15]. Users in the same group
may have various screen presentations but get identical content. In some
cases, when individual views are supported, we should also present separate
views to di↵erent users. All of these requirements related to visualization

CHAPTER 2. BACKGROUND 9

will increase the implementation di�culty of the groupware.
Data hiding is the last but not least requirement. Though groupware

comprises of tools used for sharing information between group members, it
is also important that groupware can protect individual data. No one will
try to use a groupware where all their individual data will be seen by others.
Even public data that is supposed to be shared between group members,
should also be invisible to members that are not in the same group. The
sharing of the data should be strictly related to the rights of each user.

2.1.3 Challenges in Groupware Design and Implemen-
tation

Computer-supported cooperative work (CSCW) was first proposed in 1984
[12], and since then the interest in this field by researcher has been increasing
rapidly. Algorithms related to concurrency control in groupware system have
been surged up. A lot of cases that can use groupware to support collab-
oration have been studied. Software developers have started to implement
groupware systems based on the cooperative nature of certain tasks. Many
groupware products have emerged in last three decades. However, successful
groupware products are relatively few and the groupware products that are
popular in our life are even less frequent. This is mainly because groupware
design and implementation has its own challenges compared with single-user
applications. According to [7, 8, 18, 27], to build a successful groupware
application, we must take additional aspects into consideration, from user
requirement analysis to the final implementation of the application.

Firstly, a better understanding of task requirements is necessary [7, 34].
The task requirements include the deep insight into the cooperative work
itself and an estimation of the complexity of the cooperative work. Collab-
orative work itself is far more complicated than single-user work, both from
the structure of the work and the management of the work. The way com-
puters support users also involves far more complexities in groupware than in
single-user application, which just let the application finish repeated compu-
tational work. The collaboration related work in real life is kind of “invisible”
to the user or to the application designer. Besides the tasks a groupware is
designed to address, the groupware application also has to solve those invis-
ible collaborative related tasks, such as information sharing, coordination,
and so on. Hence, the designer needs to abstract all those collaborative parts
from the real work circumstances into computer related work, which is far
more complicated than in the case of single user application.

Secondly, an appropriate understanding of group member awareness is

CHAPTER 2. BACKGROUND 10

required [18]. Mutual awareness means the user can know that there are
others from the same group that are also involved in doing the same task.
For example, in the case of Google Document, in a shared document, one can
easily tell how many people are now online and editing the same document,
and even find out which pieces of text are now being modified and by whom.
Mutual awareness of group members is important in the use of groupware. It
can help the user to have a clear view of the state of the task and also the pro-
cessing stage of the task. Also, the mutual awareness in groupware is a type
of social simulation that everyone’s work is monitored by others and mistakes
can be corrected immediately by coworkers as soon as found out. However,
the presentation of mutual awareness is a challenging design task. Mutual
awareness should not be treated as the main task of a groupware, since it
only plays an assistant role in the whole application development. Hence,
mutual awareness should not block or a↵ect running the main task. Gener-
ally, the presentation of mutual awareness information takes place through
kinds of indications, such as signals, signs, and cues. However, as the group
is enlarged, the presentation of mutual awareness information can become
too dominating and have severe side e↵ects to performing the main task.

The third overall problem, similar to the development of single-user appli-
cation, groupware applications also need some flexibility [3, 32]. It is common
in software applications that di↵erent users for the same task may have dif-
ferent requirements. So, to establish a software application that can be used
by all users, we have to add some flexibility to the application making it
configurable to specific users. The same requirement holds in the develop-
ment of groupware applications, but its realisation is more challenging. The
problem here is how to build a configurable groupware application, what
components a groupware application should o↵er and how to configure those
components to add a high degree of flexibility groupware application. On the
other hand, the designer should also integrate those components together and
in a semantic view o↵er cooperation and coordination functionalities.

Other challenges include the complexity in the consideration of psycho-
logical factors, which will have e↵ects on group members’ behavior and the
success of the groupware application. For example, the user of the group-
ware application may have no sense of the tasks’ goals, lack of focus, dominate
the discussion or performance in the group task, and even misunderstand-
ing can occur. There are also di�culties in the implementation part. Since
the group members can be physically distributed, the network infrastructure
might cause delay problems or unreachable problems and thus, making the
whole task completion meaningless.

CHAPTER 2. BACKGROUND 11

2.2 Collaborative Application Approches

While improving the design of collaboration systems, people have long de-
bated the approaches one should choose to build collaboration systems. Since
software design showed up several decades before the idea of collaboration
software, a lot of software has already been there, with appropriate designs,
stable implementation architecture, mature business logic part and most im-
portantly, a lot of users who have already been familiar with the user inter-
faces of those pieces of software. As a result, when designers are trying to
transfer the previous single-user application to the collaboration version of
the application, they need to take all those parts into consideration. Gener-
ally speaking, there are two approaches to developing collaboration systems,
i.e., those based on collaboration transparency and collaboration awareness
[3, 27, 30].

2.2.1 Collaboration Transparency

The collaboration transparency approach tries to inherit the whole applica-
tion from a existing single-user application, but adds a collaboration module
into it [3]. Designing a groupware application in this way would have a lot of
benefits [3, 18, 32]. Firstly, designers can get the hints from the single-user ap-
plication. Since the collaborative software is mainly the previous single user
application except the collaboration part, the business logic for the software
is mostly the same, which means that designers can design the application us-
ing the same architecture and same framework. These would greatly reduce
the design workload and avoid failures in design. Secondly, since most part of
the software would remain unchanged, it is highly possible that the develop-
ers can reuse the source code of the single-user application, which will make
the development of the groupware much easier. Also, as single-user software
has been successfully running for years, the reusing of source code can greatly
reduce the potential for bugs in the code [29]. Thirdly, and most importantly,
since a user of single-user application has long been used to the way of inter-
acting with the single-user application user interface, the approval of users to
interact with groupware as the way they interact with single user application
is a great advantage. Developing groupware in this approach will enable the
users to get used to groupware extremely fast. Hence, collaborative transpar-
ent groupware is more acceptable from the users’ perspective. The famous
groupware that was developed using the collaborative transparent approach
include Google Documents. Though Google Documents do not reuse all the
source code of the javascript document editor, it reuses the design of the

CHAPTER 2. BACKGROUND 12

application and the common interface of the document editor, especially the
user interfaces. Hence, at the point of being published, Google Docs was
accepted by most users and has attracted more and more users over the
years. The drawbacks of using collaboration transparent approach include
that the design and implementation of the groupware is kind of limited by
the previous single-user application. The groupware needs to be designed
under the framework of the previous single-user application, even though
the previous framework may not support multiple users well. Also, the col-
laboration transparent user interface requirement may add extra di�culties
to the implementation of groupware, since some collaborations require the
involvement of the user itself.

2.2.2 Collaboration Awareness

On the other hand, the idea of collaboration awareness approach is to de-
sign specific client applications for di↵erent roles in the cooperation activities
[29]. This approach is building completely new applications and combining
them together through the message passing protocols for the task completion.
Each user is tightly limited to focusing on his own jobs, which is the essential
part of collaboration in real life. According to [18, 32], there are advantages
in this approach too. Firstly and obviously, this approach is trying to de-
sign a groupware based on the understanding of cooperation, which makes it
completely clear for how the system is going to work, how the business logic
is abstracted and each user can easily get the role related to himself based
on his part in the whole task. Hence, groupware designed using this ap-
proach will make cooperation smoother and more e�cient [8]. Secondly, this
approach is not limited to any previous software design frameworks. Since
groupware aims to solve new problems in our life using computer, previous
software design experiences or frameworks could help designers to solve part
of the problem but most probably will not be appropriate in the whole design.
This approach gives designers more space and freedom to choose the frame-
work that might help or even create a new framework based on the specific
situation [27]. As a result, the final product will be more suitable to the spe-
cific collaborative work. Famous groupware applications that are developed
using this approach would be the ordering systems for the electronic busi-
ness. In such systems, the consumers only get access to the consumer views,
and can choose the products they prefer, put them into the shopping cart,
then choose to send the order, and pay the money. Meanwhile, the product
provider is notified about the order, gets access to the provider page, checks
the products they have, and then decides whether to accept this order or not.
Then the confirmed order will be sent to transportation companies for deliv-

CHAPTER 2. BACKGROUND 13

ery of the products to the customer. In this process the customer, product
provider, and transportation company get totally di↵erent client pages and
the cooperation between them is so tightly related to the real life of order-
ing products, hence the cooperation is so smooth that users might not even
notice that they are cooperating with each other. Of course, this approach
has its own drawbacks. The approach requires that the designer has a good
understanding of the whole cooperation process and specifically designs the
clients for each role, which will generally involve experts in various fields and
take long developing periods.

2.3 Groupware Architectures

In analogy to single-user software, architecture also plays an important role
in the design of groupware. Di↵erent from the single-user software, which
targets at solving the business logic, groupware must also handle the coopera-
tion between clients. With few users, the methods used to solve coordination
between clients might be easy to come up with, and cause no problems at all.
However, as the client number surges up, the coordination between clients
will become a problem, as the coordination itself will involve too much in-
formation. Also, as groupware is supposed to be a distributed system, the
architecture chosen for the system should take the various platform factors
into consideration, otherwise the whole system may have poor compatibil-
ity with various operating systems [7]. During the past decades, groupware
designers have been debating on the choice of architectures between cen-

tralized and replicated architecture.

2.3.1 Centralised Architecture

Centralized Architecture, as the name suggests, runs the main business logic
in a single application and deploys it into a server or in a cloud. All the con-
trol, input, and output information is mainly handled in the central server.
The clients’ responsibility is only to handle the input from the user, send
those pieces of information to the server, get the response information from
the server, and display it on the screen [18]. According to [18, 32], the
advantage of such an architecture is in the concurrency control part. As
concurrency control is such a complicated problem in distributed systems,
the use of centralized architecture puts all control and business logic running
on one single server, which then reduces the distributed concurrency control
problem into a single machine concurrency control problem. Thus, the use
of centralized architecture will make the development of a groupware similar

CHAPTER 2. BACKGROUND 14

to the development of a single user application, reducing the development
period substantially. Also, the centralized architecture will reduce the e↵orts
we need in maintaining the groupware system. As just described, the en-
tire business logic part will run on a single server. Then the changes of the
business logic will only a↵ect the development of the central server, which
is not related to various clients in di↵erent operating systems. As it is eas-
ier to develop and maintain, centralized architecture is very popular in the
development of groupware. One of the most famous applications might be
chess playing programs. In the game of chess, one user moves a chess piece
in his client and then waits for the other player to make a move. The server
is responsible for getting the input information from the user and notifying
the other player.

However, there are disadvantages emerging from this architecture, in
three respects: latency, bottlenecks, and compatibility. Firstly, the client
must forward all input from the user to the central server, wait for the cen-
tral server’s replies, and then can take the other input. This means that
the user after every input operation has to wait for some time to be able to
provide another input. How long this period of time might be is determined
by network load and the server performance. If the network is not congested,
the server is powerful enough, and the business logic is simple, there will be
no problem. But if any of these three factors fails, the user’s waiting time
will be long. Since software users are so sensitive to waiting time, the latency
of centralized architecture may end up with a very bad user experience. Sec-
ondly, as all input is sent to the server and processed by the server, there
is a high possibility that the server will be a performance bottleneck to the
whole system. When the number of user increases, the system will be too
busy in handling the coordinations and requests, thus, all clients’ input will
be delayed. Just as described above, this will cause bad user experience and
also a↵ect the e�ciency of cooperation. Thirdly, as groupware systems are
generally distributed systems, the display of the output information will be
di↵erent from one client to another. Since all input and output is processed
by the central server, which will treat all input and output with no di↵erence,
ignore the uniqueness of platform that the clients runs on, the client has to
be specialised in order to display all pieces information locally correct. This
will be an extra burden to the developers.

2.3.2 Replicated Architecture

Replicated architectures have a copy of the groupware program running on
each client machine. The copies of the program can run independently of
each other but coordination information is sent and received by the clients.

CHAPTER 2. BACKGROUND 15

The input from the user is handled by the client itself and then displayed on
the screen. There is no central server in the whole system. Replicated sys-
tems are designed to solve problems centralized systems su↵er from. There
are several benefits in using replicated architecture, according to [16, 32].
Firstly, it is low latency. Since all inputs are handled on the client machine,
no network transfer is needed during the phase of handling local inputs and
each client only serves for a single user, in a way that the client will only
have performance problems when the task itself is causing too much calcula-
tion. Thus, it is highly possible that users do not need to wait for the clients
and the cooperation will proceed smoothly. Secondly, since there is no cen-
tral server in the whole system and the workload for the tasks are evenly
distributed to clients, there will be no bottleneck in a specific part of the
system. The less powerful computers will not have e↵ects on the whole sys-
tem, since all other clients run independently without waiting for the other
clients. Thirdly, the various operating systems the clients are running on
will not add extra burdens to the developers, since each client is independent
and the communication protocols for di↵erent devices can be implemented
platform independently. Since mature products always have a lot of users,
products based on the replicated architecture are also common. For exam-
ple, in Google Docs, each client page is an independent javascript document
editor. The users of the Google Docs can edit the group documents indepen-
dently, and the exit of any user will not a↵ect others. Conflicting inputs of
independent clients will be addressed by the concurrency control algorithm
automatically. Even when the network is down, people can still input the
text and synchronize the information when the network is accessible again.

The disadvantages for replicated architectures are also obvious. The co-
ordination between di↵erent clients will be di�cult to implement. There is
no global sequence of operations in the whole system and each client runs
in parallel, with its own notion of time. Also, the performance diverges
through the whole system, which will add extra concern to the coordination
algorithms. Also, the arrival time of the same operation from the same client
to di↵erent devices may be di↵erent, which means that the clients need to
transform the operations based on specific situations. The coordination algo-
rithm in groupware client machine has long been a research topic. Di↵erent
protocols are chosen by di↵erent applications, but they are all complicated
and not easy to implement.

Nowadays, developers prefer using architectures that combine these two
architectures together. Though the cost might be higher, the combined ar-
chitectures are more stable, easier to implement, and less buggy.

Chapter 3

Project Requirements

This thesis targets at o↵ering a software solution for the group shared task
queue application contained in a real project. There are several requirements
on the software solution. In this chapter, there will be a detailed introduction
to all these requirements.

3.1 RESTful API

RESTful API is the first consideration in building web based applications,
which has gained widespread acceptance. RESTful API stands for Represen-
tational State Transfer API, which typically transfers information through
Hypertext Transfer Protocol (HTTP) with HTTP verbs that are commonly
used by web browsers. The RESTful architecture style was developed by
W3C Technical Architecture Group and with the use of HTTP 1.1, World
Wide Web has been the largest system that was built based on the RESTful
Architecture [13].

According to [4, 33], the use of RESTful Architecture will bring abundant
benefits to a system. Firstly, the use of RESTful Architecture will greatly
simplify the interface, since the format of all requests sent to server must
follow the standard HTTP verbs. The use of the standard HTTP verbs in
every request will make it clear and self explainable, hence the misuse or
misunderstanding of the interface will be greatly reduced. Also, with the use
of standard HTTP verbs developers can explicitly operate a piece of data
in various ways, by using di↵erent HTTP verbs. Secondly, using RESTful
Architecture will increase the scalability of the whole system. RESTful API
requires the system to be stateless, which means that the same uniform
resource identifier (URI) will always lead to the same data information. The
state of the user is not stored in the server side, but recovered by the server

16

CHAPTER 3. PROJECT REQUIREMENTS 17

based on the request sent from the client side. Hence, a request sent by a
user to di↵erent server or services will lead to the same state of the user. This
can greatly improve the scalability of a system, as techniques such as load
balancing can be easily adopted for redirecting requests to distribute the work
load between several server machines. Also, the stateless requirement makes
the modification of the server components much easier. The server only needs
to take care of the request sent by the user and return the response based on
the request. No other specific limitations are added. The user interface will
not be a↵ected by the change of implementation on the server side. Thirdly,
the use of RESTful API will make the portability of the server or service be
good. As described above, the standard HTTP verbs require identical URI
for the same data information. Hence, the clients will always get the same
response with the same request. As a result, the same service can be used
by various client sides, as long as the client sides call the standard URI. The
last but not least benefit of RESTful API is the reliability of the service.
Since the service using RESTful API is easy to scale, it is also quite easy to
use other server components that run a copy of the service in cases of server
failure. Also, the use of standard HTTP verbs and identical URI will make
the transfer of the request from the failed server to the working server easy
and make no di↵erence to the client users.

All the benefits described above are motivations for building our server
using the RESTful API architecture, and applying all the rules required by
the RESTful Architecture to our application. Also, the groupware component
in our application will be used in other applications with high possibility, so
enhancing the portability using RESTful Architecture is necessary in the
implementation of the groupware component. Moreover, when developers
take the scalability into consideration, as the number of users for the service
increases, more users will be involved in the same group task. Thus, there
is a potential requirement of scaling up the server in the future. Further
more, since the server is a real business related application, it is supposed
to be used by companies everyday. One single failure of the server might
cause severe problems to the customer companies and a↵ect the profits of
the companies. Thus the application requires a high tolerance for the failure.
So, due to the benefits that the RESTful Architecture can bring to the design
and implementation of our application and the actual requirements of our
application, designing our application with the RESTful Architecture will be
our basic requirements of our application.

CHAPTER 3. PROJECT REQUIREMENTS 18

3.2 O✏ine Operation

Our application is highly distributed. In addition to the central server, there
are also various client processes. Some of the client processes might run in
browsers, which have very good network connections and can be online for
most of the situations. Some of the client processes, however, are running on
mobile phones, or iPads, which might confront the situations that the network
connection is not good enough. For those mobile clients, the groupware
component needs to work appropriately even without network connection.

For o✏ine clients, the role they are playing in the cooperative task is
equally important and even necessary. For them, the application should run
smoothly and e�ciently, especially without blocking, so that they can focus
on the task and be not interrupted by the bad user experience when using the
o✏ine application. For groupware components, things get complicated if no
network connection exists. The environment without networking connection
means that there are no communication with the server side. As a result,
coordination scheme based on the central architecture might not work here.
The central architecture requires the clients to send each operation to the
central server, and only after the central server has sent the response informa-
tion back, can the clients continue for the next operation. Since the network
is not available, using centralised architecture for coordination in groupware
might result in a totally blocked application. Hence, to avoid that the appli-
cation is blocked as a reason of the poor network connection, the groupware
component needs to run independently of the central server. This calls for
the implementation of coordination architecture in the groupware to follow
the replicated architecture or similar. The replicated architecture does not
rely on the central server and each client can continue to run even there is
no connection with the server [16]. Also, with the use of some mechanism for
storing the operation done by the users when o✏ine, the work done by the
user when o✏ine can be uploaded to the server when the network is available
[23]. In this way, the users are totally free from the network connection, and
can work on the application as it is a single user application. However, as
what has been pointed out in the background part, replicated architecture
usually means that there will be much more challenges in implementation.

Firstly, taking the concurrency control into consideration, replicated ar-
chitecture requires the concurrency control algorithm to run in a distributed
way. Every client needs to consider the operations that have been done by
other clients, and figure out the correct sequence of operations based on the
algorithm. This is a much more complicated algorithm, compared to the
concurrency control algorithm used in the central server based architecture.

CHAPTER 3. PROJECT REQUIREMENTS 19

Secondly, as mentioned above, some techniques are necessary to ensure that
the operations done o✏ine are correctly transferred to the server, when the
network is available. According to [26] the problems when uploading the
o✏ine operations to the server, might cause conflicts with other clients, who
are also operating the same data. Hence, some algorithm is needed here
to transform certain local operations into some di↵erent operations, after
combining with the other operations already done by others. Also, the data
transferred between the clients and the server must be tolerant to failures,
which will require techniques to ensure the data consistency between the
client side and the server side. The technique used in the application is the
message queuing, which allows the client side to store the data locally and as
if the data had already been stored in the server database. This technique
has been used in large scale modern distributed systems to guarantee the
data transformation between distributed components.

3.3 Late Joining Users

Being a groupware application, it is not common that the all users for the
same task log on the system at the same time or start the group task only
when all users are on line. The real situation is that users join the task
sequentially and the group task begins when the first user starts the task.
Users that join after the beginning of the task are called late joining users.
The support of late joining users will bring more feasibility to the groupware
system and enable it to be used in more practical situations.

The support of late joining users basically means that let the late joining
users take part in the group task at any time they want. After joining, the
user can get all information related the the group task in a correct format,
including all the data that the group task owns, the results that have been
processed, and the current state of the group task, hence, the users can get
involved in the group task immediately. Since users are distributed over
di↵erent machines, the late joining users will make the system su↵er from
problems like passing incorrect or inconsistent information from client to
client, when the joining concurrency mechanism is not well implemented.

For example, at some point, one client that has already been in the client
list, operate on some piece of data on his local screen. Then this data will be
updated first in his local machine, and the modifying of data will be notified
to all other clients in the client list. Finally, the database in the server will be
updated. Unfortunately, before the database is updated, but after the client
has checked up the client list, a new client joins into the server. It is obvious
that this client will not get the modification notification of the modified data,

CHAPTER 3. PROJECT REQUIREMENTS 20

Figure 3.1: Information Inconsistency for Late Join Users

since when the updating client is checking the client list, the new user is not
there. However, the new user can not get the modified data from checking
the database upon joining the group task either, since the database has not
been refreshed yet. So, the problem that the new client will not get all the
information of the group task exists. When we change the sequence into
first updating the database and then notifying the clients in the client list,
there would be situations where the new joining clients might get the update
notification twice, which will also lead to data inconsistency between clients.
Figure 3.1 illustrates how inconsistent data could emerge.

3.4 Non-blocking IO

Input and output handling in computer systems are always the bottleneck of
performance. Compared to the calculation speed of modern computers, the
input and output are at so slow speed, since they are used to interact with
human beings. In web applications, the input and output are basically the

CHAPTER 3. PROJECT REQUIREMENTS 21

user interface related layers and the database resolve layer.
According to [14, 41], the traditional way of handling Input and Output

(IO) in the computer system is simply the system waiting for some started
input or output task to complete. Since the IO interfaces are slower than
the computer’s processor, the system processes will be blocked by such slower
operations and hence the resources of the system can not be taken into full
use. If we use blocked IO, in most cases, the system will end up wasting most
of the time in waiting for the IO to respond, thus, it will be very ine�cient.
This is specifically the reality in web applications, since it has so huge amount
of requests from the user and so many queries into the database. Especially in
the groupware of groupware, besides the normal business related request from
client to server, the server also needs to handle the coordination requests from
clients to server, which always exist, and as the number of users get involved
into the same group task increases, the system might result in waiting for IO
all the time, if the IO is handled using blocking mechanisms.

By contrast, Non-blocking IO handles the input and output in an asyn-
chronous way. When IO information is requested the thread or process that
requests the IO information will not be blocked. It sends the request for the
IO to the corresponding IO handler, then hangs up the IO requested task
and start to handle other tasks that are waiting for processing. When the
IO handler finishes the input or output operations and responds to the re-
questing process or thread, callback functions will be triggered, and the task
requesting the IO will become ready and put into the waiting list to be pro-
cessed. In this way, the system will be kept busy and all tasks will be served
if the computer processors are powerful enough. In web applications, the
server handles the requests from clients and requests to the database using
the Non-blocking IO. When a task that requires input from the client side,
the request for input will be send to the client side and a callback function
will be attached to that request upon finishing. Then the server thread starts
to handle other tasks. When the input from the clients is finished, the call
back function will be called and the task will be marked as ready and put
into the waiting list of the thread. When there is a request for querying the
database, instead of blocking into waiting the response from the database,
the sender thread will only send request to the database handler, then starts
to process other tasks and returns to handling the database requested task
when the response from the database is ready. As what can be seen from the
two handling cases, the processor is kept busy and the system will generate
the largest throughput. This mechanism suits for groupware tasks specifi-
cally, since there will be so many requests for the coordination information
and the requests for database queries will also be abundant.

CHAPTER 3. PROJECT REQUIREMENTS 22

3.5 System Scalability

Web applications are di↵erent from traditional software applications, in which
most of the calculation or processor related work are done in one single pro-
cessor and there is only request for enhancing the processing power of the
user’s computer. Web applications put most of its heavy tasks on the server
side, and the server is responsible for all service requests from various clients.
Hence, the requirements on the processor of server machine are much higher.
Also, even if web applications get some powerful enough processors right
at the beginning, there will still be possibilities that they will run out of
resources, as the number of clients using the service is increasing. So en-
hancing the power of processors is not a good solution in web applications.
What web applications require is the ability to scale the system in the fu-
ture [39]. As described above, groupware applications will require even more
resources from the server, so the scalability of the application is even more
important.

The scale of the system basically means adding more servers to the sys-
tem and forming a cluster of servers. The cluster of servers can work in a
distributed way to handle various services requested by the clients. Based
on the processing time of each service, some services can be handled by the
same server or the same service may run on several servers. Also, when ap-
propriate load balancing algorithms are used, the number of servers running
at various time periods can diverse based on the service requests to the server
cluster. The scalability of the server makes the system extendible based on
the work load. For groupware components, services can even be run in a
separated server or several servers, to make it independent of the business
logic parts.

According to [20, 39], to enhance the scalability of the system, the devel-
opers need to address several challenges. Firstly, it is necessary to defining
the API between each components or servers. Since components are scaled
into di↵erent servers, the call of methods or service will be a↵ected by the
calling of the APIs of the server. As a result, to enhance the scalability of the
system, the calling of the API needs to be based on the calling of URIs, even
in the same application. Otherwise, the deployment of di↵erent components
into di↵erent severs will crash the whole system. Secondly, the load balanc-
ing algorithm should be carefully designed. The main purpose of scaling the
system is to solve the performance bottleneck. However, if not distributed
correctly, some service requests may be directed to the same server and cause
even severe performance problem. To correctly distribute the application, de-
velopers need a deep insight into the architecture of the application, and have

CHAPTER 3. PROJECT REQUIREMENTS 23

to separate those intensive tasks into di↵erent server components. Thirdly,
it is the consistency of data information between components. It is quite
easy to ensure data consistency in a single server application, since the data
is stored in one single machine and shared by each component, but, when
system is scaled, the data may become inconsistent between components.
The way in which data is shared between components is much more compli-
cated in a distributed system than in a single server application. To ensure
the data consistency, a mechanism targeted at controlling update of data
between each component should be used.

3.6 Real-Time Cooperation

Group tasks require active involvement by each user. Each joined user needs
to know what has been done by others and what remains to be done, so they
can focus on the task and work together to make the group task progress
e�ciently. This basically requires cooperation to be real-time, which means
that the client side needs to react quickly whenever there is an update on the
server side [15, 20]. The client side can not work in a way that keeps refreshing
the page to get the latest updates of the group task, as it is ine�cient and
distracts the user’s attention on the task. The communication between the
clients and the server needs to work in two directions. The clients can send
inputs to the server and the server can also push the updates from other
users to the clients. Traditional HTTP protocol will not work in this case,
since it only supports client requests to the server or server sending response
back to the client, while no support for server pushing information to the
client side. Also, HTTP protocols have network speed limitations [20], which
will limit the messages sent between the clients and the server. Though in
normal cases this will not be a problem, it will a↵ect how many users can
take part in a certain group task in the future. Traditionally, there is no
support for server pushing information to the client side. When the client
side needs the information from the server side, it must send a request first
to the server and after the server receives the request, the client will wait for
the processing of the data. Only when the data is ready, the data can be
sent to the client side. Usually there is also page refreshing on the client side
related to the response from the server side. Definitely this approach will not
work for groupware application, whose client pages should not be refreshed
while the users are focusing on their work. The real-time requirement of
the groupware application pushes the needs for the asynchronous client front
end [10, 17]. Firstly, the client should not be blocked if waiting for certain
response from the server side, or the client should not wait for the update

CHAPTER 3. PROJECT REQUIREMENTS 24

responses from the server side. This is quite clear, since the arrival time of
updates from the server side can not be expected. If the client side works
in a synchronous way, the client side will always be in a blocking situation.
Existing techniques for the client side are the AJAX technique and Web
Sockets technique. Both of these two technologies free the client side from
being blocked by waiting for the response from the server side. Secondly, the
server should push the updates to the client side, whenever it gets an update
from a client. The challenge here lies in the detection of updates. Using
polling techniques, where the server continuously keep checking for updates,
will waste the resources of the server and make the server ine�cient. The
server should work in a reactive way, which means whenever there is an
update from a client, the server will react to this change and act according
to the corresponding business logic. So, for the server side, and reactive
architecture is required.

3.7 High Availability

Our group application will finally be used by companies and they will use
the system for business related purposes. The application is basically used
in two situations, thus helping the company employees work together and
supporting employees from di↵erent companies working together. The crash
of the system would have severe negative e↵ect on both of these two aspects.
The company employees could not work together and the cooperation be-
tween di↵erent companies can not continue. So, the failure of the system
will definitely cause the loss of profits for all companies that are using the
application. Hence, it is strictly required that the system should work no
matter what happened, i.e., the high availability of the system is essential.

The high availability of the system requires the server side to be always on.
Hence the code of the system needs to be bug free and handle all exceptions
appropriately. However, even if the system is totally bug free and works under
all situations, the system might still crash due to a problem of the hardware
that the system is running on [39]. Hardware fails with certain probability,
no matter how well the hardware is designed and manufactured. In normal
life, this will not be a problem, since the devices we are using work much
shorter time period compared to servers and the restart of the devices will
not cause too much e↵ect on our daily use. But for servers, which generally
work all day long after started, the confront of a failure of the hardware is
almost inevitable. To improve the availability of the system, a distributed
architecture is required. Using the distributed system, one application can
be run on more than two devices. When one of the devices fails, the request

CHAPTER 3. PROJECT REQUIREMENTS 25

to that device can be redirected to another device that can o↵er the same
services.

The idea of using distributed systems to improve availability is quite
simple, but to implement a distributed system that works in this way is
very challenging [6]. Firstly, there is a need for a load balancing algorithm
that decides to which device a request should be redirected. Load balancing
algorithm not only serves the purpose of balancing the work load between
devices, but it also decides the route in case of failing devices. The algorithm
needs to redirect the request and still make the workload between devices
balanced. Secondly, the failure of the device needs to be monitored. When a
device fails, the root of system needs to be informed, otherwise the requests
will still be sent to the failed device. Also, the status of the failed device
needs to be stored and transformed, so that the information of the users can
be extracted after the requests being redirected.

Chapter 4

System Architecture

For groupware applications, the architecture means the way each part of
the software is organised. In analogy to the architecture design in software,
groupware can also be divided into di↵erent parts based on the key features of
each part. According to [32], to build solid software, architecture is an essen-
tial part and has a profound e↵ect on how many implementation challenges
developers may meet during the development process. Also, the architecture
of a software a↵ects the performance of the software and generally can decide
where the bottleneck might be in the whole system. Finally, when proposing
an architecture for certain kind of application, designers should also take the
scalability of the system into consideration, so when the work load become
intensive in the future, the application can still work well or be extended
easily.

According to [36], architecture is the most important part of software,
as it works like the skeleton of the application. When there are some prob-
lems or failures of the application’s architecture, in a sense, it might fail the
whole application, no matter how perfectly the developers implement each
part of the architecture. However, architectures are also the most di�cult
part to design for developers. In software companies, software architects are
software developers who have abundant experience in software development
and implementation. They are people who have been working in software
development field for several years, who have already taken part in or lead
the development of several projects, and who also have a good knowledge
of the business logic in specific fields. As one can see, the requirements on
software architects are really high. The seriousness of companies in hiring
software architects also supports the view that architecture design in software
development is really an important issue.

For groupware development, the architecture is even more important. Un-
like other applications, the architecture of groupware has more e↵ects on the

26

CHAPTER 4. SYSTEM ARCHITECTURE 27

di�culties of the implementation part. According to [7, 18, 32], the reason
is that the architecture of groupware will a↵ect the placement of the concur-
rency control part in the system. As groupware applications generally have
client side and server side, which side should be responsible for the imple-
mentation of concurrency control part pose have totally di↵erent challenges
to the implementation of the concurrency control. When the concurrency
control component is put on the server side, since the server itself is kind of
synchronised critical section, the implementation of the concurrency control
component is quite easy. However, when the concurrency part is implemented
on the client side, the implementation becomes more challenging, since no
global time sequence for asynchoronous operations exists at all. Also, the
choice of the architecture will a↵ect the performance of the system more,
since the groupware applications have coordination information required to
be transformed between clients.

In this chapter of the thesis, we will firstly discuss components that the
application should contain and the main tasks for each part. Then, we have
a very detailed design and analysis of the central architecture and the repli-
cated architecture that are adopted to our application. Finally a architecture
of the central and replicated architectures is proposed for our application,
including the analysis of this architecture from both the performance and
implementation perspective.

4.1 Components

Our groupware application is a task queue shared between di↵erent clients.
Each client should have the same view of contents in the task queue after
login. Each client can do the approved operations to modify the task queue.
Clients that take part in the group task after the start of the group task,
should have the same view of the task queue content with all clients that
have been working in the group task. Based on all these requirements, the
whole system can be divided into the following parts:

• View update component : This component is responsible for updating
the view for a client side. This component will take input of the opera-
tions from the user, modify the contents of the client’s task queue based
on the verified operations, and display the updated queue content on
the client’s screen.

• Lock apply component : This component is located in both client side
and server side for centralised architecture. It is responsible for ac-
quiring the lock for modifying the content in the shared task queue for

CHAPTER 4. SYSTEM ARCHITECTURE 28

client side. When the request for a lock is successful, the client will get
the authority to modify the content in the task queue.

• Login component : This component is used for the login of clients. When
a client logs on the system, this component will send the login events to
the server, get the initial information back from the server, and initial
the view content for the client.

• Login manager component : This component is responsible for the man-
agement of the clients that are currently online. It will be responsible
for solving any late joining issues to ensure a consistent view for all
clients. A list for online clients is kept by this component to keep track
of all clients currently online.

• Lock management component : This component is used to maintain the
mutual accessing of lock. It is this component that implements the
concurrency control for the groupware application in the centralised
architecture. This component will block those lock requests from clients
if the lock is not available and hence a global sequence of the operations
is generated.

• Notification management component : This component is responsible
for the notification of each client. Whenever there is a modification
in the shared task queue, each client that is contained in the list of
clients currently online client list will get notified. The notification
management component will also resolve conflicts with the login control
component, to ensure consistent views in all clients after login.

• Operation transform component : This component is responsible for the
transformation of operations coming from di↵erent clients in the repli-
cated and combined architecture. This component is unique for repli-
cated and combined architecture, which have no lock for concurrency
control. The operation transformation component will implement the
concurrency control in clients based on the operational transformation
algorithm.

Not every architecture we adopt will implement all the above components.
Also in di↵erent architectures, the ways how these components are going to
work are di↵erent.

CHAPTER 4. SYSTEM ARCHITECTURE 29

Figure 4.1: Centralized Architecture

4.2 Centralised Architecture

A centralised architecture has a central machine running a single application
that takes care of input and output. In centralised architecture, the server
will treat the input from the client side as synchronised operation sequence
and it handles operations one after another. At the client side, the application
only needs to receive the input from the client user, send it to the server,
and when there is a response from the server side, display it. The centralised
architecture for the shared task queue will look like the architecture showed
in Figure 4.1.

The flow of information in the whole architecture can be divided into two
parts, the login sequence and the view updating sequence. In the centralised
architecture, when a user logs on the system, the login component in the
client side will be triggered immediately. Then the login component will get
the user’s private information and send a request to the server. On the server
side, this event will trigger the login management component to work. What
the login management component will do on the server side consists of two
steps. Firstly, it requests the lock from the lock management component. If
the lock is free and the lock management component successfully returns the
lock, it will continue to do the second step. If the lock is not free at the
moment, the lock management component will give it the highest priority for
getting the lock to ensure that it will get the lock immediately when the lock
is free. Secondly, the login management component will access the newest

CHAPTER 4. SYSTEM ARCHITECTURE 30

Figure 4.2: Login Sequence in Centralized Architecture

version of the shared task queue content, send it back to the client side as a
response and then free the lock. After the login component on the client side
receives the response from the server, it will initialise the client view based
on the response and the thus login sequence has been finished. The whole
process is described in Figure 4.2.

For the view update sequence, it starts when a user tries to modify the
content of the shared task queue. The intention of modifying the shared
task queue content will trigger the view update component on the client side
immediately. Then the view update component will firstly send a request
to the server to require the lock for modification. The request sent to the
server side will be handled by the lock management component. A lock is
approved by this component if it is free, otherwise the server side will deny
the modification. The result of requesting a lock will be returned to the
client side immediately, no matter the lock is approved or refused. Based on
the result of acquiring of the lock, there are two branches for the view update
component to continue. The first case, when the view update component
receives the approval of the lock, the user can start to modify the content
of the shared task queue. When the modification finishes, the view update
component will send the modified content to the server, which will then
update the shared task queue content, trigger the notification component on

CHAPTER 4. SYSTEM ARCHITECTURE 31

Figure 4.3: Updating Sequence in Centralized Architecture

the server to send the shared task queue content to all clients online, and
free the lock. The view update component in each client will then update
the view after getting the notification and the view updating sequence is
completed in this case. The second case, when the view update component
receives a refused result of getting the lock, it will block the user from trying
to modify the content of the shared task queue until a notification of a new
modification of the shared queue comes from the server side. Once the view
update component has refreshed the view of the shared task queue based on
newly received content, the client is freed from blocking and it can continue
to request a modification. Hence the view updating sequence is done. The
time sequence diagram of the view update sequence is described in Figure 4.3.

The advantage of using centralised architecture is obvious. It is absolutely
easy to implement. The concurrency control takes full use of the single ma-
chine feature of the server and generates a global sequence for the distributed
modifications that came from various client side. When the global sequence
of operations exists, conflicts about operations can be avoided. The clients
in di↵erent machines work as if they are operating the server machine in dif-
ferent time periods. The implementation of lock management in the server,
which generates the global sequence, is quite easy, and developers working
with concurrency control in database systems have accumulated abundant

CHAPTER 4. SYSTEM ARCHITECTURE 32

experience in such aspects. For the client side, the acquisition of the lock has
no di↵erence compared to sending normal requests from the client to server.
So, the shared task queue application based on this kind of an architecture
can greatly reduce the workload for groupware developers.

However, the disadvantage of using centralised architecture is the per-
formance. Firstly, the server has too much burden. Whenever there is an
update from any client, the server needs to send the notification of the up-
dated content to all other clients. When the number of clients increases,
this definitely will be a bottleneck of the performance. Secondly, it is the
network bandwidth requirement in the server side. As described above, each
time there is modification, the server needs to send a new version of the
content to all other clients. This is going to make the throughput of the
server small, especially when there are lots of tasks in the shared task queue.
Thirdly and most importantly, it is the blocking of the user that will cause
serious user experience problems. When a user tries to log on the system, he
might get blocked by another user who is modifying the content of the queue.
Only after the modification is finished, the user can get logged in. Also, all
other clients will be blocked by a client who is modifying the queue con-
tent, making the groupware application not di↵erent from a single machine
application.

4.3 Replicated Architecture

Di↵erent from the centralised architecture, replicated architecture does not
have a central machine. As the name of this architecture suggests, replicated
architecture will have a copy of the same program on each client side. The
operation of each client will be notified directly to other clients. The coor-
dination of clients’ behaviours will also be resolved on the client side. Most
importantly, the client side is also responsible for handling the conflicts of
the operations from other clients. The replicated architecture for our shared
task queue application is shown in Figure 4.4.

The flow of the information in the whole architecture can also be divided
into login sequence and view updating sequence. Like in the centralised archi-
tecture, the login sequence starts when a user logs on the system. The login
component in the client side then starts to work by sending a login request
to the server, wrapped with the client’s private information and network ad-
dress. On the server side, the login management component will be triggered
by the request immediately. The server then sends the event of joining the
new user to all other clients online, including the network address of this
client and then, the private information of the client and the network related

CHAPTER 4. SYSTEM ARCHITECTURE 33

Figure 4.4: Replicated Architecture

address will be kept by the server. For any other clients that are online at
the moment, when received this notification of newly joined user, the client
list management component on the client side will store the information of
the newly joined user on the client side. Then, the client list management
will trigger the notification component to send a view initialisation event to
the newly joined user, including the network address of the client. The ini-
tialisation events from various clients will be received by the newly joined
user and the operation transform component of the new user’s client side will
transform all those initialisation events into a proper sequence of operations
and then trigger the view update component to initialise the view. Then the
network address of other clients will be kept by the new joined client’s client
list management component and the login sequence is performed for the new
user and the other clients will send the modifications to this client when some
operations are done and the clients can start to send modifications to other
clients too. The sequence of the operations is illustrated in Figure 4.5.

The view updating sequence starts when a user tries to modify the con-
tent in the shared task queue. The modifying operation will be directly sent
to the operation transform component. Based on the algorithm in operation
transformation component, the operation will be transformed into another
appropriate operation. Then the transformed operation will be handed to

CHAPTER 4. SYSTEM ARCHITECTURE 34

Figure 4.5: Login Sequence in Replicated Architecture

the view update component again and the view update component will update
the view based on the transformed operation. Also the transformed opera-
tion will be sent to other clients that are kept in the client list management
component by the notification component. When other clients received the
operation, the received operation will also be sent to the operation transform
component for doing some transformation again. Only after the transforma-
tion has been done, will the new transformed operation be transferred to the
view update component and the view of that client will be updated. Then the
whole sequence of the view updating has been carried out. As we can find
from the whole process, there is no lock like concurrency control part in the
architecture. This is because the operation transform component will handle
the concurrency control based on its algorithms, generate a global sequence
of the operations, and solve conflicts between clients. The whole process is
shown in Figure 4.6.

The advantages of using replicated architecture are manifold. Firstly, the
server is freed from sending notifications to each clients every time there is a
modification from some client. As a result the server can focus more on the
business logic of the application. Secondly, data transfer is reduced. In the
replicated architecture, the data sent in the notification concerns only the
modifying operation rather than the whole content of the shared task queue.
Hence the transfer load is not related to the number of tasks in the shared
queue. Finally, and most importantly, no users is blocked by the system from

CHAPTER 4. SYSTEM ARCHITECTURE 35

Figure 4.6: View Updating Sequence in Replicated Architecture

updating the content in the queue. The modification of the content in the
task queue can be seen almost immediately to the client users, which is a very
impressive user experience improvement. So, if the replicated architecture is
used, the user can focus more on the task itself rather than being blocked by
the system.

The disadvantages of the replicated architecture are also obvious. It is
far more complicated to implement than the centralised architecture. For
the login sequence, the initialisation of the view for the newly joined client is
much more complicated than that in the centralised architecture, since the
client needs to resolve conflicts under the situation where no global sequence
is o↵ered. For the view updating sequence, the stability of the program
greatly relies on the implementation of the operation transformation compo-
nent, which is a very complicated algorithm and not easy to implement at all.
Also, the use of the replicated architecture will introduce data inconsistency
for some short periods of time. The reason for this is that the operations of
the shared queue are transferred through the network. The arrival sequences
of operations vary between from client to client.

CHAPTER 4. SYSTEM ARCHITECTURE 36

Figure 4.7: Combined Architecture

4.4 Combined Architecture

As we can see from the description above, the strenghts of both centralised
and replicated architecture are opposite to each other. Replicated architec-
ture has the advantage in aspects where centralised architecture have draw-
backs, vice visa. So, it is natural for us to think about combining these two
architectures together and forming an easy to implement yet well distributed
architecture. The main disadvantage for replicated architecture is the im-
plementation of the concurrency control algorithm to generate the global
sequence, yet the centralised architecture can generate the global sequence
without much e↵ort. For the centralised architecture, its main disadvantages
are the blocking of the client and the network transformation bandwidth,
while using the replicated architecture’s operation transformation component,
the user will not be blocked and the bandwidth cost is low. So, the combined
architecture will take use of the centralised architecture’s global sequence of
operations while using the operational transformation algorithm to unblock
the client. The architecture is shown in Figure 4.7.

The two information flow sequences, i.e., the login sequence and the view
updating sequence, change a little bit in this architecture too. The login

CHAPTER 4. SYSTEM ARCHITECTURE 37

Figure 4.8: Login Sequence of Combined Architecture

component is still on the client side and it will send the login request to the
server when a new client tries to login. The login management component,
located on the server side then will trigger the client list manage component
to add this new client. The newest version of the shared queue content
is abstracted from the server, the process of which will be mutual with the
process of data modification component to guarantee that the newest version
of the data is acquired. Then the login manage component will send the
shared queue content back to the client and the login component will use
the data to initialise the client view. The whole process is much simpler
than both the centralised architecture and the replicated architecture. The
process is showed in Figure 4.8

For the view updating sequence, the client can immediately change the
view of the client whenever users try to modify the content in the shared
task queue. The modification operation of the content will be sent to the
server. On the server side, the operation transform component will handle
this request and transform the operation based on the transform algorithm.
The transformation algorithm here can be quite simple, since the global se-
quence is guaranteed by the arrival time of the operations to the server. The
only task for the transformation component is to change the operation to
the newly arrived operations. If the operation is modified, an undo response

CHAPTER 4. SYSTEM ARCHITECTURE 38

Figure 4.9: Update Sequence of Combined Architecture

will be sent back to the client side, which will then undo the modification
of the previous operation. Then the server will trigger the data modifica-
tion component and modify the data in the shared task queue saved on the
server side. Finally, the notification component will be triggered and the
transformed operation will be sent to each client. Then the clients can up-
date their view of the shared task queue by performing this operation and
the sequence of view updating is done. The whole process is described in
Figure 4.9

As we can see from above, the data transformed between the client side
and the server side are only operations for modifying the shared task queue
content, rather than the whole content of the task queue. Hence the band-
width cost for each request and response is relatively smaller and will not
grow along increasing content in the shared task queue. The client will not
be blocked when trying to modify the content in the shared task queue, as
the modification can be performed immediately after the user initiates the
operation. It is the system that will finally re-modify the content of the
queue to ensure the consistency of the contents. This will work similarly to
case in the replicated architecture, giving a very impressive user experience
improvement. Also, for the complexity of the implementation, we can get the
answer through describing the information flow sequence. Both of the two
operation sequences are simplified and since the transformation algorithm is
a simplified version, the implementation of the operation transformation will
be much easier than the implementation of the transformation algorithm in

CHAPTER 4. SYSTEM ARCHITECTURE 39

the replicated architecture.
The drawback of this architecture is, as can be found from the figure, the

burden on the server side. Compared to the centralised architecture, which
has drawbacks in the server workload, the server in the combined architecture
has a transformation component added. So, theoretically the burden of the
server in the combined architecture might be heavier than in the centralised
architecture. Also, the inconsistency of the task queue content is not solved
in the combined architecture since the data transformed through the network
consists of modifying operations rather than the task queue content itself.

Chapter 5

Concurrency Control Algorithm

Concurrency control is a necessary part in the development of a groupware
application [15]. Its purpose is to solve any conflicts caused by distributed
users and to enable participants tightly cooperate with each other. The ways
in which developers solve conflicts or control concurrency vary. Techniques
such as explicit locking or transaction processing have been used in the de-
velopment of database applications to solve concurrency control for decades.
However, the traditional ways of concurrency control seem not to work well
in the case of groupware applications [15].

There are many issues that need to be taken into consideration when de-
signing a concurrency control algorithm for a groupware application. Firstly,
the target of o↵ering a consistent view for each client should be considered,
i.e., the WYSIWIS (What You See Is What I See), which is necessary to
ensure the progress of the group task in the correct direction. The cooper-
ation between a group of users will end up in a chaos if some of them sees
a slightly di↵erent or out-of-date version of the data. Secondly, the response
time from the server is also an important consideration in groupware appli-
cation. The response time basically includes the time it takes for the client
to access data, update data, and broadcast those changes to all other clients.
The concurrency control method in the database situation like transaction
will not work well here, because blocking some user from providing informa-
tion to synchronous concurrent operations originating from di↵erent clients
will increase the response time [15].

There are several approaches that have been used to solve the concur-
rency control problem, but most of them are not well suited for groupware
applications. In [15], several traditional methods that are used for concur-
rency control have been discussed. Locking, for example, is a concurrency
control solution that locks the data before it is updated. This method is easy
to understand and not di�cult to implement for concurrency control. The

40

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 41

drawback of this approach is that it requires an overhead time to send the
request of a lock, which will add extra time to the response procedure. Also,
the position or the object that should be locked is hard to define. There
are cases in which deciding what should be locked is di�cult. Finally, the
time that when the lock should be released or requested is also not clear.
The moment for requiring and releasing a lock will a↵ect the e�ciency of the
operation execution and the correctness of the execution result.

Another approach for concurrency control is transaction, which has been
used in interactive multi-user systems. However, in the case of groupware
application, using transaction for concurrency control will inevitably increase
the complexity in algorithm implementation and increase the time for execut-
ing operations. Also, the way we choose to implement transaction mechanism
such as locks, will bring other problems related to the technique.

In this chapter, we will introduce a concurrency control algorithm for
groupware application that is adopted from the Operational Transaction
Model (OT). This chapter will be organised as following: Firstly, we intro-
duce the Operational Transaction Model, including definitions and a Generic
Operational Transaction (GOT) algorithm. Then the concurrency control
algorithm adopted from Operational Transaction Model will be presented.
Finally, we give a detailed explanation of the adopted algorithm.

5.1 Operational Transformation Model

5.1.1 Challenges in Concurrency Control of Group-
ware

Operational Transformation Model addresses the concurrency control prob-
lem in groupware and its target is to keep the content in each client consis-
tent. Before we explain how OT Model works, it is better to discuss what are
the problems groupware developers meet in consistency maintenance aspects.
According to [38], there are three challenges in consistency maintenance. To
illustrate these three problems clearly here, Figure 5.1 is used.

Divergence: Since users of a groupware are distributed over several ma-
chines in most cases, operations from the same client may arrive at other
clients with di↵erent delay time periods. Di↵erent arrival delays of certain
operations among di↵erent clients usually result in various sequences of op-
erations at each site. Hence, the final execution result of various operation
sequences will not be identical, unless all the operations are commutative,
which is generally not the case. Let us take the classic operational transfor-
mation puzzle from Figure 5.1 [16] as an example. The observed operation

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 42

Figure 5.1: Classic Operational Transformation Puzzle

sequence at site 0 is O1, O2, O4, and O3; at site 1, the sequence is O2, O1,
O3, and O4, and at site 2, the sequence is O2, O4, O3, and O1. Since most
groupware require the consistency of final result, the divergent final result is
not acceptable.

Causality Preservation: As a result of the nondeterministic communi-
cation latency, operations from the same site may arrive at certain sites in a
sequence that is di↵erent from the cause-e↵ect (some operations may depend
on the previous executed operations) order. Think about the operations in
Figure 5.1: Operation O3 is conducted by certain user, when the arrival of
O1 has been seen at site 1, hence the execution order of O3 should be after
O1 in all sites. In a sense, O3 is dependent on O1. However, as a result
of network communication latency, the arrival of O3 is before O1 at site 2.
This is possible since O1 is transferred between site 0 and site 2 while O3 is
transferred between site 1 and site 2. The network route is di↵erent. If O3

is an operation that targeted at modifying the e↵ect caused by O1, then the
arrival of O3 at site 2 may cause confusion to the user, hence a Causality
Violation exists.

Intention Preservation: Since groupware is a multi-user system, the

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 43

generations of operations are highly concurrent. As a result, the context
where some operation was generated may be changed when the operation is
executed. Therefore, the intended e↵ect of the operation may be di↵erent
from the actual e↵ect when the operation gets really executed. To illustrate
this case, let us also take a look at the execution of operation in Figure 5.1.
Operation O1 at site 0 and Operation O2 at site 1 are generated indepen-
dently, without knowing the existence of each other. Site 0 will first execute
O1, before the arrival of O2. When O2 arrived at site 0, the context of the
execution has been changed by the execution of O1. Hence, the execution
of O2 may lead to a di↵erent result with its intension. Let us take a more
detailed case into consideration. Before the generation of O1 and O2, the
groupware is in a consistent state where both site 0 and site 1 are in the
initial state “ABCD”. Then O1 = Insert[“a”, 1] is generated at site 0, which
intends to insert element “a” in the second position, i.e., put “a” between
“A” and “B”. Also, O2 = Del[1] is generated at site 1, which intends to delete
element B at the second place. After the execution of these two operations,
the expected content should “AaCD. However, the actual content at site 0,
after the execution of O1, is “AaBCD” and with the later arrival of O2, the
content is going to be “ABCD”. The execution of operation O1 changed the
context in site 0, hence it is di↵erent from where O2 is generated. As a result,
the execution of O2 violated its intended e↵ect.

The challenge of divergence is supposed to be solved when there is a
serialisation protocol [26]. The serialisation protocol can be generated by
distributed algorithm or a centralised coordinator [15]. The use of serialisa-
tion protocol is to ensure that final results of di↵erent operation sequences
are the same as if they were conducted under the same global operation se-
quence. The causality violation challenge can be solved, when we define the
execution context of each operation well and delay the execution of some
operations whose execution context is not ready. To address the problem
of intention violation, the context under which the operation was generated
should be preserved [38] and the transformation of operations should only be
performed when the same execution context has been established.

5.1.2 Operation Transformation Algorithm

The algorithm in [38] is based on three methods to solve the three challenges
described above. To solve the divergence problem, the state vector struc-
ture is used to indicate the total sequence of the operations and REDO and
UNDO operations are defined to keep the distributed clients in convergence,
whose definition will be given later. Causal precedence is preserved when the
state vector is applied to indicate the current state of the client. The inten-

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 44

sion violation problem is addressed by the use of the GOT transformation
algorithm.

A state vector was first proposed in [15]. It is an n dimensional array
SV [n], where n denotes the number of sites in the whole system. The value
of SV [i] is the number of operations generated by the site i and executed
by the current client site. The total sequence of an operation in the global
sequence is defined by

Pn
i=0 SV [i], where SV [i] is the value of SV [i] when the

operation was generated. If
Pn

k=0 SVi[k] of Oi is smaller than
Pn

k=0 SVj[k] of
Oj , it means that the total sequence of Oi precedes Oj. If some operations Oj

in client j have total sequence larger than a new operation Oi, then Oj should
be undone and the client should be restored to the context when Oj was not
yet executed. We define this procedure as UNDO. After the execution of Oi,
the undone operations can be executed again with the execution e↵ects of
Oi, which is defined procedure as REDO.

Every client keeps a state vector, which records how many operations from
other clients have been executed by the current client. When a new operation
Oi, with a state vector SVi arrives at client j, SVj will be checked. If there
is some component k in SVj that SVj[k]<SVi[k], it means that before the
generation of Oi, client i has executed some operations from client k that has
not been executed by client j when Oi arrived at client j, which is defined as
Oi not being causally ready [38]. Then the causality violation can be avoided
by delaying the execution of Oi until it becomes causally ready.

The GOT algorithm is based on the transformation of operations. There
are basically two kinds of transformations, the inclusion transformation and
the exclusion transformation. The inclusion transformation function is de-
fined as IT(Oi, Oj) = O0

i, which can only be executed when the generation
context of Oi is equal to the generation context of Oj. After the execution
of inclusion transformation function, Oi is added with the execution e↵ect of
Oj. Hence Oj is executed right before the execution of Oi, which is defined
as Oj being in the context preceding Oi [38]. The Exclusion Transformation
function is defined as ET(Oi, Oj) = O0

i, whose execution condition is that
the execution context of Oj should be the context preceding the execution
context of Oi. The execution will exclude the execution e↵ects of Oj from
Oi, and after the execution of the function, O0

i and Oj are in the same execu-
tion context. The two transformation functions will meet the requirement of
reversiblity [38] to guarantee the correctness of the transformation, where re-
versibility means that the consecutive execution of the inclusion transforma-
tion and exclusion transformation will add no e↵ects to the target operation.
Each operation that have been appropriately transformed will be executed
in the client and stored in history bu↵er HB, which is a one dimensional
array of executed operations. Based on these two transformation functions,

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 45

the GOT algorithm will get the correct execution form of operation EOnew

in the following way(Onew is causally ready here):

• (1) Find the first operation in HB that is not in the context preceding
Onew. If no such operation EOk is found, return EOnew := Onew

• (2) Else, find all operations in HB that are behind EOk in the total
sequence but causally preceding Onew, and store them in a bu↵er of
operations EOL in the order of total sequence. If no such operations
exist, return EOnew := LIT(Onew, [HB[k], HB[k+1], ..., HB[n]]), where
n is the size of HB.

• (3) Else, For EOci in EOL, get EO0
ci :

– EO0
c1 := LET(EOi, [HB[k], HB[k � 1], ..., HB[c1 � 1]])

– for i > 1,

⇤ TO := LET(EOci , [HB[k], HB[k + 1], ..., HB[ci � 1]]);

⇤ EO0
ci := LIT(TO, [EO0

c1 , ..., EO0
ci�1])

• (4) O0
new := LET(Onew, EOL0�1)

• (5) return EOnew := LIT(O0
new, HB[k, n]).

In the algorithm LET and LIT are recursive functions defined for applying
repeatedly exclusion and inclusion transformation [38]. The first step of the
algorithm is to look for independent operations, which are operations that are
not in the context preceding the new operation. When there are independent
operations, it means there are operations in the current client site that have
not been executed in the original site when the received operations generated.
Hence, Onew should be transformed to include the e↵ect of executing EOk

and any later operations. In the case that all operations behind EOk in the
total sequence are independent of Onew, it must be the case that the context
of EOk in the current client site is equal to the context of generating Onew

in the original site, since EOnew is causally ready and all operations behind
EOk are not casually preceding EOnew. Hence the execution e↵ect of EOk in
the current site can be included directly using inclusion transformation. And
the later operations’ e↵ects can also be included consecutively. In other cases
where there are several operations that Onew is dependent on, the context of
executing EOk is not equal to the context when Onew was generated in the
original site. Hence, we should first transform Onew into the same context
with EOk, by excluding those operations’ e↵ects that Onew is dependent on
but behind EOk in the total sequence. Here, the excluded execution e↵ects of

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 46

operations should be in the same operation e↵ects of those operations when
executed in Onew’s original site, otherwise the preceding operation would
not be context preceding Onew. This is done by repeatedly excluding the
operations in HB that are context preceding the operations in EOL, and then
including those operations’ e↵ects that are causally preceding this operation
in the original site of Onew. This is the step (3) in the algorithm. When
all the operations that Onew is dependent on are transformed into the same
operation in the original site of Onew, in step (4), Onew is transformed into
the same context with EOk, by excluding all the execution e↵ects of the
dependent operations. Then the repeated inclusion transformation can be
done in step (5).

The integrated algorithm with UNDO/REDO scheme and GOT algo-
rithm is as follows [38]:

• (1) Undo operations in HB from right to left until an operation EOm

is found such that EOm is in the context preceding Onew

• (2) Transform operation Onew into EOnew, using the GOT algorithm,
and perform EOnew at the current site.

• (3) Transform operation EOm+1 in HB[m+1, n], where n is the size
of HB, into the new execution form EO0

m+i as follows:

– EO0
m+1 := IT(EOm+1, EOnew).

– For 2  i  (n�m),

⇤ TO := LET(EOm+1, [HB[m+1], HB[m+2], ..., HB[m+ i�
1]])

⇤ EO0
m+i := LIT(TO, [EOnew, EO0

m+1, ..., EO0
m+i�1])

• Redo EO0
m+1, EO0

m+2, ..., EO0
n, sequentially.

The algorithm first checks the operations executed in the current client
site that are behind the new arrived operation in total sequence and undoes
all those operations. Then it transforms the newly arrived operation into the
correct form based on the GOT algorithm and the transformed operation will
be executed at the current client site. After executing EOnew, the undone
operations should be redone. The operations should add the execution e↵ect
of EOnew. This is done by excluding the e↵ects of the preceding undone
operations and including the execution e↵ects of EOnew.

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 47

5.2 Centralised Operational Transformation

In Chapter 4, we have proposed the combined architecture to solve the con-
currency control problem, while unblocking each client. The use of centralised
architecture can simplify the Operational Transformation algorithm a little
bit, but the three challenges discussed above should also be addressed. The
actual adopted algorithm will start from the inclusion transformation and
exclusion transformation functions. To illustrate it correctly, we introduce it
based on the Transformation Matrix Idea of [15].

5.2.1 Transformation Matrix

For our shared task queue groupware application, there are three kinds of
approved operations, Insert, Modify and Delete. Inserting is the creation
of new tasks and putting them into the shared queue. Modifying is about
changing the content of the existing tasks and deletion means the removal of
the existing tasks from the queue. So, the transaction matrix T would be a
3 ⇥ 3 matrix. Figure 5.2 gives a detailed description of each component in
the transformation matrix.

Figure 5.2: Transformation Matrix Index

Figure 5.2 shows how the operations are mapped to the corresponding
numbers. So, in the following definition of transformation components, T21
means the transformation of receiving a Delete operation from the remote
server when there is a Insert operation that has been executed in the local
client, which has not been executed in the sending client when sending the
Delete operation.

Listing 5.1 describes three transformation components which will trans-
form the corresponding operations into the correct operation when the local

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 48

Listing 5.1: Transformation of Insertion Operations
IT11(Oi , Oj , Pi) = Oi ’ where

if (Xi < Xj)
Oi’ = Insert[E, Xi]

else if (Xi > Xj)
Oi’ = Insert[E, Xi + 1]

else if (Pi == 1)
Oi’ = Insert[E, Xi]

else
Oi’ = Insert[E, Xi + 1]

fi

IT21(Oi , Oj , Pi) = Oi ’ where
if (Xi < Xj)

Oi’ = Delete[E, Xi]
else

Oi’ = Delete[E, Xi + 1]
fi

IT31(Oi , Oj , Pi) = Oi ’ where
if (Xi < Xj)

Oi’ = Modify[E, Xi]
else if (Xi >= Xj)

Oi’ = Modify[E, Xi + 1]
fi

client has executed an insertion operation that have not been executed when
the sending operation was sent in the sending client. T11 is when the received
operation is an insertion. Then, if the insert operation that has been exe-
cuted in the receiving client is inserted before the position where the received
insertion should be taken place, the received insertion should be inserted in
the position after its original position. For other places of the executed inser-
tion, the received insertion will not be a↵ected. The Delete and the Modify
will be transformed in the same way as the insertion.

The definition of the three components of transformation when the exe-
cuted operation is the Delete operation is shown in Listing 5.2. The situation
of the delete operation that has been executed before the receiption of a re-
mote operation is quite similar to the case of the insert operation. Instead
of moving the received operation to one place after the original, it moves the
original operation to one place before the original place. However, when the
received operation will be executed in the same place as the executed delete
operation, the late coming operation will be ignored. This is because the
deletion of a task will make all other operations for that task meaningless.

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 49

Listing 5.2: Transformation of Deletion Operations
IT12(Oi , Oj , Pi) = Oi ’ where

if (Xi < Xj)
Oi’ = Insert[E, Xi]

else if (Xi >= Xj)
Oi’ = Insert[E, Xi - 1]

fi

IT22(Oi , Oj , Pi) = Oi ’ where
if (Xi < Xj)

Oi’ = Delete[E, Xi]
else if (Xi > Xj)

Oi’ = Delete[E, Xi - 1]
else

Oi’ = EMPTY
fi

IT32(Oi , Oj , Pi) = Oi ’ where
if (Xi < Xj)

Oi’ = Modify[E, Xi]
else if (Xi > Xj)

Oi’ = Modify[E, Xi - 1]
else

Oi’ = EMPTY
fi

The definition of the components when the executed operation is modify-
ing is quite simple, as showed in Listing 5.3, because the modifying operation
will not cause changes in the number of tasks. The only thing we need to
explain here is the case when the two modifications modify the same task.
In this case, both modifications will be kept for the task.

Above, we introduced the transformation algorithms for inclusion trans-
formation. Exclusion transformation functions are quite similar to inclusion
transformation, but with opposite e↵ects. The code in Listing 5.4 implements
the exclusion transformation function ET11.

5.2.2 Auxiliary Operations

LIT function is defined in Listing 5.5. When the list of operations whose
execution e↵ects need to be included by the received operation is empty,
the received operation need not to be transformed at all. Otherwise, the
operation will be recursively transformed with each operation’s execution
e↵ect included.

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 50

Listing 5.3: Transformation of Modification Operations
IT13(Oi , Oj , Pi) = Oi ’ where

Oi’ = Insert[E, Xi]

IT23(Oi , Oj , Pi) = Oi ’ where
Oi’ = Delete[E, Xi]

IT33(Oi , Oj , Pi) = Oi ’ where
Oi’ = Conbine_Modify(E, Xi)

Listing 5.4: Exclusion Transformation of Insertion Operations
ET11(Oi , Oj , Pi) = Oi ’ where

if (Xi < Xj)
Oi’ = Insert[E, Xi]

else if (Xi > Xj)
Oi’ = Insert[E, Xi - 1]

else if (Pi == 1)
Oi’ = Insert[E, Xi]

else
Oi’ = Insert[E, Xi - 1]

fi

LET function is defined in Listing 5.6, which works quite similarly to the
LIT but with an opposite e↵ect.

5.2.3 Adopted Operational Transformation Algorithm

The adopted centralised OT algorithm is shown in Listing 5.7. The initial
part of the algorithm simply sets the auxiliary structures to the initial value.
Here C denotes the current number of operations that have been received
from the server and that have been executed. The initial value of C should
be 0, meaning that no operations have been received and executed from the
server yet.

The generation of operations simply gets the operation from user interface
and wraps it with the current value of C. What should be announced here is
that the generation of operations process should be mutually excluded with
the process of execution of operations. If the execution of operations can
run asynchronously whenever the user is inputing, then the input of the user
might have a wrong base and the C value read from the client side might
not be correct. The generated operation is pushed into the queue with the
flag set to false, meaning that the operation is a local operation that has not

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 51

Listing 5.5: Definition of LIT Function
LIT(O, OL) = O’ where

if OL = []
O’ = O

else
O’ = LIT(IT(O, OL[0]), Tail(OL))

return O’

Listing 5.6: Definition of LET Function
LET(O, OL) = O’ where

if OL = []
O’ = O

else
O’ = LET(ET(O, OL[0]), Tail(OL))

return O’

yet been executed by other clients. Then the operation is sent to the central
server which will notify all other clients.

Receiving operations from the server is simple too. All the received op-
erations will be wrapped with the flag equal to true and pushed into the
queue.

The most important part is the execution of the operations. As the
centralised architecture guarantees the global sequence of operations, the al-
gorithm can be simplified. Instead of using the state vector to denote the
state of the client, the centralised algorithm uses the number of executed
global operations to identify the state of the client. The causal violation is
avoided, since every operation generated at a site will arrive other sites at the
sequence of arriving at the central server. Hence, operations generated by
the same site will arrive to other sites in the same order as in the generated
order. So, each client site does not need to log how many operations from a
specific site have been executed. There are three categories of operations the
client may execute. Firstly, it is the execution of operations generated from
local clients. The state of the current site is denoted by the number of global
operations it has executed, i.e., C. Hence the algorithm first compares the
number of global operations executed when the operation is generated with
the current number of global operations that have been executed at the site.
When there are operations with states that are after the generation of the
local operation, the local operation needs to be transformed in case of a con-
flict with the executed operations. The transformation is based on the GOT
algorithm, with small changes. The operations that are local, are operations

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 52

that have only been executed on this site and no responses from the server
have been received yet. For a local operation, the operations that precede
it would only be the local operations which also have not been confirmed
by server yet. This is also correct, when we define it more generally: The
operations that causally precede a newly arrived operation in the centralised
architecture, would only be the operations that were generated at the same
site as the arrived operation and were executed with global sequences behind
the state when the arrived operation was generated. Therefore, before we
send a local operation to the server, we have already known its causally pre-
ceding operations. To simplify the procedure of the transformation, we store
all the local operations with its preceding local operation e↵ects excluded
into the local bu↵er LB. Hence, we can get EOL0, a structure defined in
GOT algorithm, by including all the global and local operations executed
after the generation of a local operation. The required transformation of the
new operation is then the same as with GOT algorithm. To reduce the trans-
formation steps, we send the new operation with all local operation e↵ects
excluded to the server. No undo or redo operations are needed here, since
newly generated local operations will be in the end of total sequence.

The second category is the operations received from the server, but with
the client identification equals to the client. This means that the received
operation is generated by the local client and has been executed or is going
to be executed by all other clients. The operation should be changed into
global operation and not local operation any more. Hence, the operation
should be deleted from LB. Since no operation needs to be done here, no
transformation, redo, or undo are needed.

The third category is the operations that are received from the server
and were generated by other clients. The execution of this kind of oper-
ation is quite similar to the execution of local operation. However, since
the operations received have already excluded all the e↵ects of operations
that are causally preceding it, the inclusion transformation function can be
directly applied. No calculation of EOL0 is needed. Before the execution
of the transformed operation, undo operations are required. After perform-
ing the transformed operation, redo is executed. Being di↵erent from GOT
algorithm in [38], redo is carried out by applying inclusion transformation
function to the operations in current HB.

CHAPTER 5. CONCURRENCY CONTROL ALGORITHM 53

Listing 5.7: Integrated OT Algorithm
Algorithm:

C <- 0
Qi <- empty
HB <- empty
LB <- empty

Generate Operations:
receive operation o from user interface
get C
Qi <- Qi + <i, o, C, false >

Receive Operations:
receive <j, o, C, true > from the network
Qi <- Qi + <j, o, cj , true >

Execute Operations:
For each <j, Oj , Cj , flag > belongs to Qi
Qi <- Qi - <j, Oj , Cj , jflag >
if (j == i && jflag == false)

<Ik , Ok , Ck , true > <- entry with smallest k in HB ,
where ck > cj

<Ot , Ct > <- first item in LB
EOL ’ = empty
do while <Ot , Ct > != null

TO <- TO + LIT(Ot , HB[Ct , Ck - 1], 0, Ck - Ct)
EOL ’ <- EOL ’ + LIT(TO , EOL ’, 0, EOL ’.SIZE)
<Ot , Ct > <- next item in LB

od
Oj <- LET(Oj , reverse(EOL ’), 0, EOL ’.SIZE)
send <i, Oj , Cj , false > to server through network
LB <- LB + <Oj , Cj >
oj <- LIT(oj , HB[k, HB.SIZE])
perform operation oj on client i.
HB <- HB + <j, oj , C, false >

else if (j==i && jflag == true)
update first entry <j, o’, c’, false > in HB to <j, o’,

c’, true >
remove first item in LB
C++

else
<k, ok , ck , true > <- entry with smallest k in HB , where

(j != k && ck > cj)
oj <- LIT(oj , HB[k, HB.SIZE - 1], 0, HB.SIZE - k)
undo(HB , Cj)
perform operation oj on client i.
for each item <Ot , Ct > in LB

perform operation Ot = LIT(Ot , HB[Ct , HB.SIZE - 1], 0, HB
.SIZE - Ct)

HB <- HB + <i, Ot , Ct , false >
end
//redo(HB , oj , Cj)
C++

fi

Chapter 6

Implementation

In this Chapter, a detailed implementation of the shared task queue appli-
cation will be presented. Firstly, a general overview of the whole system is
presented, including the specific techniques that are used. Then the inter-
nal architecture and implementation of each component of the application
will be discussed in very detail. Finally the definition of the API and the
communication protocol will be presented.

6.1 Distributed Group Task Queue Overview

Shared task queue is a cloud-based service that supports the cooperative work
in and between companies. The application is web-based, and can be run
whenever a user has access to network and browser. Like traditional web-
based applications, the components of the shared task queue application
can be divided into three parts, the client side, the server side, and the
communication API. The client is responsible for the presentation of a user
interface, the generation of the input operations, and the communication with
the server. As described in the architecture part, client side consists of view
updating component, login component, and the transformation component.
The use of the application starts from the login of the user through the client’s
login component. The changes of the shared information are triggered by
clicking buttons or entering information in the client’s user interface. The
communication with the server is not only deployed at client side but also
deployed in the server side, including tasks such as requesting and receiving
information from the server. The view updating component in the client side
will asynchronously update the views of the client side.

The server part of the application will be responsible for receiving requests
from the client side, for sending each received operation to all clients, and

54

CHAPTER 6. IMPLEMENTATION 55

Figure 6.1: Shared Task Queue Overview

saving the task and queues. According to the description in Chapter 4,
the server part consists of the login manager component, the notification
component, the data update component, and the client list management
component. The login management component needs to authorise the user
that logs on the system, to update the client lists, and to send initialisation
information back to the client. The notification component will notify the
clients of a new generated operation and enforce the received operations in
a global sequence. The data update component will modify the data stored
in the database based on the received operations. For all the data that the
application generates, the server will keep them in the data base, including
user information, groups and the tasks.

The communication API is the interface between the server and client, to
make the interaction between the client and the server to happen smoothly.
The API needs to be organised to make the request as clear as possible. The

CHAPTER 6. IMPLEMENTATION 56

Figure 6.2: Server Side Implementation

data that will be transferred between the clients and the server need to be
structured and wrapped in an appropriate format.

6.2 Server Side Component

To accelerate the development process and to add more flexibility to the
configuration of the application at the same time, we decided to use open
source third-party components. The idea to use open source components also
includes considerations of the further usage of the groupware application, and
making it capable of being applied to all environments. Figure 6.2 shows how
the server components are implemented and the corresponding techniques
that we choose.

Play framework is the architecture that we chose for the server part. As
described in [28, 31], it is an open source light weight web framework that runs
on JVM. The light weight feature of this framework can greatly reduce the

CHAPTER 6. IMPLEMENTATION 57

configuration job and preparation before development. Also, since it is based
on JVM, the large amount of supporting components running only on JVM
is accessible. Furthermore, the framework also supports scala programming
language, which is a functional, object oriented programming language, and
a better choice for programmers, considering the tedious and complicated
way of writing java programs. Play framework uses the stateless architecture
to ensure its scalability for later extensions. The inner integrated use of
Akka system makes the framework highly reactive to requests and able to
generate responses in asynchronous way. The final benefits of using Play
framework is its highly active development environment. Developers can have
multiple ways to solve the problems they meet during development and the
new technologies related third-party components can be integreated easily for
Play adopted versions. For example, the T2V authentication component, the
authentication module we use in our application for the identifying of a user,
has been under actively developing. In this marvellous module, the support
for stateless authentication and stateful authentication is available, and to
support asynchronous programming, the new versions of the authentication
module can authenticate the user asynchronously.

Akka system is the actor model based concurrency control system. As
described in [2], Akka system o↵ers a new platform for developing concur-
rent, fault-tolerant, and highly scalable applications. The development of
concurrent programs has been a challenging work for long time, which Akka
developers believe is related to wrong tools and the wrong level of abstrac-
tion. Using the Actor Model based Akka system, the abstraction level of
the concurrent program is raised and the challenges for developing scalable,
resilient, and responsive applications decreased. The notification component
of the the server side is implemented using the Akka system. Each client will
be mapped into one actor and is monitored by the supervisor monitor for
its failure and restart. The requests that should be broadcast between each
client will be transformed to the corresponding actors that are corresponding
to the client. According to the message handling mechanism of Akka system,
the message to each actor will be in the same order as the sending sequence
of messages, which then means the requests broadcast to each client will be
in the same order as they arrived to the server.

MongoDB is an non-SQL database and Reactive Mongo is the driver for
MongoDB [9]. The choice of using MongoDB as the database is for the
flexibility of the data model. The current data model is designed specificly
for the current application. For later extension of the application, the change
of the data model is unavoidable. In traditional database systems, this would
require an redesign of the data model, but, in MongoDB, old data model can
be easily extended to include the new data model. Also, the extension of the

CHAPTER 6. IMPLEMENTATION 58

system will have requirements on the scalability of the application, which is
a feature of using MongoDB. The reason to select Reactive Mongo is to add
asynchronous accessibility to the database. According to the requirements
presented on Chapter 3, the asynchronous way of responding is necessary for
the application to reduce the response time and increase output of the system,
so that an asynchronous database driver is necessary. Reactive Mongo has
been popularly used among MongoDB developers and the Play framework
version of the Reactive Mongo is adopted.

6.3 Client Side Component

The client side is implemented as a web page application based on the front
end techniques. Instead of using static pages, dynamic rendering of the
page is chosen, to enable the unblocking operation of the shared task queue.
Figure 6.3 shows how the client components are implemented and what tech-
niques the client component use.

The user interface of the client is implemented based on the Bootstrap
toolkits. The Bootstrap toolkit is an open source front end framework devel-
oped by Twitter. Bootstrap has abundant components including the layout
of the element in a page and a basic javascript action corresponding to spe-
cific elements, which greatly reduced the time to configure the presentation
of the front end. Also, as bootstrap is well documented, it is quite easy for
developers to get started and to adopt the elements for own usage.

The business logic related part of the client side is based on the Angu-
larJS, a structural framework for dynamic web apps. AngularJS enables the
developers to use HTML5 as the template and to implement the HTML el-
ements in order to express the application clearly and succinctly. The data
binding and dependency injection of Angular reduce the amount of code
developers have to type when implementing their applications. The use of
AngularJS in our application as the framework for client data rendering re-
duces the work of the dynamic updating of the views and improves the front
end’s reactiveness to server pushed responses.

The language used to implement the operational transformation algo-
rithm is Javascript, the declarative language used in front pages. The trig-
gering of execution of the algorithm is based on the input events and the
reception of data from the server. The data sent to and received from the
server will be handled through ajax polling techniques. The selection of
polling will ensure the real-time updating of the data from other remote
clients.

CHAPTER 6. IMPLEMENTATION 59

Figure 6.3: Client Side Implementation

6.4 Communication API Component

Communication API will a↵ect the scalability of the application and the
stability of the system. The techniques we chose to implement the Commu-
nication API is RESTful Architecture and the JSON data format.

RESTful Architecture is important, as described in the requirements of
the application in Chapter 3, for the later extension of the system. In our
system, the URLs are defined strictly under the RESTful requirements. The
acquire of data from the server is only be requested through the GET method.
URLs such as GET/customer/tasks/unhandled/:id will be used to get the
unprocessed tasks from the server. The sending of data to the server is only
done through POST methods. For example, the URL POST/customer/task/

newoperation/ will be used to send a new operation to the server. Any
updates to data, such as modifying task information, is done by the PUT

CHAPTER 6. IMPLEMENTATION 60

methods. The standard of RESTful API simplifies the definition of the URLs
and also makes the server APIs easier to be understand.

JSON format is selected as the data structure for data sent between the
server and the client. JSON is an expressive and well structured data format
and is especially suitable for the transformation of data through networks.
Most importantly, both the javascript and scala languages have good support
for extracting information from data in JSON format and wrapping the data
into the JSON format.

Chapter 7

Testing and Evaluation

In this chapter, we will test the application described in this thesis in labora-
tory environment. The tools we are going to use for testing, the settings for
the tool, and test sets will be discussed. In addition a brief discussion about
the result will be presented as the evaluation.

7.1 Concurrency Control Verification

The verification of concurrent applications is di↵erent from the verification
of traditional program. Concurrent programs have more complex testing
activities, since they own unique features such as communication, synchro-
nisation, and nondeterminism [37]. It can be extraordinarily hard to predict
in advance where the problems in the various schemes could show up. As a
result, even the most clear rules in single thread applications may turn out
an unexpected consequence [21]. As concurrent program can result in certain
number of interactions between di↵erent processes, the number of paths dur-
ing the execution of an application can be extremely large. This also indicates
that the testing of concurrent applications should consider both sequential
aspects and asynchronous aspects, which means the methodologies we use in
testing traditional applications such as taking a system apart, studying the
individual components, and proving the correctness of each divided part will
not work [21, 37].

According to [40], there are several challenges in testing a concurrent ap-
plication. Firstly, it is di�cult to perform a static analysis. As concurrent
programming always involves several threads and there is nondeterminism
between threads, the state graph of the application is extremely complex in
most cases. To find problems through a static analysis of the state graph is
usually too much work. Hence, an applicable approach for static analysis is

61

CHAPTER 7. TESTING AND EVALUATION 62

not easy to come up with. Secondly, it is di�cult to force a certain path to
be executed. In concurrent programming, the existence of nondeterminism
could make the execution di↵erent even with the same input. When the
schedule of processes is decided by the schedule of the system, the forcing of
a path to be executed would be almost impossible. The lack of controllabil-
ity of the application also results in the third challenge in testing concurrent
programming, i.e., it is complicated to reproduce a test execution. To test a
piece of code, it should be possible for the tester to administer a series of re-
producible tests and evaluate the results. The lack of reproducible execution
in concurrent programming is beyond the control of a tester.

These challenges push us to find new ways of testing a concurrent pro-
gram. To describe the behaviour of a distributed system well, verification
models are being used , which are the descriptions of high level abstraction of
distributed system properties. Once a distributed system is described using
verification model, the model can be checked using verification tools. Spin
is one of such tools. Spin is a popular open source software for verification
of multi-threaded applications. The usages of SPIN can be divided into two
categories. The first one is working as a simulator. SPIN can simulate the
behaviour of a designed system model as the behaviour in real distributed
situations. To help the user to have a more clear and visual view of the
execution path of the tested system, SPIN supported a graphical user in-
terface, XSPIN, which has contributed considerable help for developers to
analyse the behaviour of a system model for debugging. SPIN supports a
high level description language called Promela to model the real system.
The emphasis of Promela is on the modelling of synchronisation and coor-
dination of the internal system, instead of computation. So, Promela is a
specification language rather than an implementation language. The basic
building blocks of SPIN models include asynchronous processes, bu↵ered and
unbu↵ered message channels, synchronising statements, and structured data,
which simplifies the process of modelling and verifying the behaviour of coor-
dinative components. However, bare simulation cannot provide any proof of
the properties a system is supposed to have. To o↵er a certificate for certain
properties that a system holds, we have to use the second mode of SPIN, i.e.,
verification. The verification mode of SPIN will simulate all possible execu-
tion paths of the modelled system, and tries to find a counter example that
violates the properties that the system is supposed to have. The checking
method is based on automata. In the verification model, the properties are
specified using w-automata and when the designers are verifying the system,
any execution path that violates the logic of w-automata properties will be
considered as an counter example. SPIN will illustrate the counter-example
by creating an execution path using its simulation mode [11, 21].

CHAPTER 7. TESTING AND EVALUATION 63

In our concurrency control testing case, the only property that we need
to verify is the consistency of the final content in each distributed client. The
simulation part of the concurrency control algorithm in the SPIN model is di-
vided into one server process and several client process. The communication
from clients to the server is expressed through the transformation of mes-
sages via the channel structure in Promela language. The client process has
the OT algorithm implemented and performs each received operation, which
is modifying the queue content on the client side. The server process only
receives messages from each client and broadcasts the received operations as
global operations to each client. To simulate random input in realistic situ-
ation, there is an input process corresponding to each client process, which
will generate inputs for each client random in both the content and time.
For the verification of consistency for the simulated model, the consistency
property is defined as following:

P : The end of input in all clients happened.
T : The content queues in all clients are equal.
G(P) F (T))
It should Globally hold that whenever P holds, T should Finally hold.

The condition P is monitored through message passing. When one input
process for a client finishes the input task, it will send an end message to
the server process. Only when all clients’ input end messages have been
collected, the server sends a server end message to each client process, where
the emptiness of the input queue is tested. When the input queue of each
client is empty, the system will consider that the end of input in all clients
has happened, i.e., P holds. Then, the monitoring of T will start. The
monitoring of T is done through checking the queue contents of every client
processes and if no di↵erence is found, it means that the consistency holds.
Hence, the verification is done. The detailed code of the simulation and
verification of Promela model is given in an append of this thesis.

When a model is simulated using the Promela language, the first thing
the developers should do is to make sure their model is free from grammatick
mistakes. The command of SPIN that can be used to check the grammar is
as follows:

$ spin OT.pml

Using this command line, SPIN will complain about errors in the model if
there is any. Besides giving a grammar check for the simulated model, this
command line will also provide a random simulation of the model. If there is
any output from the model or any printf statement in the model, the result
will be seen when the execution terminates, which is helpful in the analysis

CHAPTER 7. TESTING AND EVALUATION 64

of the behaviour of the built model. The output of our model is as showed
in figure 7.1

Figure 7.1: Grammar Checking and Random Simulation of SPIN

After making sure that the model is syntactically valid Promela program,
we can start to build the verification model. Firstly, we need to produce the
source code for a model specific verifier based on the Promela code using
SPIN. The command is as following:

$ spin -a OT.pml

This command line will generate a verifier as a C program. After the
execution of this command line, several files with name pan but di↵erent
postfixes will be generated. For example, in our case, the generated verifier
files are shown in Figure 7.2

CHAPTER 7. TESTING AND EVALUATION 65

Figure 7.2: Generated Verifier Files

Like normal C programming file, the pan.h is the generic header file for
the verifier, including variables such as global variables, channels, and process
types. File pan.m specifies the execution rules for the Promela statements
that are contained in the model, and the influences they have on the sys-
tem state when being successfully performed. File pan.b defines the redone
policies for statements from file pan.m when there is a reversion in the depth-
first search. File pan.t contains the transition matrix for the built verifier’s
w-automata. Finally file pan.c provides the algorithms for the computation
of asynchronous and synchronous products of transitions.

When the verifier is generated, we can compile the verifier to get an
executable file for verification. The command line is as follows:

$ gcc -o pan pan.c

This will generate an executable file named pan, which can provide a straight
exhaustive verification and the strongest possible verification result when
there is su�cient memory to complete the run. The execution of the verifi-
cation is done using the following command line:

$ pan

For our Operational Transformation Algorithm, the result is listed in Fig-
ure 7.3.

There are 8 processes created for the our model, 3 clients, 3 input pro-
cesses for clients, one server process, and an initial process. As a result of the
limited memory in the running machine, there are only two input elements
generated by each input process. However, the puzzle shown in Figure 5.1 is
not even as complicated as in this limited case. As we can see from the result
figure, no violation of assertion was reported after searching all states. Hence,
we can say that our concurrency control algorithm is correct in maintaining
the consistency between distributed clients in these limited yet complicated
enough situations.

CHAPTER 7. TESTING AND EVALUATION 66

Figure 7.3: Verify Results

Chapter 8

Conclusions

In this chapter we conclude this thesis. Some experiences we got from de-
signing the group shared task queue application will be addressed and the
contribution of this thesis will be concluded.

8.1 Conclusions

Collaboration has become increasingly important in our life, especially in our
working environment. As computers have been so successful in supporting
individual work, it is very natural that researchers seek for ways of using
computers in collaborative work, i.e., the collaborative software or group-
ware. Though the number of researchers in groupware has been increasing
over the years, the definition of groupware remains unclear. However, in all
those various definitions about groupware, the keyword “collaboration” is
commonly seen. The support for collaboration adds extra challenges to the
design and implementation of groupware. Groupware has general require-
ments, such as appropriate user interaction handling, coordination, support
for distribution, visualisation consistency, and data hiding. All these require-
ments can be the basis of evaluation for judging the success of particular
groupware. Compared to single-user applications, the design and implemen-
tation of groupware are more challenging. The di�culties of designing a
groupware include a deep understanding of task requirements, appropriate
methods for handling group member awareness, and o↵ering some flexibil-
ity to groupware application. Nowadays, there are two approaches toward
the building of groupware, the collaboration transparency and collaboration
awareness approaches. The former approach will build the groupware un-
der the framework of the corresponding single-user application, taking use
of its user interface, business logic, part of the source code, and so on. The

67

CHAPTER 8. CONCLUSIONS 68

latter approach will build an absolutely new application based on the roles
of each participant in the collaborative task. No matter what approach we
choose, we must consider the architecture of building the application care-
fully. There are two widely used architectures in groupware design. The first
one is the centralised architecture, which is very popular due to its easy im-
plementation and convenient maintenance features. However, this approach
will deploy too much burden to the central server, and the blocking feature
of the user interface will lead to bad user experience. The second one is the
replicated architecture. Replicated architecture will ensure the good perfor-
mance of the whole system and nice user experience, but is far more di�cult
to be implemented by the developer.

In this thesis, we presented a software solution for a shared task queue,
which is a component in a real software project. The shared task queue
will allow multiple users to operate on the content in the queue in parallel.
To make this component meet the requirements of the project and also to
be as reusable as possible, we explored the requirements that have to be
taken into consideration. To make the component to integrate to the whole
project, we added the RESTful API requirement. For the future extensions
of the project, we decided that the component should be scalable and highly
available. Also, to extend the use scenarios of the groupware component, we
found out that the support for o✏ine operations and late joining of the users
is necessary. Finally, to give a better user experience, we also found out that
non-blocking IO and real-time cooperation support are necessary.

This thesis design the architecture of the shared task queue groupware
through two steps. To select a better architecture for the shared task queue
component, we firstly gave the design for two traditional architectures that
are adopted to our specific use case. The analysis of the two architectures
are given, including the benefits of each architecture and the challenges or
potential problems in each architecture. The analysis of the two architec-
tures showed that in these two architectures, one’s cons turned out to be the
pros in the other, and vice versa. This led to the idea of combining these
two architectures together and coming up with our own architecture for the
groupware component, i.e., the second step. The combined architecture con-
sists of two parts, the client component and the central server component.
The central server is responsible for receiving requests from clients, giving
a sequence number to that request, and sending this request to all other
clients. The client component will take care of the inputs from the user in-
terface, receive the response from the server, solve the local conflicts based on
the priority of each operation, and display the result of the operations on the
screen. The combined architecture has a central server for the assignment
of a global sequence but distributed the conflicts solving part to each client.

CHAPTER 8. CONCLUSIONS 69

Hence, the architecture in this thesis has no bottlenecks on the server side
but the clients are not too complicated to implement at the same time. The
essential part for the combined architecture to run is the conflicts solving
algorithm.

To address the concurrency problem, we adopted the conflict solving algo-
rithm from the OT algorithm, which is an algorithm used for solving conflicts
in groupware. The adoption of the algorithm starts with defining the trans-
formation model, a matrix used for transforming an operation into another
operation when certain operation happened before this operation. The main
idea of the algorithm is to put every operation into the queue, before it is
showed on the screen, including the auxiliary information such as local or
global priority. Then based on the priority of an operation that is going to
be executed, the algorithm will pick out the operations in the executed list
with lower priority compared to the executing operation. Then the execut-
ing operation will be transformed using the operation picked out and will
get executed. The benefits of this algorithm are that it will not block the
client component when resolving the conflicts and also the history list of the
operations can be reduced greatly.

Then we implemented the components in the architecture design as a web
application under Play! Framework. The server side uses the Akka system
to implement the notification of requests and to solve the data consistency
problem during the login and logout of users. For totally asynchronous fea-
tures of the whole system, MongoDB database and Reactive Mongo were
selected for storing and accessing the data. In the client side, Javascript has
been chosen as the language for implementing the client logic. AngularJS has
been selected as the framework for client code organisation. The communi-
cation between the client side and the server side is done by Ajax calling and
a polling mechanism is implemented in the client side for the real-time data
updating. Finally we verified the implementation of the algorithm using the
SPIN Model Checker.

The result of the thesis shows that a combined replicated architecture is
a better architecture than centralised architecture in the shared task queue
groupware. The adoption of OT algorithm could solve the concurrency con-
trol problem in shared task queue groupware. The testing of OT algorithm
using SPIN model checker has opened the door for verifying the correctness
of adopted OT algorithm using simulation tools.

CHAPTER 8. CONCLUSIONS 70

8.2 Future Work

There are several possibilities for future work regarding to the work presented
in this Thesis.

First of all, the OT algorithm can run more smoothly if there is a garbage
collection scheme on the client side. As the number of operations generated
by clients increasing, the bu↵er size of HB will increase. Hence, ine�cient
memory consumption exists. Also, as the size of HB increases, the time
for searching operations in HB will raise. If a garbage collection scheme
that deleting all those executed operations from HB is implemented on client
side, the size of HB can be kept at a relatively small size. As a result, the
algorithm could run in a more e�cient way.

In addition, the verification of adopted OT algorithm is only conducted
under limited inputs. For verifying more complicated cases, the model sim-
ulated using Promela should be optimised.

Bibliography

[1] Allen., C. Definitions of groupware, Fall 1990.

[2] Allen, J. E↵ective Akka. O’Reilly Media, Inc., 2013.

[3] Begole, J., Struble, C., and Shaffer, C. Leveraging java applets:
toward collaboration transparency in java. Internet Computing, IEEE
1, 2 (Mar 1997), 57–64.

[4] Belqasmi, F., Glitho, R., and Fu, C. Restful web services for
service provisioning in next-generation networks: a survey. Communi-
cations Magazine, IEEE 49, 12 (2011), 66–73.

[5] Brooks, F. No silver bullet. April, 1987.

[6] Cardellini, V., Colajanni, M., and Philip, S. Y. Dynamic load
balancing on web-server systems. IEEE Internet computing, 3 (1999),
28–39.

[7] Carstensen, P. H., and Schmidt, K. Computer supported coop-
erative work: New challenges to systems design. In In K. Itoh (Ed.),
Handbook of Human Factors (1999), Citeseer.

[8] Chaffey, D. GroupWare, Workflow and Intranets: Reengineering the
Enterprise with Collaborative Software. Butterworth-Heinemann, New-
ton, MA, USA, 1998.

[9] Chodorow, K. MongoDB: the definitive guide. O’Reilly Media, Inc.,
2013.

[10] Coleman, D. Groupware. In Groupware: technology and applications,
D. Coleman and R. Khanna, Eds. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1995, ch. Groupware Technology and Applica-
tions: An Overview of Groupware, pp. 3–41.

[11] Spin Main Page. http://spinroot.com/spin/whatispin.html, 2006.

71

BIBLIOGRAPHY 72

[12] Collaborative software. https://en.wikipedia.org/w/index.php?

title=Collaborative_software&oldid=674752948, 2015.

[13] Representational state transfer. https://en.wikipedia.org/w/index.

php?title=Representational_state_transfer&oldid=680518039, 2015.

[14] Dabek, F., Zeldovich, N., Kaashoek, F., Mazières, D., and
Morris, R. Event-driven programming for robust software. In Proceed-
ings of the 10th workshop on ACM SIGOPS European workshop (2002),
ACM, pp. 186–189.

[15] Ellis, C. A., and Gibbs, S. J. Concurrency control in groupware
systems. SIGMOD Rec. 18, 2 (June 1989), 399–407.

[16] Ellis, C. A., Gibbs, S. J., and Rein, G. Groupware: Some issues
and experiences. Commun. ACM 34, 1 (Jan. 1991), 39–58.

[17] Ensor, B. How can we make groupware practical? (panel). In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 1990), CHI ’90, ACM, pp. 87–89.

[18] Greenberg, S., and Marwood, D. Real time groupware as a dis-
tributed system: Concurrency control and its e↵ect on the interface. In
Proceedings of the 1994 ACM Conference on Computer Supported Coop-
erative Work (New York, NY, USA, 1994), CSCW ’94, ACM, pp. 207–
217.

[19] Grudin, J. Computer-supported cooperative work: History and focus.
Computer 27, 5 (May 1994), 19–26.

[20] Gutwin, C. A., Lippold, M., and Graham, T. C. N. Real-time
groupware in the browser: Testing the performance of web-based net-
working. In Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work (New York, NY, USA, 2011), CSCW ’11,
ACM, pp. 167–176.

[21] Holzmann, G. Spin Model Checker, the: Primer and Reference Man-
ual, first ed. Addison-Wesley Professional, 2003.

[22] Hughes, J., Randall, D., and Shapiro, D. Cscw: Discipline or
paradigm? a sociological perspective. In Proceedings of the Second
Conference on European Conference on Computer-Supported Cooper-
ative Work (Norwell, MA, USA, 1991), ECSCW’91, Kluwer Academic
Publishers, pp. 309–323.

BIBLIOGRAPHY 73

[23] Johansen, R. GroupWare: Computer Support for Business Teams.
The Free Press, New York, NY, USA, 1988.

[24] Johnson-Lenz, P., Johnson-Lenz, T., and of Technology.
Computerized Conferencing & Communications Center, N.
J. I. The Evolution of a Tailored Communications Structure: The TOP-
ICS System. New Jersey Institute of Technology. Computerized Con-
ferencing and Communications Center. Research report. Computer &
Information Science Department, New Jersey Institute of Technology,
1981.

[25] Jorgenson, D. W., and Vu, K. Information technology and the
world economy. Scandinavian Journal of Economics 107, 4 (2005), 631–
650.

[26] Lamport, L. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 7 (July 1978), 558–565.

[27] Lauwers, J. C., and Lantz, K. A. Collaboration awareness in
support of collaboration transparency: Requirements for the next gen-
eration of shared window systems. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (New York, NY, USA,
1990), CHI ’90, ACM, pp. 303–311.

[28] Layka, V. Play with java and scala. In Learn Java for Web Develop-
ment. Springer, 2014, pp. 355–382.

[29] Li, D., and Li, R. Transparent sharing and interoperation of het-
erogeneous single-user applications. In Proceedings of the 2002 ACM
Conference on Computer Supported Cooperative Work (New York, NY,
USA, 2002), CSCW ’02, ACM, pp. 246–255.

[30] Nunamaker, Jr., J. F., Briggs, R. O., and Mittleman, D. D.
Groupware. In Groupware: technology and applications, D. Coleman and
R. Khanna, Eds. Prentice Hall International (UK) Ltd., Hertfordshire,
UK, UK, 1995, ch. Electronic Meeting Systems: Ten Years of Lessons
Learned, pp. 149–193.

[31] Reelsen, A. Play Framework Cookbook. Packet Publishing Ltd, 2011.

[32] Reinhard, W., Schweitzer, J., Volksen, G., and Weber, M.
Cscw tools: concepts and architectures. Computer 27, 5 (May 1994),
28–36.

BIBLIOGRAPHY 74

[33] Rissanen, H.-M., Mecklin, T., and Opsenica, M. Design and
implementation of a restful ims api. In Wireless and Mobile Communi-
cations (ICWMC), 2010 6th International Conference on (2010), IEEE,
pp. 86–91.

[34] Rittel, H. W., and Webber, M. M. Dilemmas in a general theory
of planning. Policy sciences 4, 2 (1973), 155–169.

[35] Schmidt, K., and Bannon, L. Taking cscw seriously. Computer
Supported Cooperative Work (CSCW) 1, 1-2 (1992), 7–40.

[36] Shaw, M., and Garlan, D. Software architecture: perspectives on
an emerging discipline, vol. 1. Prentice Hall Englewood Cli↵s, 1996.

[37] Souza, S. R. S., Brito, M. A. S., Silva, R. A., Souza, P. S. L.,
and Zaluska, E. Research in concurrent software testing: A system-
atic review. In Proceedings of the Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging (New York, NY, USA, 2011),
PADTAD ’11, ACM, pp. 1–5.

[38] Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D. Achieving
convergence, causality preservation, and intention preservation in real-
time cooperative editing systems. ACM Trans. Comput.-Hum. Interact.
5, 1 (Mar. 1998), 63–108.

[39] Tanenbaum, A. S., and Van Steen, M. Distributed systems.
Prentice-Hall, 2007.

[40] Yang, C.-S. D., and Pollock, L. L. All-uses testing of shared
memory parallel programs.

[41] Zuravleff, W. K., Semmelmeyer, M., Robinson, T., and Fur-
man, S. Non-blocking load bu↵er and a multiple-priority memory sys-
tem for real-time multiprocessing, Sept. 22 1998. US Patent 5,812,799.

Appendix A

Promela Code for Evaluation

mtype = { insert , delete , modify , empty_op , end_op}
typedef Operation {

mtype name
int position
byte content

};

typedef Q_Node {
int client_id
Operation op
int sequence_count
bool global

};

typedef Perform_Param {
Operation op
int length

};

typedef Content {
byte c[20];

}

int DEBUG = 1;

int client_num = 3;

//the content of the queue
Content content[client_num];

// channel for sending request to server
chan server_request = [20] of {Q_Node };

75

APPENDIX A. PROMELA CODE FOR EVALUATION 76

// channels for sending response to clients
chan response[client_num] = [20] of {Q_Node };

// channels for storing the return values of transform
chan result[client_num] = [1] of {Operation };

// channels for operations waiting for transforming
chan op_queue[client_num] = [20] of {Q_Node}

// channels for ensuring the reading of sequence number
chan sequence[client_num] = [1] of {int}

// channels for controlling the input taken one by one
chan input_mutex[client_num] = [1] of {int}

// channels for end of inputs
chan input_end[client_num] = [1] of {int}

// channels for end of clients processing
chan client_end[client_num] = [1] of {int}

// channels for end of server processing
chan server_end = [1] of {int}

// channels for sending input number
chan input_total = [1] of {int}

// define the transformation matrix;
//prior means o2 occured before o1;
inline insert_modify(client_id1 , o1 , o2 , prior) {

if
:: (o1.position <= o2.position) -> {

o2.position = o2.position + 1;
}
:: else -> skip

fi
result[client_id] ! o2

}

inline insert_insert(client_id , o1 , o2 , prior) {
if

:: (o1.position < o2.position) -> {
o2.position = o2.position + 1;

}
:: (o1.position == o2.position && prior != 1) -> {

o2.position ++;
}
:: else -> skip

fi

APPENDIX A. PROMELA CODE FOR EVALUATION 77

result[client_id] ! o2
}

inline insert_delete(client_id , o1 , o2 , prior) {
if

:: (o1.position <= o2.position) -> {
o2.position = o2.position + 1;

}
:: else -> skip

fi
result[client_id] ! o2

}

inline delete_modify(client_id , o1 , o2 , prior) {
if

:: (o1.position < o2.position) ->
o2.position = o2.position - 1;

:: (o1.position == o2.position) ->
o2.name = empty_op

:: else -> skip
fi
result[client_id] ! o2

}

inline delete_insert(client_id , o1 , o2 , prior) {
if

:: (o1.position < o2.position) -> {
o2.position = o2.position - 1;

}
:: else -> skip

fi
result[client_id] ! o2

}

inline delete_delete(client_id , o1 , o2 , prior) {
if

:: (o1.position < o2.position) -> {
o2.position = o2.position - 1;

}
:: (o1.position == o2.position) -> {

o2.name = empty_op
}
:: else -> skip

fi
result[client_id] ! o2

}

inline modify_modify(client_id , o1 , o2 , prior) {
if

APPENDIX A. PROMELA CODE FOR EVALUATION 78

:: (o1.position == o2.position && prior == 1) ->
o2.name = empty_op

:: else -> skip
fi
result[client_id] ! o2

}

inline modify_insert(client_id , o1 , o2 , prior) {
result[client_id] ! o2

}

inline modify_delete(client_id , o1 , o2 , prior) {
result[client_id] ! o2

}

inline transformOperation(client_id , o1 , o2 , prior) {
if
:: (o1.name == insert && o2.name == modify) ->

insert_modify(client_id , o1, o2, prior)
:: (o1.name == insert && o2.name == insert) ->

insert_insert(client_id , o1, o2, prior)
:: (o1.name == insert && o2.name == delete) ->

insert_delete(client_id , o1, o2, prior)
:: (o1.name == modify && o2.name == modify) ->

modify_modify(client_id , o1, o2, prior)
:: (o1.name == modify && o2.name == insert) ->

modify_insert(client_id , o1, o2, prior)
:: (o1.name == modify && o2.name == delete) ->

modify_delete(client_id , o1, o2, prior)
:: (o1.name == delete && o2.name == modify) ->

delete_modify(client_id , o1, o2, prior)
:: (o1.name == delete && o2.name == insert) ->

delete_insert(client_id , o1, o2, prior)
:: (o1.name == delete && o2.name == delete) ->

delete_delete(client_id , o1, o2, prior)
fi

}

inline performOperation(client_id , pf_param) {
atomic {

if
:: (DEBUG == 1) -> printf (" client_%d PERFORM --> <content:

%d, position: %d>\n", client_id , pf_param.op.content ,
pf_param.op.position);

:: else -> skip
fi
if
:: (pf_param.op.name == insert) -> {

APPENDIX A. PROMELA CODE FOR EVALUATION 79

int initial = pf_param.op.position
byte pre = content[client_id].c[initial]
byte post = content[client_id].c[initial + 1]
content[client_id].c[initial] = pf_param.op.content;
do
:: (initial < pf_param.length) ->

post = content[client_id].c[initial + 1]
content[client_id].c[initial + 1] = pre
pre = post
initial = initial + 1;

:: else ->
break

od
}

:: (pf_param.op.name == delete) -> {
int initial = pf_param.op.position
byte post = content[client_id].c[initial + 1]
do
:: (initial < length - 1) ->

post = content[client_id].c[initial + 1]
content[client_id].c[initial] = post
initial = initial + 1;

:: else ->
break

od
}

:: (pf_param.op.name == modify) -> {
content[client_id].c[pf_param.op.position] = pf_param.op.

content;
}

:: else -> skip
fi
}

}

typedef InsertContent {
byte c [5];

}

InsertContent ic[client_num];

proctype client_process(int client_id) {

Q_Node op_log [20]
int head = 0;
int tail = 0;
int log_count = 0;
int bool_full = 0;
int global;

APPENDIX A. PROMELA CODE FOR EVALUATION 80

int id;
int sequence_count = 0;
int length = 0;
Operation op;
Q_Node rec_op;

do
:: op_queue[client_id] ? rec_op -> {

id = rec_op.client_id
// sequence_count = rec_op.sequence_count
op.name = rec_op.op.name;
op.position = rec_op.op.position;
op.content = rec_op.op.content;
global = rec_op.global

if
:: (DEBUG == 1) -> printf (" client_%d RECEIVE --> <content

: %d, position: %d, global: %d, sender_sequence: %d\n
", client_id , op.content , op.position , global , rec_op.
sequence_count);

:: else -> skip
fi

int log_point = 0;
int eto_index;
Operation local_op
if
:: (id == client_id && global == 0) -> {

do
:: (log_point < log_count &&

op_log[log_point]. client_id != client_id &&
op_log[log_point]. global == 1 &&
op_log[log_point]. sequence_count > rec_op.

sequence_count) ->

if
:: (DEBUG == 1) -> printf (" client_%d find executed

global\n", client_id);
:: else -> skip
fi

eto_index = log_point + 1;
result[client_id] ! op_log[log_point].op
result[client_id] ? local_op

do
:: (eto_index < log_count && op_log[eto_index].

sequence_count <=) ->

APPENDIX A. PROMELA CODE FOR EVALUATION 81

transformOperation(client_id , op_log[eto_index].
op , local_op , 0)

eto_index ++
result[client_id] ? local_op

:: else -> break
od

transformOperation(client_id , local_op , op, 1);
result[client_id] ? op
log_point = log_point + 1

:: (log_point < log_count &&
(op_log[log_point]. client_id == id ||
op_log[log_point]. global != 1 ||
op_log[log_point]. sequence_count <= rec_op.

sequence_count)) ->
log_point = log_point + 1

:: else -> break;
od

if
:: (DEBUG == 1) -> printf (" client_%d local scaned

log_point = %d\n", client_id , log_point);
:: else -> skip

fi

Perform_Param pf_param;
pf_param.op.name = op.name;
pf_param.op.position = op.position;
pf_param.op.content = op.content;

pf_param.length = length;

performOperation(client_id , pf_param);

if
:: (op.name == insert) -> length = length + 1
:: else -> skip
fi
op_log[log_count]. client_id = id
op_log[log_count]. sequence_count = sequence_count

op_log[log_count].op.name = op.name
op_log[log_count].op.position = op.position
op_log[log_count].op.content = op.content

op_log[log_count]. global = global

APPENDIX A. PROMELA CODE FOR EVALUATION 82

server_request ! op_log[log_count];

if
:: (DEBUG == 1) -> printf (" client_%d LOG --> <

log_index: %d, content: %d, position: %d, global:
%d, sequence_count >\n", client_id , log_count ,
op_log[log_count].op.content , op_log[log_count].op
.position , op_log[log_count].global , op_log[
log_count]. sequence_count);

:: else -> skip
fi

log_count ++;
input_mutex[client_id] ! 1;

}
:: ((id == client_id) && (global == 1)) -> {

int index = 0;
do
:: (index < log_count &&

op_log[index]. client_id == id &&
op_log[index]. global == 0) ->
//do not need to judge name and content here , since

the first sented
// local input will get the global reply first.

op_log[index].op.name = op.name
op_log[index].op.content = op.content
op_log[index]. global = 1
break

:: (index < log_count &&
(op_log[index]. client_id != id ||
op_log[index]. global != 0)) ->
index = index + 1

:: else -> break;
od

sequence[client_id] ? sequence_count;
sequence_count = sequence_count + 1
op_log[index]. sequence_count = sequence_count;
sequence[client_id] ! sequence_count;

if
:: (DEBUG == 1) -> printf (" client_%d LOG --> <

log_index: %d, content: %d, position: %d, global:
%d, sequence_count: %d>\n", client_id , index ,
op_log[index].op.content , op_log[index].op.
position , op_log[index].global , op_log[index].
sequence_count);

:: else -> skip

APPENDIX A. PROMELA CODE FOR EVALUATION 83

fi

}
:: ((id != client_id) && (global == 1)) -> {

int found = 0;
do
:: (log_point < log_count &&

op_log[log_point]. client_id != id &&
op_log[log_point]. global == 1 &&
op_log[log_point]. sequence_count > rec_op.

sequence_count) ->

if
:: (DEBUG == 1) -> printf (" client_%d global find

executed global\n", client_id);
:: else -> skip
fi

eto_index = log_point + 1;
local_op.name = op_log[log_point].op.name
local_op.position = op_log[log_point].op.position
local_op.content = op_log[log_point].op.content
do

// global operations has lower priority than all
later operations

:: (eto_index < log_count) ->
transformOperation(client_id , op_log[eto_index].

op , local_op , 0)
eto_index ++
result[client_id] ? local_op

:: else -> break
od

transformOperation(client_id , local_op , op, 1) //op
is global and local_op is global

result[client_id] ? op

log_point = log_point + 1
:: (log_point < log_count &&

op_log[log_point]. global == 0) ->

if
:: (DEBUG == 1) -> printf (" client_%d global find

executed local\n", client_id);
:: else -> skip

APPENDIX A. PROMELA CODE FOR EVALUATION 84

fi

eto_index = log_point + 1;

local_op.name = op_log[log_point].op.name
local_op.position = op_log[log_point].op.position
local_op.content = op_log[log_point].op.content
do

:: (eto_index < log_count && op_log[eto_index].
global == 0) ->

transformOperation(client_id , op_log[eto_index].
op , local_op , 0)

eto_index ++
result[client_id] ? local_op

:: (eto_index < log_count && op_log[eto_index].
global == 1) ->

transformOperation(client_id , op_log[eto_index].
op , local_op , 1)

eto_index ++
result[client_id] ? local_op

:: else -> break
od

//op is global and local_op is local
transformOperation(client_id , local_op , op, 0)
result[client_id] ? op
log_point = log_point + 1

:: (log_point < log_count && (op_log[log_point].
client_id == id ||

(op_log[log_point]. sequence_count <= rec_op.
sequence_count &&

op_log[log_point]. global == 1))) ->
log_point = log_point + 1

:: else -> break;
od

sequence[client_id] ? sequence_count;
// PERFORM OP
Perform_Param pf_param;
pf_param.op.name = op.name;
pf_param.op.position = op.position;
pf_param.op.content = op.content;
pf_param.length = length;
performOperation(client_id , pf_param);
if
:: (op.name == insert) -> length = length + 1
:: else -> skip
fi

APPENDIX A. PROMELA CODE FOR EVALUATION 85

sequence_count = sequence_count + 1
sequence[client_id] ! sequence_count;

// UPDATE LOG QUEUE;
op_log[log_count]. client_id = id
op_log[log_count]. sequence_count = sequence_count

op_log[log_count].op.name = op.name
op_log[log_count].op.position = op.position
op_log[log_count].op.content = op.content

op_log[log_count]. global = global

if
:: (DEBUG == 1) -> printf (" client_%d LOG --> <

log_index: %d, content: %d, position: %d, global:
%d, sequence_count: %d>\n", client_id , log_count ,
op_log[log_count].op.content , op_log[log_count].op
.position , op_log[log_count].global , op_log[
log_count]. sequence_count)

:: else -> skip
fi

log_count ++;
}
fi

}

:: nempty(server_end) -> atomic {
if

:: empty(op_queue[client_id]) ->
client_end[client_id] ! 1
goto end

:: nempty(op_queue[client_id]) ->
skip

fi
}

od

end:
if

:: (DEBUG == 1) -> printf (" client_%d ended \n", client_id
);

:: else -> skip
fi

}

APPENDIX A. PROMELA CODE FOR EVALUATION 86

proctype generate_process(int client_id) {
Q_Node rec_op
int position = 0;
int approval = 0;
do
:: (position < 1) ->

input_mutex[client_id] ? approval;
rec_op.client_id = client_id;
sequence[client_id] ? rec_op.sequence_count;
sequence[client_id] ! rec_op.sequence_count;
rec_op.op.name = insert;
rec_op.op.position = position;
rec_op.op.content = ic[client_id].c[position];
rec_op.global = 0;
position ++;
op_queue[client_id] ! rec_op;

:: else -> break
od
input_end[client_id] ! 1;

end:
}

active proctype server_process () {
Q_Node op_node;
int input_num = 0;
int input_count = 0;
int control = 0;
do
:: server_request ? op_node -> atomic {

op_node.global = 1;

int i = 0;
do

:: (i < client_num) ->
op_queue[i] ! op_node;
i++

:: else -> break;
od
input_count ++;
control = 1;
}

:: (control == 1 && input_total ? [input_num]) ->

input_total ? input_num
if

:: (input_num == input_count) ->
server_end ! 1

APPENDIX A. PROMELA CODE FOR EVALUATION 87

goto end
:: else ->

input_total ! input_num
control = 0;
//skip

fi
od

end:
if

:: (DEBUG == 1) -> printf (" server ended\n");
:: else -> skip

fi
}

active proctype init_process () {

int client1 , client2 , client3;
client1 = 0;
client2 = 1;
client3 = 2;

ic[client1].c[0] = ’a’;
ic[client1].c[1] = ’b’;
ic[client1].c[2] = ’c’;
ic[client1].c[3] = ’d’;
//ic[client1].c[4] = ’e’;

ic[client2].c[0] = ’f’;
ic[client2].c[1] = ’g’;
ic[client2].c[2] = ’h’;
ic[client2].c[3] = ’i’;
ic[client2].c[4] = ’j’;

ic[client3].c[0] = ’k’;
ic[client3].c[1] = ’l’;
ic[client3].c[2] = ’m’;
ic[client3].c[3] = ’n’;
ic[client3].c[4] = ’o’;

sequence[client1] ! 0;
sequence[client2] ! 0;
sequence[client3] ! 0;

input_mutex[client1] ! 1;
input_mutex[client2] ! 1;
input_mutex[client3] ! 1;

run client_process(client1)

APPENDIX A. PROMELA CODE FOR EVALUATION 88

run client_process(client2)
run client_process(client3)

run generate_process(client1)
run generate_process(client2)
run generate_process(client3)

int content_index = 0

int input_num1 = 0;
int input_num2 = 0;
int input_num3 = 0;

input_end[client1] ? input_num1;
input_end[client2] ? input_num2;
input_end[client3] ? input_num3;

input_total ! (input_num1 + input_num2)

client_end[client1] ? _
client_end[client2] ? _
client_end[client3] ? _

end: do
:: (content_index < 10) ->

assert(content[client1].c[content_index] == content[
client2].c[content_index])

assert(content[client1].c[content_index] == content[
client2].c[content_index] &&

content[client1].c[content_index] == content[
client3].c[content_index])

content_index ++
:: else -> break;

od

if
:: (DEBUG == 1) -> printf (" initial process ended\n");
:: else -> skip

fi
}

