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1. Introduction 

1.1 Background 

Globally, power grids are facing a list of acute challenges such as aging infrastructure, 

limiting energy resources, growing expectation of customers comfort level [1], and sub-

stantial load growth with the emergence of electric vehicles. This creates urgent require-

ments for the optimal utilization of power grids [2], [3]. As a result, a key tool to counter 

the above mentioned challenges is demand response (DR) [4]. DR is believed to be one 

of the integral components in enabling more efficient power systems operation of the 

future smart grid. The sheer progression of reliable communication and automatic meter 

reading (AMR) systems has paved the way for residential DR actions [5]. Amongst the 

residential load, thermostatically controlled appliances especially the heating, ventila-

tion, and air conditioning load (HVAC) load, have gained a great deal of attention in 

smart grids for DR applications due to their flexible operation. According to a report 

from statistics Finland, the HVAC load has the highest share in household demand in 

Nordic countries annually [6]. Due to the slow thermal dynamics of well-insulated 

buildings in Nordic countries, the thermal masses of building structures act as a small 

storage buffer and can provide considerable load shifting capability. However, there is 

still an essential need to develop practical frameworks so as to motivate customers into 

shifting their energy consumption of the HVAC load to off-peak hours [4], [7]. 

In today’s power systems, there is also a great concern regarding eco-friendly issues 

which has already paved the way for a large scale deployment of renewable generation 

in power systems [8]. In future smart grids, wind power generation sources are expected 

to have a considerable share in the total generation assortment. However, because of the 

variability and unpredictability of wind power, the large scale integration of wind gen-

eration will pose a major challenge in the form of enhanced operational flexibility re-

quirements [9]. Their limited capacity value may lead to the grave problem of supply-

load imbalance, thus jeopardizing the power system reliability. Power ramping and reg-

ulation requirements are also likely to increase, which will create technical difficulties 

for the system operators [10]. The classical approach of employing (a) backup genera-

tors that enable fast up/down ramping and (b) energy storage facilities, is expensive and 

complex but the environmental impact of these solutions are considerable [11]. An al-

ternate solution would be to unleash DR as a load shaping tool to minimize the imbal-

ance between demand and supply [12], [13]. This dissertation puts an emphasis on the 

design of the frameworks for HVAC load management in smart grids which thoroughly 

takes into account the customers’ comfort and convenience. The proposed frameworks 

aims at achieving different objectives, more specifically, a customer’s energy cost min-

imization and maximizing the utilization of wind generation. 
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1.2 Objective and Scope 

The objective of the dissertation is the comprehensive quantification of potential bene-

fits of responsive residential HVAC loads for DR applications as well as the develop-

ment of practical frameworks to achieve them. The DR applications considered in the 

analysis include customers energy cost minimization and supply-demand imbalance 

minimization in the presence of intermittent generation. The proposed frameworks will 

allow the utility to assess the benefits of domestic HVAC DR and will provide an insight 

into the employment of DR at an end-user level. The dissertation objective is divided 

into following tasks. 

 

Task 1: Develop a framework for a thorough quantification of upward DR (load incre-

ment) and downward DR (load reduction) capability of residential HVAC load consid-

ering customer’s temperature preferences. Then perform the simulations to obtain the 

DR potential. 

 

Task 2: Develop a user-centric framework for HVAC load management for customer’s 

energy cost minimization. This task consists of following subtasks: 

a) Develop an optimization approach for scheduling the operation of HVAC load 

integrated with partial thermal storage to minimize the customer’s energy ex-

penses in energy market. (Considering a snapshot of energy prices). Subse-

quently, assess the DR benefits using the developed model. 

b) Develop a generic decision tool for scheduling the HVAC load for customer’s 

energy payment minimization amid price and demand uncertainty while con-

sidering the customer’s thermal comfort and risk preferences. Afterwards, 

showcase the effectiveness of the model with the simulations of appropriate 

case studies. 

c) Develop a 2-stage decision framework for optimally scheduling the HVAC 

loads for customer’s energy cost minimization in both energy market and bal-

ancing market. 

 

Task 3: Develop a framework for HVAC load management for wind generation balanc-

ing. This task consists of following subtasks. 

a) Develop a tool for activating the domestic HVAC DR for wind generation bal-

ancing (without considering network constraints) accounting customers’ com-

fort and convenience. Subsequently, evaluate the DR benefits using the pro-

posed framework. 

b) Develop a framework for optimal collaboration of DR and network RTTR for 

increased utilization of wind generation. Later, justify the efficacy of the pro-

posed approach by conducting simulations considering appropriate case stud-

ies. 
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c) Develop a tool for optimal collaboration of aggregator DR services in tandem, 

namely, customers’ energy cost minimization in energy market and minimizing 

the wind energy curtailment cost. 

To achieve the dissertation objective, at first thermal modeling of house close to the real 

world is performed and then the derived mathematical model of the building is used in 

the proposed frameworks of above mentioned tasks. The HVAC systems under study 

are (a) direct electric space heating/cooling system, hereafter, referred to as HVAC (b) 

electric space heating system integrated with thermal storage, hereafter, referred to as 

HVAC with storage. These installations have thermal storage capacities such as a hot 

water tank hence they enable shifting of energy demand without sacrificing the custom-

ers’ comfort. Suitable case studies are performed on typical Finnish systems. Lastly, 

obtained results are analyzed to report the findings.  

1.3 Contribution 

This dissertation consists of seven publications [I]-[VII] which covers several frame-

works for DR applications. The results are divided into three chapters. A brief synopsis 

of the contribution in each chapter is given in the following. 

1.3.1 Domestic HVAC DR Potential for Up/Down Ramping  

Chapter 3 covers the first publication [I] which investigates the prospective of DR 

through HVAC loads for up/down ramping potential without violating customer’s ther-

mal preferences. A mathematical tool is developed to thoroughly investigate the upward 

DR (load increment) and downward DR (load reduction) capability of the domestic 

HVAC load. This chapter provides an overview of availability of the DR through 

HVAC load which can be tapped to tackle power system stress conditions without vio-

lating preset consumer temperature preferences. The application of the mathematical 

model is showcased by presenting interesting case studies in order to probe the impact 

of customers’ temperature preferences on the DR potential in Finnish system. Moreover, 

the additional benefits of having a thermal storage capacity integrated with HVAC sys-

tem are also assessed through a set of simulations. The reported DR potential is signif-

icant from smart grids perspective as the HVAC load can be used as a tool for mitigating 

the power imbalance caused by intermittent renewable generation. 

1.3.2 Domestic HVAC Load Management for Customer’s Energy Cost 

Minimization 

Chapter 4 discusses about different frameworks in publications [II]-[IV] to enable 

HVAC load management to minimize the customer’s energy expenses. A tool for opti-

mal scheduling of HVAC load in energy market is introduced in [II]. Next, price and 

demand uncertainty features are added in the modified tool in [III] which enables real-

time HVAC load management. Finally, to address the problem of activating DR in bal-

ancing market, a two stage framework is presented in [IV] which enables co-optimiza-

tion of energy attainment in energy market and also enables unleashing of  flexibility in 

balancing market. 
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Publication [II] develops a unique framework for optimal scheduling of HVAC load 

which are integrated with partial thermal storage. The proposed DR control optimally 

coordinates the direct electric heating and partial thermal storage and results in mini-

mum energy payment.  The model takes into account the day-ahead announced energy 

prices and optimally schedules the HVAC load to reduce the customer’s energy pay-

ment. The simulation results demonstrated that that the duo of partial thermal storage 

together with thermal inertia of the house can offer much flexibility in DR control. The 

proposed model can easily be integrated at the household level for better utilization of 

distributed energy resources under the Smart Grid scenario. 

Publication [III] proposed a generic framework for real-time HVAC load management 

amid price and demand uncertainty. The proposed tool aims at minimizing a weighted 

sum of the expected energy payment, loss of user thermal comfort, and financial risk of 

a customer while strictly considering the end user preferences. The design works on a 

rolling horizon criteria. As the price and demand information is gradually revealed over 

time, the scheduling of HVAC system is updated accordingly. The model achieves a 

fair tradeoff between expected energy cost, thermal comfort, and financial risk while 

the user preferences are respected at all times. The proposed decision mechanism is 

formulated with flexibility, and can be easily be integrated into home load management 

system. 

Publication [IV] address the problem of tapping DR through HVAC load in balancing 

market for the customers who are already enrolled in DR programs in energy market.  

The publication [IV] presents a hierarchical framework to enable customer’s participa-

tion in both energy market and balancing market. The framework featuring 2-stages 

allows the customers to co-optimize the energy attainment and possible reserving some 

ramping flexibility in balancing market. The numerical analyses established that the 

instigation of DR in balancing market will lessen the customers’ total energy payment. 

1.3.3 Domestic HVAC Load Management for Wind Generation Balanc-

ing 

In Chapter 5, the focus is on the problems of HVAC load scheduling in systems with 

high penetration of intermittent renewable generation. The last three publications [V]-

[VII] discuss about the possible benefits and realization of DR through HVAC loads in 

the presence of large scale wind generation.  

The publication [V] presents a unique centralized framework for realizing the HVAC 

DR potential for wind generation balancing. The proposed model manages the con-

sumption of population of HVAC loads to tackle the variability of wind generation. The 

thermal comfort penalty is explicitly integrated in the objective function in order to 

oblige different customers’ thermal preferences. Performance of the model is demon-

strated though several case studies and sensitivity analyses representing typical Finnish 

system. The simulations results suggested that cyclic operation of HVAC load can be 

scheduled to facilitate the time-varying wind power balancing without foregoing the 

customers’ thermal preferences. 

In [VI], a new tool is developed to activate DR through HVAC loads in collaboration 

with network real-time thermal rating (RTTR) for increased utilization of distributed 
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generation (DG). The tool contains an optimization model that manages the population 

of heating, ventilation and air conditioning (HVAC) loads for wind power balancing 

considering the RTTR of a distribution network. The performance of the design is 

demonstrated by performing a set of simulations on a typical Finnish distribution net-

work plan. The results indicate that significant benefits can be realized by optimally 

harmonizing the DR and RTTR in a distribution network for wind generation balancing. 

The last publication [VII] presents a framework for optimizing the DR applications in 

tandem; namely, energy cost reduction and wind generation balancing. The tool con-

tains a formulation to manage the population of HVAC loads for optimizing the benefits 

of domestic DR in energy market and for wind integration services. The analysis which 

is conducted on a typical Finnish system indicates that joint optimization of DR services 

is beneficial as it facilitates energy cost savings along with better wind integration. 

1.4 Dissertation Outline 

The rest of the dissertation is organized as follows.  

In Chapter 2, preliminary basics are discussed. 

Chapter 3 investigates the influence of customer’s temperature preferences on HVAC 

DR potential for up/down ramping [I]. A mathematical framework is presented and then 

case study is performed for different seasons and the associated DR potential is evalu-

ated.  

Chapter 4 presents the design and application of a tool for HVAC load management for 

customer’s energy cost minimization [II]-[IV]. The HVAC system under study is a elec-

tric space heating load integrated with partial thermal storage. At first, an optimization 

problem is formulated to minimize the customer’s electricity payment in a situation 

where energy prices are announced on a day-ahead basis. Next, the uncertainty issues 

are tackled by proposing a generic decision mechanism which allows user to tradeoff 

between expected electricity payment and financial risk due to the uncertain price and 

demand. The activation of DR in balancing market to bring maximum energy cost sav-

ing is also considered by proposing a two-stage framework for HVAC load manage-

ment. 

Chapter 5 discusses the potential benefits of HVAC load management in presence of 

large scale intermittent generation [V]-[VII]. At first, framework for activating DR for 

wind generation balancing is introduced. Then RTTR features of network are added in 

the modified framework. The efficacy of both the optimization tools is also exemplified 

by suitable case studies. Lastly, a tool for optimizing the DR services, namely, customer 

energy cost reduction and wind integration from the perspective of electrical aggregator 

is developed.  

Finally, the dissertation is concluded and some potential future work is introduced in 

Chapter 6. 

The publications [1]-[VII] are attached in the Appendix. 
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2. Preliminaries 

2.1 Introduction 

This section provides the backgorund information relevant to the dissertation regarding 

the demand response (DR), building thermal models, real-time thermal rating (RTTR) 

and wind output model. 

2.2 Demand Response  

Demand response (DR) is an adapted demand which comes either as a result of price 

responsiveness or to prevent any power system jeopardy, according to the U.S. depart-

ment of Energy [4].  

DR can be viewed as a versatile tool that provides opportunity to electrical customers 

to alter their business as usual consumption profile. The monetary gains offered for ac-

tive participation is all the stimulus needed to respond [14]. DR presents quite a few 

advantages surrounding load profile flattening [15], [16], capital investment deferral 

[17], assets management [18], and system failure preemption [19]. To put it simply, DR 

enhances system efficiency and reliability by leading to changes in the consumption 

profile [20]. The umbrella of DR generally includes peak snipping, load shifting, valley 

filling, and flexible load shaping [21]. For example, load shifting refers to transferring 

energy consumption from peak periods to off peak periods. To achieve a high level of 

reliability and sturdiness in the system, peak snipping and valley filling can be done. A 

power system supplied with DR capabilities can decrease system costs, CO2 emissions, 

and price volatility through shifting power consumption to periods characterized by low 

prices and high intermittent renewable power production. 

2.2.1 Demand Response Programs 

DR shows potential in its techno-economical solutions to make electricity demand more 

flexible which allows private customers to alter their demand profiles to fit the needs of 

the energy supply [22]. In the DR programs, electric utilities provide some reward to 

their residential customers since they are increasingly flexible in timing their energy 

consumption. Additionally, utilities provide a signal to their customers (typically elec-

tricity price) that are intended to steer the power consumption so as to get an aggregate 

demand that better matches the needs of the power generation. In particular, DR can be 

sorted into two categories, Price based DR and Incentive based DR [4].  
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Price based DR  

Price based DR alludes to customer intentionally managing energy consumption due to 

varying prices [23]. Depending on the power system operator’s objective, the price sig-

nal can either be the actual power price or a replica power price. Furthermore, depending 

on the DR program, the price signal can be deterministic or stochastic. Price based DR 

can be grouped further into a real-time DR program, critical peak pricing DR program, 

and Time of Use (ToU) DR program. The most straightforward out of all of them is 

ToU, where customers are usually presented with two different price periods by utilities, 

specifically peak price and off peak price periods [24]. The goal is to transfer the max-

imum amount of consumption from peak to off peak periods to achieve system effi-

ciency, all the while giving customers financial benefits such as a reduced energy pay-

ment. However, in critical peak pricing, extra tariff is also applied during certain periods 

of the day. For instance, such tariffs are useful in extreme weather conditions when 

available generation may not be sufficient enough to meet the expected demand for a 

short duration. With the materialization of smart meter and advancements in ICT infra-

structure, bidirectional communication between customer and system operator is now 

achievable which allows customers to participate in the real time DR program. As the 

name suggests, the real time DR program includes power prices that reveal the actual 

situation of the electricity market and power system and are sent to the customer to 

respond. Electricity consumers are charged prices that typically rise and fall on an 

hourly basis and are broadcasted either day-ahead or hours ahead before the actual de-

livery time [25]. 

Incentive based DR  

Incentive based DR programs provide an opportunity for customers to gain financial 

rewards through modifying (load increment/decrement) consumption profiles. The goal 

of these programs is to control the energy consumption profile at times of peak periods 

or critical events [23]. These programs can also be advantageous since the DR magni-

tude from the customer can be anticipated in beforehand and thus give more flexibility 

to the operators in controlling the loads. However, customer preferences are violated in 

doing so and once in a while; even privacy is not taken into consideration. Key incen-

tive-based DR programs include direct load control, emergency DR, interruptible rates, 

and demand bidding or buyback. 

2.3 Residential Demand Response and HVAC loads 

For a long time, loads from large-scale industries have operated as reserves used for 

maintaining the power balance. For instance, in Finland, the primary focus was towards 

industries like forestry, metal and chemical industries for some DR applications [26]. 

However, with the advent of smart grid and ubiquitous strong ICT infrastructure, the 

demand-side management is a natural opportunity at the residential sector to enhance 

power system operational efficiency [27]. 

Substantial researches have advocated on the potential and activation of domestic DR 

[28]- [38]. Domestic appliances can be classified into (a) Critical appliances (b) Flexible 

appliances. Dishwasher, HVAC, electric water heater (EWH), electric vehicles, and 

washing machine are some major flexible appliances while lightning loads and televi-

sion are treated as a critical appliances due to their operational characteristic.  
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In terms of the DR treatment, the primary focus of this study will be on the domestic 

heating, ventilation and air conditioning (HVAC) load. The foremost reason for choos-

ing the HVAC loads for DR application is due to their prevailing share of yearly energy 

consumption as well as the large impact they have on the domestic daily load profile. 

For instance, in Finland alone, the share of HVAC in residential energy consumption 

sector is more than 70% annually [6]. Most importantly, customer comfort, which is 

regarded as the pillar of any successful DR program can be easily gauged as compared 

to other appliances. For example, for the case of HVAC load, the customer's thermal 

comfort is a function of a temperature dead-band; while in the case of other appliances, 

it is hard to characterize the adequate limits of the customer's comfort. Additionally, 

other than a smart thermostat, no extra hardware is needed for making use of the power 

postponement features of HVAC loads. 

The HVAC system under scrutiny is direct electric space heating/cooling (or simply 

HVAC) and HVAC integrated with thermal storage (commonly known as HVAC with 

storage). These installations have great thermal storage capacities like the hot water 

tank, and so they enable the shifting of energy demand without changing the customer's 

comfort level.   

2.4 Building Thermal Model 

2.4.1 1-Capacity Building Model 

 

                          

Figure 2.1.   1-Capacity building model. 

 

1- Capacity model is a simple model to assess the indoor temperature in a dynamic 

situation. In this model as schematized in Figure 2.1, the building fabric heat capacity 

and air heat capacity is grouped as one capacity amC . The indoor air node point is linked 

to the ventilation supply air temperature 
xT  through the ventilation air heat conductance

xH , to the ground temperature 
gT  through the conductance gH and to the external 

temperature 
eT through the joint conductance ameH of the external walls and the roof. 

Between the external temperature  
eT   and indoor air temperature 

aT , the infiltration 
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air flow is connected. Through this, an assumption can be made that the infiltration air 

has not been warmed in the structures and the penetrating air flow has the temperature 

of the external air. The infiltration is in parallel with the windows, which have an insig-

nificant thermal mass compared to the rest of the house envelope. To make the model 

more straightforward, a virtual conductance eH  between external and internal temper-

ature node points is produced for infiltration heat capacity flow and windows heat con-

ductance. In addition, the heating power hvacQ  is believed to be of convective nature 

and hence is distributed to the indoor air node point. Furthermore, the heat demand pro-

file would include the effect of internal heat gains from lighting household appliances 

and occupancy. The energy balance for the indoor air node point is given by (1). 

              am e ame

a
hvac a e a e

g

a g a x

x

dT
Q T T T T T T T T

dt
C H H H H           (1) 

The thermodynamic parameter values for a 1-Capacity model of a 180 m2 two-floor 

single family house insulated according to the minimum requirements of the Finnish 

2010 building code C3 [39] are given in Table 2.I. The structures of the house are me-

dium massive.  

TABLE 2.I    

1-CAPACITY BUILDING THERMAL PARAMETERS 

Parameter Value 

Tx 18 0C 

Cam 11918 kJ/0C 

He 52.33 W/0C 

Hame 41.26 W/0C 

Hx 87.43 W/0C 

Hg 15.54 W/0C 

 

2.4.2 2-Capacity Building Model 

 

                           

Figure 2.2.   2-Capacity building model. 
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The 2-Capacity model is a sophisticated model and has a reasonable accuracy in esti-

mating the indoor air changes in a dynamic situation as compared to 1-Capacity model. 

One of the capacities is distributed to the building fabric while the other is distributed 

to the indoor air. Figure 2.2 illustrates the structure of the model.  

There are two unknown temperatures by the name of 
aT  which is the indoor tempera-

ture, and 
mT  which is the building fabric or mass temperature. Additionally, 

eT is the 

external outdoor air temperature, 
xT is the ventilation supply air temperature and 

gT is 

the ground temperature. The temperature node points are attached through heat con-

ductances or when there is an air flow they are connected by a heat capacity flow. The 

infiltration (or exfiltration) air flow is linked between the external temperature and in-

door temperature. From this an assumption can be made that there is no warming of the 

infiltration air in the structure and the penetrating air flow has same temperature as the 

external air. The windows are in parallel with the infiltration which have an insignificant 

thermal mass in comparison with rest of the building envelope. To break the model 

down further, a virtual conductance eH  between external and internal temperature node 

points is produced by adding up the infiltration heat capacity flow and windows heat 

conductance. The greatest thermal inertia of the building structures mC  is grouped in 

the mass node point which is from the external side joined to the outdoor air through 

the conductance yH  and from the internal side to the indoor air through the conductance 

mH . Heat conduction in the solid wall material and convection on the surface is in-

cluded in both conductances. The mass node point is situated in the undefined depth 

inside the building structure and embodies a type of mean temperature of the building 

mass. It has no physical equivalent and thus has a more supplementary role in the model. 

Even though the thermal capacity of the indoor air aC  is much smaller than the building 

mass mC it still has a vital part in an application where the dynamics of the indoor air 

temperature is of chief concern. The indoor air node point is connected to 
xT  through 

the ventilation air heat capacity flow xH  and to the 
gT through the conductance gH . 

Since the heat capacity is included in the mass capacity, there is no separate counterpart. 

Moreover, Figure 2.2 portrays the idea that the heating (or cooling) power generated by 

the building HVAC system is presumed to be of convective nature and is therefore al-

located to the indoor air node point. The energy balance for the indoor air node point 

can be represented by the following state space equation. 
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The above state space model can be transformed into approximately equivalent discrete 

time model and is given by the following set of equations. 
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  (4) 

The thermodynamic parameter values for a 2-Capacity model of a 180 m2 two-floor 

single family house insulated according to the minimum requirements of the Finnish 

2010 building code C3 [39] are given in Table 2.II. The structures of the house are 

medium massive.  

 

TABLE 2.II  

2-CAPACITY BUILDING THERMAL PARAMETERS 

Parameter Value 

He   52.2 W/oC 

Hy 59.4 W/oC 

Hm 928.8 W/oC 

Hx 9 W/oC 

Hg 86.4 W/oC 

Ca  2.3 MJ/ oC 

Cm 20.2 MJ/ oC 

Tx 18 0C 

 

2.5 Wind Model 

 

 
Figure 2.3.   Wind power output profile of a 50 kW wind turbine. 
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A simple model (5)-(7) can be used to attain the active power generated by a wind tur-

bine [40]. The hourly wind generation profile for a year from 50 kW turbine, depicting 

the large fluctuations in the wind output can be shown by Figure 2.3. The Finnish Me-

teorological Institute [41] provides a wind generation profile that is based on the hourly 

wind speed for a year. 
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where, 

wP is the active power output of a wind turbine (kW) 

ww is the wind speed (m/s) 

cw is the wind speed corresponding to cut in speed  (m/s) 

rw is the wind speed corresponding to rated power  (m/s) 

rP is the rated power of a wind turbine (kW) 

K is a constant 

wm is the variable that provides a level of freedom to curtail wind generation through         

regulating blades  

 

2.6 Real-Time Thermal Rating  

In the rising active distribution network, where the loading is highly stochastic, there is 

a concern among utilities to exercise their assets to the fullest. The real-time thermal 

rating (RTTR) system allows an active distribution network to run closer to an overload 

state without harm but more significantly, it enables the utilization of favorable condi-

tions appropriated by environmental factors [40]. The basic principle in RTTR systems 

is that the total maximum loading capacities of underground cables, overhead lines, and 

transformers rely on the thermal limits of their insulation. The thermal states of their 

insulation are also reliant on the changing environmental conditions like wind speed, 

outside temperature and solar irradiation, nonetheless, one  needs appropriate dynamic 

thermal models to convert the loading and environmental effects into thermal states of 

the components.  
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3. HVAC DR Potential for Up/Down Ramp-

ing 

This chapter focuses on the task 1 of the dissertation (Tasks are defined in Chapter 1). 

This chapter provides an overview of availability of the demand response (DR) through 

heating, ventilation and air conditioning (HVAC) load which can be tapped to tackle 

power system stress conditions without violating preset customer temperature prefer-

ences.  

3.1 Introduction and Literature Review 

Because of the greater access to fluctuating renewable energy sources, the need for bal-

ancing power would profusely increase in future grids [42], [43]. As a result, DR with 

its various economic and environmentally-friendly advantages, is an effective tool in 

dealing with this enormous issue [44], [45]. The HVAC load is a part of the highest 

form of electricity usage and accounts for 70% of total energy consumption of the build-

ings in Finland. Consequently, its operation can be altered without causing inconven-

ience to the consumers as long as the control scheme is rational. This is due to the fact 

that the thermal masses of building structures operate as a source of storage buffer be-

cause of the slow thermal dynamics of the building fabrics.  

In literature, HVAC load scheduling in a smart home, along with other potential ther-

mostatic controlled appliances, have gained a lot of attention [46]-[58]. For example, a 

control algorithm for water heater load management with a consideration to user pref-

erences to minimize energy expense has been presented in reference [46]. The authors 

of [47] established the idea of optimizing the HVAC load and electric vehicles operation 

to obtain a balance between user comfort and energy expenditure. The work [48] studied 

a feasible but suboptimal control strategy for HVAC load management to bring favora-

ble DR. The work presented in [49] included different price-based DR algorithms for 

controlling the HVAC load using hardware-in-the loop simulations. In [50], a hardware 

implementation that includes domestic smart air-conditioning unit systems was studied 

and presented in detail. Overall, even with all these referenced works, there is still im-

mense need to gain a deeper understanding of the availibility and flexibility of HVAC 

load. However, there are a few articles that give insight on this area. For instance, the 

authors in [51] established the DR potential of EWH to handle a minimum generation 

situation, whereas, authors in [52], [53] measured the load reduction potential of electric 

space heating systems. The work in [54] presented a methodology to enumerate the DR 

flexibility of domestic thermostatically controlled appliances. However, thermal models 

employed are too simple for real-world applications. The study [55] presented the DR 

potential of domestic ventilation system in Nordic countries. The work [58] reported the 
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ramping rate flexibility of domestic air-conditioning and refrigeration for provision of 

reserve services 

Prior to [I], neither of the works offer a wide-range estimation of upward/downward DR 

potential of residential HVAC load. 

3.2 Proposed Formulation 

This section presents a mathematical formulation for evaluating the DR potential. The 

method aims at managing the HVAC load such that maximum availability occurs during 

the DR event period without compromising on user temperature preferences. The ob-

jective function (8) can be mathematically stated as: 
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where,  

startt is the event driven DR starting time 

 t   is the index of time 

T  is the set of time 

endt  is the event driven DR ending time 
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  denotes the binary variable (1 for upward DR, 0 for downward DR)  

tW  is the coefficient representing load  adjustment priority at time t 

c

t

hvaP is the electrical power of HVAC unit at time t (kW) 

,max  hvacP is the power rating of HVAC unit (kW) 

, w

t

ch dhP is the charging power of domestic hot water unit at time t (kW) 

, ,maxch dhwP is the power rating of domestic hot water unit (kW) 

t represents the demand limit at time t (kW) 

t  is the time interval (hours) 

lhE is the energy demand during optimization horzion (kWh) 

set

tT denotes the set point temperature of dwelling at time t (oC) 

  is the internal temperature dead-band (oC) 

a

tT  is the indoor ambient temperature of dwelling at time t (oC) 

tSoC  represents the state of charge of thermal storage at time t 

minSoC  is the minimum allowable state of charge of thermal storage   

maxSoC  is the maximum allowable state of charge of thermal storage 

capE  is the maximum thermal storage capacity (kWh) 

hvac
tQ is the HVAC thermal output power at time t (kW) 

,maxhvacQ is the rated thermal output power of HVAC (kW) 

t  denotes the storage thermal losses at time t (kWh) 

  is the storage loss coefficient 

 

The maximum rating of HVAC load and domestic hot water system are bounded by (9) 

and (10) respectively. The rated output power of HVAC is bounded by (11). The con-

straint (12) bounds the maximum hourly demand while (13) ascertains the total energy 

requirement is fulfilled. The upper and lower indoor ambient temperature is respected 

by (14). The evolution of the stored energy in thermal tank is given by (15) while SoC 

of thermal storage is bounded in (16). The thermal losses are determined by (17). 

 



36 

 

 

Figure 3.1.    Downward DR capability of HVAC load (without Storage) versus temperature dead-band. 

(a) Winter (b) Spring (c) Summer 

 

3.3 Case Study and Results 

A typical medium massive structure house as schematized in Figure 2.2 is considered 

for the case study. The analyses are conducted for three distinct weather profiles [I] 

representing spring, winter and summer conditions. The optimization problem formu-

lated in Section 3.2 is solved via the general algebraic modelling system (GAMS) [59] 

environment first for two case studies designated as Case 1(downward DR capability) 
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and Case 2 (upward DR capability) for HVAC. After this, in the latter part of this sec-

tion, the effect of integrating thermal storage with HVAC on DR is investigated. For the 

basic case study we presume that the DR event period is between 13:00-16:00 during 

the day and the priority of each hour of that period is same. The indoor temperature set 

point is presumed to be 20oC. 

The downward DR capability is illustrated in Figure 3.1 with 3 distinct weather profiles 

of a year, specifically winter, spring, and summer respectively, where each result is then 

compared with the base case i.e., no DR. An observation can be made on the fact that 

the heat from thermal masses of building structures is radiated as the demand is either 

postponed or preponed such that the highest load reduction occurs during the DR event 

period without risking user temperature dead-band partialities. As user preferences of 

indoor temperature dead-band gets flexible, the downward DR potential is increased. 

The subplots of Figure 3.1 illustrate the indoor temperature in various scenarios of tem-

perature dead-band preferences. Notably, the quality of service and temperature prefer-

ences for users is not debased and is given the utmost consideration.                 

Table 3.I shows the downward DR potential as fraction of the heating demand during 

different seasons of the year. The results describe that the maximum percent share of 

load reduction is obtained during mildly cold weather or summer time. In contrast, if 

the dead-band range in not that flexible, partial load reduction can be attained in severe 

weather conditions. As expected, the load adjustment potential increases with the 

greater flexibility in indoor temperature deviation.  

 

TABLE 3.I    

 HVAC DOWNWARD DR POTENTIAL (%) 

Temperature 

Dead-band 

(oC) 

Winter Spring/Autumn Summer 
 

1 32.62 68.48 82.67  

2 69.22 97.67 100.00  

3 90.00 100.00 100.00  

 

Given that the heating load is dominating during winter periods, it is crucial to gain an 

understanding of downward DR versus different deferment periods, particularly during 

the cold winter weather. Figure 3.2 portrays the load deferment potential of HVAC loads 

functioning with 3 different temperature dead-band settings assuming an avg. outside 

temperature of -7 0C. The results confirm that maximum load reduction can be achieved 

for a couple of hours even in unfavorable cold climates with a flexible temperature op-

erating range. It is clear that the longer the interruption duration, the lesser the shifting 

potential. 
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Figure 3.2.   HVAC load deferment potential during winter weather. 

 

                  

Figure 3.3.   Upward DR capability of HVAC load (without storage) versus temperature dead-band. (a) 

Winter (b) Spring (c) Summer 
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Next, a case (Case 2) investigated the role of HVAC as a power sink during different 

times of the year. Given the user indoor temperature preferences, the question of how 

to determine the maximum load that can be stored in building masses during the DR 

event is also discussed. The impact of temperature dead-band on the upward DR flexi-

bility of HVAC loads w.r.t different outside weather profiles is exemplified in Figure 

3.3. The operation profiles of HVAC loads show that during 13:00-16:00 hours, the 

HVAC endeavors to store energy in building structures by increasing its power, partic-

ularly in order to absorb the maximum power. As expected, user temperature settings 

are the most sensitive boundaries and they control the degree of energy that can be 

stored in building thermal masses. 

The maximum amount of load that can be increased during the DR event for different 

dead-band settings is listed in Table 3.II. These results reveal that because of the high 

thermal inertia of the building, the capability for the upward DR through HVAC load is 

enormous, regardless of the outside weather profile. However, the restrictive factor for 

storing heat in the building is the rated power of the HVAC. 

 

 

TABLE 3.II    

 HVAC UPWARD DR POTENTIAL (%) 

Temperature 

dead-band 

(oC) 

Winter Spring/Autumn Summer 
 

1 40.7 51.3 36.7  

2 40.7 106.3 58.6  

3 40.7 106.3 58.6  

 

HVAC integrated with thermal storage 

Finally, an analysis is conducted to determine the load adjustment potential when ther-

mal storages are incorporated with the HVAC system. Hot water stored in the thermal 

storage tank is used for domestic use and space heating purposes. The thermal storage 

losses are ignored since the storage losses of a commercially available thermal storages 

are minimal [60]. The thermal storage capacities are represented as a fraction of total 

demand of a typical winter day. So for the sake of safety, the minimum storage levels 

are restricted to be 10% of the total capacity. Additionally, the initial level of storage is 

considered to be 25% of the storage level. Given that the thermal storage can contain 

heat energy that can be used for later operation, a larger DR duration period is selected. 

Unlike earlier base cases where each hour of DR event has equal priority, here the var-

ious hours were assigned distinct priority weights. 

The influence of various storage capacities on the load adjustment potential for winter 

and spring, are represented in Figure 3.4. Figure 3.4a portrays the downward DR poten-

tial of the HVAC system, equipped with a thermal storage. It is obvious that storage 

scheduling is done in a manner that allows for maximum discharging during hours that 

are assigned the highest priority for downward DR. The result shows that the larger the 

storage capacity, the greater the potential for offsetting the energy demand. During 
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spring time, the potential is comparatively higher because of the smaller heat demand. 

The charging profile of the thermal storage when the purpose is to maximize the upward 

DR during priority hours is depicted in Figure 3.4b. In this instance of power sinking, 

the full storage surpasses the partial ones due to the greater capacity and higher charging 

rate. However, the partial and full storage follow relatively the same scheduling profile 

during mild weather. Naturally, the fixed potential of 100% thermal storage is larger 

than a 25% storage capacity tank. 

 

              

Figure 3.4.   DR potential of HVAC load integrated with thermal storage (a) downward DR (b) upward 

DR. 

 

 

Figure 3.5 displays the load adjustment potential of HVAC load with storage. The par-

tial storage (25%) has the least DR potential during winter times, while a full storage 

can offset the load for 12-14 hours even during cold weather. 

 

 

 

(a) 
 

 

(b) 
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Figure 3.5.  Load adjustment potential of HVAC integrated with thermal storages during winter. 

 

3.4 Concluding Remarks 

In this chapter, the flexibility of domestic HVAC loads to provide up/down DR is quan-

tifed while considering the customers temperature preferences. A mathematical model 

is setup to investigate the DR potential considering user temperature preferences. The 

obtained results suggested that the flexibility to provide DR is affected by the heat de-

mand requirements and customer’s temperature preferences. DR flexibility has a strong 

correlation with temperature dead-band and potential subdued during extreme weather. 

The upward DR is strongly limited by power ramping capability and thermal comfort 

limits. HVAC systems with storage provide more flexible operation for up/down DR. 

The proposed framework wil help the aggregator to prepare upward/downward DR flex-

ibility bids in order to activate them in balancing markets for economic gains. 
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4. HVAC Load Management for Customer’s 

Energy Cost Minimization 

 

Chapter 4 focused on the frameworks for heating, ventilation and air conditioning 

(HVAC) load management for customer’s energy cost minimization under different sce-

narios. This chapter addresses the application of decision frameworks for customers to 

minimize their energy payment (Task 2). After the introduction and relevant literature 

review, an optimization tool is designed for HVAC load management for customer’s 

cost minimization assuming price and demand to be certain during optimization hori-

zon. Next, uncertainty and risk features are added to modify the decision model and 

make it more generic. Lastly, problem of activating demand response (DR) in balancing 

market is addressed by presenting a hierarchial framework which allows the customers 

to maximize economic gains. 

4.1 Introduction and Literature Review 

All around the world, power systems are facing the challenge of the integration of in-

termittent renewable generation with numerous forms of distributed energy sources. 

This generates urgent requirements for optimization of power system operations. DR  

[3], [61] is one major piece of technology which may respond to this challenge.   

Due to the increase of interest in residential DR, many researchers have looked towards 

domestic thermostatic load management. Authors in [62] researched a linear program-

ming approach for storage control under dynamic power pricing to lower the customers’ 

energy payment. Optimization of the energy storage scheduling to accomplish the same 

cost minimization objective is described in [63]. The authors of [64] also utilized the 

building thermal dynamics to maximize the profit of a micro grid including intermittent 

renewable generation. In the context of home load management, sources [65], [66] op-

timize the HVAC and domestic hot water consumption under a real-time pricing envi-

ronment, nonetheless thermal dynamic models employed are too simplistic for real-

world applications. An investigation was conducted in [67] of the economic advantages 

of HVAC integrated with solar storage facility in a home load management context. The 

research in [68] describes a dynamic programming approach that was used for the opti-

mization of an ice storage air-conditioning system. The work in [46] established a model 

for optimally scheduling the electric water heaters (EWH) derived from price and con-

sumption forecasts without violating the consumers’ thermal comfort. The authors of 

[34] explored the real-time DR control for smart home load management. To bring cus-

tomer's economic savings, the authors of [47] facilitated the load management of HVAC 
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and electric vehicles. The proposed DR model assesses the cost of discomfort and tem-

perature preferences; nevertheless, the framework does not take the uncertainty and risk 

issues under consideration. Generally, these existing research works consider the 

HVAC and thermal energy storage in separation, whereas the possible benefits of col-

laboration of HVAC and thermal energy storage for DR applications has not been in-

vestigated. Moreover, in view of the above literature survey, it can be concluded that 

the research reported in the literature lacks a generic framework for the HVAC load 

management accounting customers thermal comfort, uncertainty and risk issues to-

gether while employing accurate thermal models. 

In addition, despite its importance, the realization of HVAC DR in the balancing market 

has not been assessed well in the literature. However, the focus has been on evaluating 

the DR potential of domestic thermostatic loads in the balancing power market. For 

example, the work in [69] considers customers temperature preferences when investi-

gating the system-wide power balancing potential through the EWH  

load. The results given are important, nevertheless the control scheme for managing the 

load is non-optimal thus, to execute the same regulation services, a large number of 

EWH are needed. To address this inadequacy, the authors of [70] measured the HVAC 

load potential for providing intra-hour power balancing services in the regulating power 

market. The research documented the considerable capability of the HVAC load for the 

power balancing reserve. Sources [45], [71] also described the potential of overseeing 

the thermostatic load for different ancillary services in balancing power market. The 

articles showcased that the thermostatic load aggregation in the balancing power market 

can be advantageous from the customer’s and system's perspective. The authors of [72] 

developed a novel temperature set point control algorithm for EWH control for mitigat-

ing the power system disturbances. The research revealed that registering the load in the 

balancing market for power regulation can be a major enabler to increase the operation 

of intermittent generation in energy mix. The viability of releasing up/down regulation 

services from commercial HVAC loads is described in [73]. A centralized control mod-

ule that offers continuous up/down regulation services in the balancing market is de-

vised by the authors of [74]. The majority of the aforementioned articles measured the 

potential benefits of HVAC and EWH loads in the balancing market but did not com-

prehensively discuss the rational realization and establishment of this DR potential in 

the regulating market. Furthermore, the idea that a residential consumer can mutually 

participate in the energy and balancing power market by co-optimizing the energy at-

tainment and storing some up/down flexibility in the balancing market with regards to 

preferences and thermal comfort was also not included in most of the works. Therefore, 

a comprehensive model is necessary to realize the total potential of DR considering 

customer preferences and the problem itself is tackled in [75], [76].  

The above reviewed literature survey indicates that a systematic joint model of both 

dwelling and thermal energy storage which is appropriate for unleashing the maximum 

benefits is needed. Morover, appropriate tools for HVAC load management is needed 

which can thoroughly account for customer’s thermal comfort and financial risk prefer-

ences. Furthermore, the idea that a residential consumer can mutually participate in the 

energy and balancing power market by co-optimizing the energy attainment and storing 

some up/down flexibility in the balancing market requisites attention too. 
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4.2 Optimal DR through HVAC Load Integrated with Partial 

Thermal Storage 

This section presents a decision framework for optimizing the DR control of HVAC 

load integrated with partial thermal storage. The objective of the proposed framework 

is the optimal collaboration of direct electric space heating (HVAC) and partial thermal 

storage in order to lessen the customer’s energy payment without sacrificing customer’s 

temperature preferences. In the proposed model, 1-Capacity building model as schema-

tized in Figure 2.1 is employed to estimate the space heating requirement. The proposed 

optimal strategy is scrutinized by performing simulations. The analysis results exhibit 

that the duo of partial heat storage together with thermal inertia of the house can offer 

much flexibility in load scheduling.   

4.2.1 System Model 
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Figure 4.1.   System model. 

 

The house’s thermal model and thermal storage are coupled for the application of DR 

as shown in Figure 4.1. The thermal energy storage can be charged via TSP during val-

ley price period to reserve the heat energy for later use during peak price hours. In case 

of an inadequate state of charge, SoC, of thermal storage to meet the heat demand q, the 

power may also be directly delivered to the house for heating via DEHP . The thermal 

masses of the building structures can act as a buffer and would be exploited if the SoC 

of thermal storage is insufficient during peak price periods. This heat released from the 

thermal masses of building structures is termed as mQ . The disproportionate utilization 

of thermal masses of the building structures is limited by the allowable indoor temper-

ature Ta. The formulation of the optimal DR tool is discussed in the following section. 
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4.2.2 Proposed Optimal DR Control 

The objective of the proposed tool is to optimize the HVAC load integrated with partial 

thermal storage to minimize the customer’s total energy cost without violating the cus-

tomer’s temperature preferences.  
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where, 

e
tC  is the electricity wholesale price at time t (€/kWh) 

TS
tP  denotes the charging power of thermal storage at time t (kW) 

,maxTSP is the rated power of thermal storage (kW) 

DEH
tP  represents the electrical power of direct electric heating system at time t (kW) 

,maxDEHP denotes the rated power of direct electric heating system (kW) 

p
tX  is the penalty price for altering the set point temperature of dwelling at time t     

(€/kWh) 

m
tQ  is the heat released from the thermal masses of building structures at time t (kW) 

t   is the index of time 

T  is the set of time 
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tq is the expected heat demand at hour t (kWh) 

t is the time interval (hours) 

lhE is the energy demand during optimization horzion (kWh) 

tSoC  represents the state of charge of thermal storage at time t 

minSoC  is the minimum allowable state of charge of thermal storage 

maxSoC  is the maximum allowable state of charge of thermal storage 

 

To make sure that stored energy in the thermal storage is used first, the penalty price 

(the latter term) is affixed in (18). The direct control, for instance releasing heat out of 

the house masses, is to be expected when the SoC of thermal storage is insufficient 

during critical periods. Any value provided can be taken by the penalty factor if it is 

smaller than the price difference of shifted hours. Furthermore, the aggregator compa-

nies may set and adjust the penalty price derived from contracts with consumers and it 

could be viewed as compensation to consumers. Nonetheless, the study does not focus 

on how detailed subject of setting the penalty price is connected to electricity markets.  

Constraints (19) and (20) bound the rated power of direct electric heating and charging 

power of thermal storage respectively. The constraint (21) bounds the heat relased from 

the thermal masses. Constraint (22) describes the SoC evolution and (23) ascertains the 

bounds on SoC. Constraint (24) ascertains that the total energy demand requirements 

are fulfilled. Whereas, the constraints in (25) establish that the total heat taken from the 

thermal masses of the building structures to be restored within finite duration. 

4.2.3 Model Implementation 

The execution of this proposed optimal DR control does not call for any expensive hard-

ware. A form of two-way communication is necessary between the load control center 

and homes and is required to be incorporated with the existing thermostats to control 

the room temperatures as well as the charging of the thermal storage. A survey can be 

performed by the aggregator company to record a customer's occupancy and the ther-

modynamic parameters of house and storage. The customer sets the indoor air temper-

ature and allowable thermostat dead-band they require which is then sent to the load 

control center through a communication channel. This load control center optimizes the 

heat load management derived from the spot price/penalty price and user preferences; 

and sends the signal to the smart thermostats to manage the indoor air temperature and 

thermal storage charging accordingly. It is a rolling process and the aggregator compa-

nies provide compensation to customers who participate in the DR program.  
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4.2.4 Case Study and Results 

A case study is performed in order to investigate the proposed DR tool for a single house 

scenario in Finland. The hourly spot prices are taken from Nordpool [77]. The indoor 

temperature set point is presumed to be 20oC. The optimization problem is solved using 

linear programming solver in MATLAB. The resultant HVAC scheduling given differ-

ent storage sizes are illustrated in Figure 4.2, Figure 4.3 and Figure 4.4. 

 

 

Figure 4.2.   Optimal DR control of HVAC with 40% Thermal Storage. 

 

 Figure 4.2 depicts the idea that the larger the thermal storage integrated with HVAC 

systems, the greater the flexibility in heat load management. With larger-sized thermal 

storages, the heat is not taken from the thermal masses of building structures. As an 

alternative, the scheduling of thermal storage is such that the stored heat in the storage 

tank coast the peak price periods effortlessly and therefore the heat transfer between the 

building structures and indoor air is prevented. There will be no loss of comfort since 

the hourly indoor ambient temperature will be held constant.  

In contrast, as illustrated by Figure 4.3, the DR optimization model exploited the flexi-

bility of HVAC, in the case of smaller storages (≤ 20%), by employing the heat stored 

in the storage and in the building structures. Evidently, the thermal masses of building 

structures is only used during peak periods and they work together with the thermal 

storage only when the SoC of thermal energy storage is not sufficient enough to coast 

the peak price period. The thermostat set point governs the heat stored and released in 

the thermal masses of building structures. While, utilizing the thermal masses of build-

ing structures results in the change in indoor temperature, there is a small loss of comfort 

however the internal tempearture dead-band stayed within the permissible limit (± 2 
oC).  
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Figure 4.3.   Optimal DR control of HVAC with 20% Thermal Storage. 

 

 

 

Figure 4.4.   Optimal DR control of HVAC without Thermal Storage 

 

Figure 4.4 describes that when there is no storage, the DR control oversees the direct 

electric space heating load by changing the set point within the permissible temperature 

dead-band. The pre-heating of the house envelope is done optimally, before peak peri-

ods take place.  

In all cases, as the internal temperature dead-band changed within tolerable limits, the 

thermal comfort has not been impinged upon. The optimal control efficiently links the 

DR potential of direct electric space heating and thermal storage. Evidently, the effect 

of thermal storage on the flexibility of DR control is proven in the simulation results. 

The DR potential of sufficient storage level is enormous; however minimum storage 

capacity is more practical too than having no storage at all. Ultimately, larger storages 

have more flexibility in responding to price variations while low capacity stages are 

prone to operating close to and between their extreme limits. 
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Table 4.I appraised the economic benefits of DR controls and compares them with the 

business as usual (without DR). The ‘Limited DR strategy’ refers to the strategy where 

thermostat set point control is not utilized. In other words, the thermal masses of the 

building structures were unutilized in that strategy. Notably, partial storage space heat-

ing load can bring considerable DR potential regardless of having low size storage. 

 

TABLE 4.I     

COMPARISON OF CUSTOMER ENERGY COST SAVINGS UNDER DIFFERENT DR STRATEGIES 

 

 

4.3 HVAC Load Management Considering Uncertainties and 

Risk 

 

In the previous section, a tool for managing HVAC systems in energy market was pro-

posed. However, with the materialization of smarter control technologies and intermit-

tent generations, the expectation that real time prices will be the most common tariff in 

the future seems even more likely. The price and load uncertainty could create a major 

problem in scheduling ahead of time and can be an influential factor for customers to 

register in real time based DR programs [25]. Usually, customer participation in DR 

programs is influenced by the monetary risk imposed by the price and demand uncer-

tainty. This section proposes a decision framework for real-time DR through HVAC 

load amid price and demand uncertainty. The optimization model selects the best com-

bination of expected cost, risk and thermal comfort given the predefined user prefer-

ences. To showcase the performance of the proposed tool, simulations are performed 

considering a typical medium massive structure as schematized in Figure 2.2.  

4.3.1 Proposed Optimization Model 

The proposed generic framework offers a tool for customers to manage HVAC load all 

the while taking into account a customer's comfort level and risk priorities. It is expected 

that a residential customer would have different priorities when it comes to energy cost, 

financial risk hedging and thermal comfort. A multi-objective function is modeled to 

prove an opportunity for residential customers to choose the arrangement that best fits 

their needs. Risk aversion, uncertainty and customer dissatisfaction is considered by the 

developed scheduling tool in the decision making. A scenario based stochastic program-

ming approach is used to deal with the price and load uncertainty [78]. The greater the 

number of scenarios, the better the accuracy of solution, nonetheless this occurs at the 

DR Strategies HVAC load without 

Storage 

HVAC with 20%  

Storage 

HVAC with 40%  

Storage 

Proposed strategy 

 

5.51 % 38.2 % 46 % 

Limited DR strategy 

 

0 32.8 % 46 % 
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cost of model complexity, and thus it is too cumbersome for practical applications. Nev-

ertheless, techniques such as scenario reduction [79], [80] may come handy when it 

comes to the reduction of the number of preliminary scenarios without disparagingly 

compromising the solution accuracy. In this section, however, normal probability den-

sity function which is then casted into 7 probable discrete scenarios has been used to 

model the uncertainties. Consequently, the possible scenarios are generated and then the 

optimization problem is worked out through all the scenarios. The flow diagram of the 

proposed framework is exhibited in Figure 4.5. The framework includes following 5 

modules: 

 

Begin, t=1

Set customers 

preferences 

Expected power price
 Expected outside 

temperature

Scenarios generation

Optimization

Results 

accumulation

 t=24?

End

 t++

Module 2

Module 3

Module 4

Module 5

Module 1

Yes

No

 

Figure 4.5.   Flow diagram of the proposed decision framework. 

 

•Module 1: In this basic module, input data associated with the framework such as 

power prices and outside temperature are loaded. 

•Module 2: For modeling the uncertainty, probable scenarios are generated in this mod-

ule based on the well-known 7 piece approximation of normal probability density func-

tion. Furthermore, customers’ thermal comfort and risk priorities as well as ambient 

temperature preferences are gathered which serve as input constraints of the DR model.  

•Module 3: This module deals with the following optimization model to achieve the 

trade-off between customer’s energy payment, thermal comfort and risk.  

The objective function (26) can be mathematically stated as: 
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c
t tSoC S toC E P Q t T         (34) 

 min max  ,  tSoC SoC SoC t T      (35) 

 ,max0 , hvahvac
t

cQ Q t T      (36) 

   1 ,    t tSoC t T       (37) 

where, 

expectedZ is the customer’s expected energy cost (€) 

  represents the weighting coefficient between expected electricity cost and discomfort 

cost 

  is the weighting coefficient between expected electricity cost and financial risk  

LoC is the loss of thermal comfort 

f  is the financial risk (€) 

( )prob   is the probability of scenario   
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e
tC  is the electricity wholesale price at hour t (€/kWh) 

c

t

hvaP is the electrical power of HVAC unit at time t (kW) 

,max  hvacP is the power rating of HVAC unit (kW) 

t   is the index of time 

T  is the set of time 

t is the time interval 

  is the index of scenario 

L is the set of scenario 

lh  is the length of optimization horizon 

t represents the demand limit at time t (kW) 

lhE is the energy demand during optimization horizon (kWh) 

set

tT denotes the set point temperature of dwelling at time t (oC) 

  is the internal temperature dead-band (oC) 

a

tT  is the indoor ambient temperature of dwelling at time t (oC) 

tSoC  represents the state of charge of thermal storage at time t 

minSoC  is the minimum allowable state of charge of thermal storage 

maxSoC  is the maximum allowable state of charge of thermal storage 

capE  is the maximum thermal storage capacity (kWh) 

hvac
tQ is the HVAC thermal output power at time t  (kW) 

,maxhvacQ is the rated thermal output power of HVAC (kW) 

t  denotes the storage thermal losses at time t (kWh) 

  is the storage loss coefficient 

The objective function (26) includes three conflicting terms. The first term models the 

energy payment of the customer using the expected over all of the considered scenarios. 

Customer thermal dissatisfaction costs are represented by the LoC in the objective func-

tion along with α as the comfort coefficient. The greater value of α is symbolic of a 

comfort-prioritizing customer and one who is not keen on forfeiting their thermal com-

fort. On the other hand, lower values of α characterize a comfort-sacrificing/energy-

conscious customer, one who will have no trouble forfeiting their thermal comfort for 

the sake of financial gains. Financial risk due to price uncertainty marks the last term in 

the objective function which is taken into account using the mean-variance approach 
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[81]. The risk-coefficient β primarily represents a customer's risk-taking behavior. The 

larger the β value, the greater the customer's concern for risk. In contrast, a risk-affine 

customer is represented by a lower β value.  

By modifying the weighting coefficient α and β, the customers can select among them 

according to their preferences and priorities. In this study, classical weighted sum ap-

proach is used to solve the multi-objective problem and has the feature of always finding 

a pareto-optimal solution.      

The rated power of the HVAC is enforced by (30). The fact that the total heating load 

remains under a pre-defined demand limit is established by constraint (31). The follow-

ing constraint copes with the required heat energy to be supplied to the house during the 

optimization horizon (32). By allowing the indoor temperature to sway within the pre-

defined upper and lower temperature limits, constraint (33) guarantee that user temper-

ature preferences remain intact.  In the case of HVAC integrated with thermal storage, 

modeling is required for storage characteristics, such as stored thermal energy and ther-

mal losses. The equation (34) expresses the dynamics of thermal storage. Constraints 

(35), (36) present bounds on the maximum thermal energy stored in the tank and dis-

charging power respectively, while (37) describes the thermal losses accumulated every 

hour. 

•Module 4: The trajectory of decision variables are collected in this module and only 

the first step decisions are implemented.  

•Module 5: This module verifies whether or not the optimization horizon is concluded. 

If not, then the above series of steps are repeated until the end of optimization horizon 

is attained.  

4.3.2 Case Study and Results 

The performance due to our proposed optimal scheme is analysed considering a single 

house scenario. It is assumed the house is composed of a typical medium massive struc-

ture as schematized in Figure 2.2. Without the loss of generality, it is further supposed 

that the outdoor temperature can be forecasted with high accuracies. This assumption is 

backed by the fact that sliding window approach introduces a feedback which naturally 

provides a safeguard against uncertainty especially if the optimization horizon is short. 

The nonlinear optimization problem framed in Section 4.3.1 is solved via the general 

algebraic modelling system (GAMS) environment [59]. Simulations are conducted for 

the following cases.  

 Case 1. Impact of comfort parameter on expected cost 

 Case 2. Impact of Risk parameter on expected cost. 

 

Table 4.II tabulates the impacts of comfort parameters α on the expected electricity cost 

in a winter day. The penalty factor α is wide-ranging in a certain interval while 

weighting parameter β is set to zero. Customers would choose a higher value for α in 

order to enforce the strict customer thermal comfort requirement. The results show that 

the expected payment increases when the α value increases. When presented with a 
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comfort-prioritizing customer, the expected cost is higher than that of a customer who 

is willing to compromise on their thermal comfort. The customer willing to agree to a 

wider temperature deviation has to pay about 24% less than the customer who would 

insist on a strict thermal comfort requirement. The hourly temperature deviation is the 

highest and the cost payment is at its minimum in the case where α is zero. Notably, the 

upper and lower indoor temperatures are within acceptable limits by the customer, hence 

the user quality of service is not compromised. In contrast, when α has the maximum 

value (α=0.66), the indoor temperature deviation is the smallest (80% less than the case 

when α =0).  

 

TABLE 4.II    

SUMMARY RESULTS OF CASE I 

α 

Expected  

Cost 

(€) 

Indoor Temperature 

 Deviation 

(oC) 

Min. Temperature 

(oC) 

Max. Temperature 

(oC) 

0.00 2.33 1.62 18.0 22.7 

0.30 2.37 1.27 18.7 22.9 

0.40 2.45 1.08 18.8 22.6 

0.50 2.51 0.92 19.1 22.2 

0.60 2.56 0.80 19.1 21.9 

0.65 2.65 0.67 19.3 21.7 

0.66 2.87 0.34 20.2 21.4 

 

Next, the impact of risk parameter β on expected energy payment is investigated. The 

problem is illustrated for a comfort-sacrificing customers (α = 0) by altering the risk 

coefficient β in certain intervals to acquire numerical results. To implement risk-hedg-

ing, a customer would select a higher value of β. Figure 4.6 shows the expected pay-

ments associated with different risk-levels. The plot illustrates an inverse relationship 

between risk (cost standard deviation) and expected payment. The higher the risk, the 

smaller the expected payment. The energy cost of a risk-affine customer is about 10% 

lower than a risk-averse customer. Evidently, risk cannot be diminishing completely 

and there is a lower bound of risk-hedging.  

 

Figure 4.6.   Risk versus Expected payment evolution. 
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4.4 HVAC Load Management in Balancing Market: A Two 

Stage Framework 

 

This section offers a framework to enable customers’ participation in balancing market 

along with energy market. The framework features 2-stages which allows the domestic 

customers to co-optimize the energy attainment in energy market and possible reserving 

some flexibility in balancing market. In the Nordic power market system, the aggregator 

is compelled to declare their day-ahead power proposal to the respective subsequent 

transmission system operator (TSO) before the actual power delivery phase. Neverthe-

less, it is possible for the aggregator to experience negative repercussions due to fore-

casting errors and face power mismatch issues during the actual delivery phase which 

could result in large penalties for infringing upon the hourly power nominations. Luck-

ily, the aggregator can manage the group of HVAC loads integrated with thermal stor-

age in the balancing market to lessen the power balancing penalty rather than buying 

the balancing power from TSO, to handle the power mismatch penalty. Under this back-

ground, a hierarchical framework that engages the residential customers to participate 

in balancing power market is setup. Two stages are included in the decision support 

tool. In the first stage of DR management, which is called the energy market stage, 

customers are provided day-ahead hourly prices to optimize their load usage in order to 

obtain the least energy payment that is possible. Additionally, this stage allows for a 

customer to determine their energy management decision. The second stage is set up in 

order to register customers in the balancing power market and offers hourly monetary 

incentive to customers to encourage the load shaping through up/down regulation of the 

load. To showcase the performance of the proposed hierarchical framework, simulations 

are performed considering a typical Finnish residential household.  

4.4.1 Decision Framework 

Figure 4.7 depicts the developed decision framework. In the first stage, the aggregator 

gives consumers the day-ahead power prices. Using the hourly prices, expected heat 

demand forecast, thermal storage model and user operating flexibility, in order to 

achieve the minimum energy payment, the energy scheduling controller optimizes the 

storage charging operation. The scheduling is done in a way that does not affect the 

customer's quality of service. The output power decision matrix is communicated to 

smart home energy management (SHEM) unit followed by the energy schedule submit-

ting a load decision matrix to the aggregator. In the second stage, energy management 

is executed on a rolling window basis for the next 24 hours with 1 hour resolution. 

During this stage, the customers are offered bonus prices for adjusting their prior made 

decisions which encourages customers to participate in the regulating market at the next 

hour. The bonus price for regulating up/down power is communicated to the energy 

scheduler 10 minutes before the hour in operation. Only if the newer energy payment is 

less than the Stage 1 energy cost, the energy scheduler update the decision matrix. If the 

DR is not activated, then the aggregator may gradually increase the bonus price up to a 

certain maximum limit. Then, the altered output charging decision matrix is relayed to 

aggregator and also communicated back to the SHEM for managing the HVAC load 

accordingly. 
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Figure 4.7.   Flow chart representing the hierarchical model. 

 

Stage 1: Energy Market Stage 

In the first stage, the objective is to minimize the energy payment of the customer. It 

can be mathematically stated as: 

 min
e hvac

t

t

tC P t   (38) 

It is to be noted that the uncertainties are not taken into consideration in the objective 

function (38). However, in order to make any DR program attainable, the uncertainties 

related to the price and load must be carefully dealt with. This section includes the em-

ployment of the robust optimization approach [82] for dealing with the price and load 

uncertainties. The price and load uncertainties sets for the robust optimization frame-

work are based on the information on the stochastic nature of data. To achieve this, one 

must first create scenarios using a stochastic programming approach [78] and then using 

them as guidelines for representing the price and load uncertainty intervals set. An as-

sumption can be made that the power price and load uncertainty distribution follows a 

normal distribution pattern while the standard deviation is known ahead. Even though 

this approach is more conventional, it is strong against possible uncertainty scenarios. 
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The above equation represents the cost minimization objective function that can be 

translated into robust counterpart (39) using duality properties and linear equivalence, 

in order to account the uncertainties. 

 
,minmin      e hvac

t t t

t t

PC t        (39) 

The dual variables in the model are   and t . The robustness of the proposed mathe-

matical model is controlled by parameter  .   A higher value for   is chosen to im-

pose the harsher concerns on price uncertainty. On the other hand,   = 0 specify an 

optimistic solution since, in this case, the influence of price uncertainty is disregarded. 

The objective function (39) is subjected to a number of operational constraints that are 

described below.  

 
,max ,max(1 )  ,     hvac hvac hvac

tP P P t       (40) 

 
max max(1 )  ,     tSoC SoC SoC t       (41) 
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t tt

c
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n ,     e

t tt t

e Cr C t       (48) 

 0,t t     (49) 

   0    (50) 

   ,hvac

t tr P t    (51) 

 

where,  

e

tC
represents the power price at time t (€/kWh) 

,mine

tC
 represents the lower bound of power price at time t (€/kWh) 

,maxe

tC
 represents the upper bound of power price at time t (€/kWh) 
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c

t

hvaP is the electrical power of HVAC unit at time t (kW) 

,max  hvacP is the power rating of HVAC unit (kW) 

t  is the time interval (hours) 

tSoC  is the state of charge of thermal storage at time t 

minSoC  is the minimum allowable state of charge of thermal storage 

maxSoC  is the maximum allowable state of charge of thermal storage 

capE  is the maximum thermal storage capacity (kWh) 

hvac
tQ is the HVAC thermal output power at time t (kW) 

,maxhvacQ is the rated thermal output power of HVAC (kW) 

 t  denotes the storage thermal losses at time t (kWh) 

   is the storage loss coefficient 

tq  is the expected heat demand at time t 

t   is the index of time 

T  is the set of time 

/t 
 
 are dual variables of robust optimization model 

  is a parameter for controlling the robustness 

 denotes the weighting coefficient for setting HVAC power operating limits 

 represents the weighting coefficient for setting SoC opearting limits 

  is the weighting coefficient between expected demand and stored heat energy 

tr  is an auxiliary variable in  robust optimization model 

 

The upper and lower ramping power limit of storage heating unit are bounded by con-

straint (40). Depending on user preferences, the weighting coefficient 0.5<μ≤1 will set 

an operating limit. For example, in the situation where the customers want to actively 

involve themselves in the balancing market, the user could perhaps reserve some power 

flexibility for ramping up and down at all times by allocating a value of 0.5<μ≤1. The 

maximum thermal energy that can be accumulated in the storage is set in constraint (41). 

In order to coordinate the power balancing and energy attainment goal, the storage ca-

pacity is virtually divided. The thermal storage SoC can be restricted in the first stage 

so that during Stage 2, there is always a load shifting potential in hand. The tradeoff is 
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set by the coefficient 0.5<σ≤1. For example, during the second stage, σ=0.9 will allocate 

a reserve margin of 10% of the total storage capacity for regulation purpose whereas in 

Stage 1, the thermal storage should neither exceed the 90% SoC nor fall below than 10% 

SoC limit. Equation (42) describes the storage evolution. The equation (43) represents 

the thermal storage losses. Constraints (44), (45) bound the limits on the electrical input 

and thermal outpower power of the HVAC respectively. Constraint (46) takes into ac-

count customer’s thermal comfort. It establishes that the total energy discharge from the 

thermal storage must be equal to the hourly expected heat demand. The actual hourly 

heat demand can change from the expected demand, depending on the forecast accu-

racy. One way to deal with the demand uncertainty issue is to manage the thermal stor-

age scheduling for the worst case by storing more thermal energy than the expected heat 

energy prerequisite. The demand uncertainty level that is considered and set by the cus-

tomer is enforced by the coefficient π≥1. This approach will enable the customers for 

the possible realization of demand uncertainty and thus ensure that the customer's qual-

ity of service is not compromised. The final stage of charge should at least be equal to 

the original level of stored energy prior to the optimization as set by (47). To acquire 

the robust counterpart of an uncertain linear programming problem, equations (48)-(51) 

are employed. 

Stage 2: Balancing Power Market Stage 

Bonus price incentives are given out in the second stage to encourage customers to par-

ticipate in the balancing market. The goal of this stage is to maximize the customers' 

bonus which eventually lessens their total energy payment as described by objective 

function (52). Using a moving window approach, the following set of optimization is 

executed on an hourly basis.  

 max ( ) hvac

t

e

tb P    (52) 

s.t. 

   ,max0 ,    hvac hvac hvac
t tP P P t T     (53) 

 1( ) ( ) ,hvac hvac hvac
t t t

cap
t t tSoC SoC E P P tQ t T        (54) 

 min max  ,  tSoC SoC SoC t T      (55) 

 ,max0 , hvac hvac
tQ Q t T      (56) 

 , hvac
t ttQ t Tq      (57) 

   1 ,    t tSoC t T       (58) 

where,  

 represents the binary variable for (1) up and (-1) down regulation 

e

tb is the bonus price during time slot t (€/kWh) 

hvac

tP represents the deviation from original HVAC schedule during time slot t (kW) 
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The fact that the new charging power shall not surpass the maximum power restriction 

and bound the net change in power deviation is certain in constraint (53).  Notably, the 

coefficients  ,   as set by the customer in the Stage 1 will affect the 
hvac

tP   flexibil-

ity. The key storage elements and comfort constraints are described in constraints (54)-

(58) which is similar to Stage 1. In order to encourage the customer to alter his/her 

schedule, the new cost after Stage 2 should be lower than the Stage 1 promised cost. 

Any commercially available solver can easily solve the framework which is casted as a 

linear programming problem.  

4.4.2 Case Studies and Results 

In this section, numerical analyses are carried out to present the effectiveness of the 

proposed framework. The developed framework is applied to the standard Finnish sin-

gle house scenario. The medium massive structure house is considered which is 

equipped with HVAC integrated with thermal storage unit. The hourly heat load profiles 

are created using IDA software [83]. Based on the expected heating demand and time-

varying standard deviations, 7 probable scenarios are produced using a 7 step well-

known approximation of normal distribution. It was assumed that in the worst case and 

if one takes the generated scenarios as a guideline, the heating load can drift in a 5% 

margin and load certainty coefficient π thus takes value of 1.05. For the simulation, the 

typical hourly day-ahead time varying prices are chosen for Stage 1 scheduling and are 

taken from Nordpool [77]. The proposed formulation is solved using GAMS [59] envi-

ronment. Simulations are conducted for the following two distinct cases. 

•Case A: This case represents the base case, where flexibility of HVAC load is max-

imally utilized during Stage 1. For this case, parameters are set as μ=100%, and 

σ=100%. 

•Case B: In this case, activation of DR in Stage 1 is done in manner that by reserving 

some availability for Stage 2. Here, the parameter setting is as follows μ=80%, and 

σ=80%. 

Table 4.III includes a presentation of the total energy cost after Stage 2. Evidently, the 

benefits of proposed formulation scheme can be seen as the customer's energy payment 

decreases if the DR is also triggered in the balancing power market instead of Stage 1 

alone. The final energy costs are less for Case B compared to Case A for partial storages, 

as revealed by the simulation results. However, the total energy costs in Case B are 

faintly higher compared to Case A for bigger thermal storages. There are two reasons 

for the contrasting results for full size storages. (a) It is essential to note that the coeffi-

cients µ, and σ for reserving flexibility during Stage 2 were not optimized in any way; 

thus the full storage, which has greater load regulation potential, cannot fully release the 

total benefits of the suggested framework. The selection of µ, and σ relies on many 

factors, for instance accurate forecasting of regulating prices, customer risk preferences, 

and thermal comfort priority which makes the task troublesome. However, the optimal 

choice of coefficients σ and μ, which in itself is a difficult job, will be able to garner 

more DR advantages in the balancing power market (b) In the Finnish market, the var-

iance of energy market prices and regulating power prices is relatively low. The pro-

posed framework, however, is still successful since it demonstrates how a domestic 
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HVAC load can be efficiently employed in the balancing power market to facilitate the 

customer to achieve maximum economic gains. 

 

TABLE 4.III   

 OVERVIEW OF  RESULTS 

Storage size  

(% of typical daily 

 energy requirement) 

Case A Case B 

Stage 1 Stage 2 Stage 1 Stage 2 

25 % 0.964 € 0.911 € 1.08 € 0.90 € 

50 % 0.89 € 0.762 € 1.031 € 0.76 € 

75 % 0.87 € 0.725 € 1.032 € 0.917 € 

100 % 0.86 € 0.687 € 1.041 € 0.9 € 

 

 

4.5 Conclusion 

This chapter presented comprehensive frameworks for HVAC load management in 

smart grid. The proposed price based DR mechanisms aim to minimize the customer 

energy cost while respecting customer preferences under different scenarios. At first, 

optimization model is proposed to investigate the envisioned benefits withour consider-

ing uncertainty. Next, uncertainty and risk features are incorporated in the decision 

framework. Then simulations are perfomed considering a typical Finnish single house 

scenario. The results of the study revealed that significant monetary benefits are 

achieved by employing DR through HVAC loads. Moreover, it is showcased that the 

optimal utilization of thermal masses of building structures together with thermal stor-

age will reap significant benefits without sacrificing customer thermal comfort. The de-

cision model also provides an opportunity for customer to tradeoff between financial 

risk and expected cost depending on customer preferences. The proposed DR frame-

works are formulated with customer’s partialities and cost-economic in mind and thus 

can be easily incorporated into the SHEM unit. 
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5. HVAC Load Management for Wind Gen-

eration Balancing 

Intermittent renewable generation such as solar and wind are non-dispatchable owing 

to their variability and stochasticity. This chapter deals with development of tools to 

activate demand response (DR) through heating, ventilation and air conditioning 

(HVAC) loads for balancing intermittent generation so that customers consume the re-

newable generation rather than spilling the excess generation (Task 3). To begin with, 

a tool for activating DR for wind generation balancing is developed. Next, the frame-

work is reformed to add the real-time thermal rating (RTTR) features of network in the 

optimization. The usefulness of both the developed tools is illustrated by selective case 

studies. Finally, a tool for optimizing the DR services namely customer energy cost 

reduction and wind integration from the perspective of electrical aggregator is devel-

oped. 

5.1 Introduction and Literature Review 

In upcoming power systems around the world, wind energy generation sources may 

have a considerable share in the total generation mix. However, enhanced operational 

flexibility requirements will be a big problem in the wide-spread integration of wind 

generation because of the inconsistency and unpredictability of wind power [9]. There's 

a chance of supply load imbalance due to the wind power limited capacity value that 

jeopardizes the power system reliability [10], [84]. Power ramping and regulation re-

quirements may also be put into effect, creating technical difficulties for the system 

operators [85].   

To deal with the mentioned problem, additional flexibility resources are necessary in 

smart grids. A practical solution is to use the flexibility from demand side resources 

[13] which will lead to better operation of intermittent renewable generation. Lately, the 

advantages of load management of thermostatically controlled appliances for the in-

creased operation of intermittent renewable generation have been explored [69]-[72], 

[74], [86]. For example, [69] investigated the electric water heater (EWH) load potential 

for load shifting and supply-load balancing. The work studied in [72] presented a cen-

tralized domestic DR framework for providing short term balancing reserves to cope 

with the variability of wind generation. The results recounted the significant potential 

of EWH loads to regulate the system frequency at all times. Although several research-

ers have addressed the issue yet, a comprehensive optimization solution is missing 

which takes into account the customers’ thermal comfort.  
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Another concern is that, If DR potential is to be deployed for distributed generation 

(DG) balancing; the network capacity has to be capable of supporting the load associ-

ated with high DG output. The author in [87] presented a hiearchial residential DR 

model considering static network rating. However, due to the traditionally used static 

rating (STR) of thermally susceptible components [88], [89], DR potential can be hin-

dered by limited network capacity during period of high DG output. This will result in 

limiting the DG output, consequently obstructing also the DR benefits. Lately, many 

studies [90], [91] have advocated that conventionally used networks STR should be 

substituted with real-time (dynamic) thermal rating to utilize the network capacities for 

maximal utilization of renewable generation, particularly considering the forthcoming 

scenario of large scale diffusion of intermittent renewable generation. RTTR can be 

used as a tool to efficiently utilize the intermittent renewable generation as suggested 

by studies in [40], [92]. Weather dependent rating of the distribution network will facil-

itate DR actions, i.e., shifting load from low DG output (low wind speed) times to high 

DG output (high wind speed) times. Synergy in coordinating DR and RTTR is implied 

by the idea that both DG output and RTTR based capacity depend on outside weather 

variables such as wind speed and ambient temperature. Therefore, RTTR can make use 

of the weather dependent capacity to avoid capacity-constraint-based DG curtailment 

thus completely facilitating DG actions. 

A number of aggregator-pro DR models are proposed in the prevailing literature. The 

work [93], proposed a DR strategy, whereby the electrical aggregator can participate in 

the energy market for bulk DR transaction. The research reported in [94], [95] proposed 

an approach to utilize DR for maximizing the aggregator economic gains while concur-

rently alleviating network peak load issues. The market potential of residential load act-

ing as frequency reserve control is studied by [96]- [98]. The work in  [99] proposed an  

aggregator-based DR framework to optimize the micro combined heat and power units 

scheduling for reducing the network over laod problem. The study [100] developed ag-

gregator based HVAC DR framework to cope with problem of intra-hour balancing. 

The study [101] focused from the perspective of an aggregator who can optimally 

achieve the enery management in the energy market. The authors of [102] suggested an 

incentive based DR approach with the objective of achieving the desired load profile in 

order to minimize the penalty costs faced by aggregator. The work in [103] proposed an 

aggregator-focused DR methodology to cope with the variability of intermittent gener-

ation whereby, the aggregator act as an arbitrator between end user and utility to fulfil 

the grid limitations. 

Prior to [V], none of the work thoroughly discussed the activation of HVAC load for 

wind generation balancing considering customers’ temperature preferences. Neither any 

research investigated the potential benefits of coordinating RTTR and DR for wind bal-

ancing until [VI]. In addition, a framework to optimize aggregator focused DR services 

in the system of large scale intermittent DGs were missing before [VII]. 

5.2 Activation of HVAC DR for Wind Generation Balancing 

This section develops an optimization tool for wind generation balancing through 

HVAC DR considering customers thermal comfort. The tool determines the optimal 

energy consumption of HVAC loads to tackle the variability of wind generation. In the 
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proposed optimization model, thermal comfort penalty is explicitly incorporated in the 

objective function to account for customer convenience. The developed tool perfor-

mance is justified thorough simulations considering typical Finnish system. A broad 

sensitivity analyses is conducted to investigate the impact of different parameters such 

as customers’ enrollment, and wind penetration on results. The subtleties of optimiza-

tion model and case studies are given in the subsequent section. 

5.2.1 Proposed Model 

Let there be interaction between wind power producers and residential consumers under 

the smart grid environment. It is presumed that the common understanding between 

production portfolios and consumers group allows the wind power entity to manage the 

operation of the HVAC load for improved deployment of variable renewable genera-

tion. In response, based on the flexibility and willingness of their participation level, 

each customer gets some financial reward. The management of the load must be done 

in such a way that customer comfort is a priority and thermal preferences remain un-

scathed. For this to occur, a user eccentric decision tool must be developed to effectively 

control the load without lessening customers' thermal comfort and respecting their pri-

orities. Provided in this section is a mathematical model which will act as a tool for 

smart scheduling of the HVAC loads with a priority being consumer comfort. The goal 

of the framework is the minimization of time-varying supply minus net demand while 

decreasing the thermal comfort loss. The objective function can be given as follows. 

 ,, , ,( )min ( ) (1 )critical hvac
t t

n n a set
nn t n t

t

t n t

n n

W P P W T T
 
     
 


 


     (59) 

The first part of the objective function is the minimization of deviation between wind 

generation and net demand. The following part is the optimization of customers' thermal 

comfort which entails that users' hourly desired set point temperature is to be deviated 

to the smallest extent as possible. It is worth mentioning that customers have the full 

authority to alter the weighting coefficient nW  = [0, 1], and can choose thermal comfort 

over load control by setting a lower nW   value.  

The objective function is subjected to the following constraints. 
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where, 

t  
is the conventional generation at time t (kW)

 

t is the wind generation at time t (kW) 

nW denotes the weighting coefficient for setting comfort priority 

,
critical

n tP represents the power of all critical appliances at time t of customer n (kW) 

  denotes the weighting coefficient between DR and comfort 

 t  is the index of time 

T  is the set of time 

n is the index of customer 

N is the set of customer 

,
hvac

n tP is the electrical power of HVAC unit at time t of customer n (kW) 

,maxhvac
nP  is the power rating of HVAC unit of customer n (kW) 

t represents the demand limit at time t (kW) 

t is the time interval (hours) 

lh
nE is the energy demand of customer n during optimization horizon  (kWh) 

,
set

n tT denotes the set point temperature of dwelling at time t of customer n (oC) 

n is the internal temperature dead-band of customer n (oC)  

,

a

n tT  is the indoor ambient temperature of dwelling at time t of customer n (oC) 

,n tSoC represents the state of charge of thermal storage of customer n 

cap
nE is the maximum thermal storage capacity of customer n (kWh) 
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min
nSoC  is the minimum allowable state of charge of thermal storage of customer n  

max
nSoC  is the maximum allowable state of charge of thermal storage of customer n 

,
hvac
n tQ is the HVAC thermal output power at time t  of customer n (kW) 

,maxhvac
nQ  is the rated thermal output power of HVAC of customer n (kW) 

,n t denotes the storage thermal losses at time t of customer n (kWh) 

 n  is the storage loss coefficient of customer n 

Constraint (60) ascertains that the indoor ambient temperature is bound to stay within 

the set internal temperature deadband. HVAC system can work at continuos power level 

while bounded by maximum rated powers as described by (61) and (62). Maximum 

hourly demand limit is bounded by (63). The expression (64) determines the amount of 

stored energy in the tank. Constraint (65) bounds the SoC of thermal storage, while 

storgae losses are determined by (66). The costraints (67) ascertains that total energy 

consumtion should be less than the business as usual daily energy requirement. Con-

straint (68) ascertains that the final and intial level of storage must be equal. 

5.2.2 Case Studies and Results 

The proposed model is applied to a Finnish system comprising of 50 households. The 

hourly consumption data is acquired from automatic meter reading (AMR) data and 

then disaggregation of the critical load from the total load is done by executing multiple 

regression analysis on a big set of hourly consumption data [104]. 2-capacity building 

model is employed to generate the heating load, by considering the outside temperature 

of a typical mild winter day. The house areas are distributed within 180-220 sq. meters 

via normal distribution. An assumption can be made that the power production portfolio 

mainly consists of wind generation. 

To demonstrate the application of the developed tool for wind generation balancing, 

results for the following case studies are described.   

Case I: Without DR control.  

Case II: With DR through HVAC load. In this study, users have the liberty to set 

temperature preferences and weight coefficient nW . An assumption can be made that 
nW  and   ,maxhvac

nP are normally distributed in [0, 1] and [3 kW, 4 kW] intervals respec-

tively among users, to capture diversity, while indoor temperature can drift in the range 

[19.5, 22.5] °C with the average indoor temperature of 21 °C. 

Case III: With DR through HVAC load integrated with thermal storage. The maxi-

mum storage capacity is considered to be around 50% of total daily heating demand of 

a household with maximum charging capability of 6 kW. The storage losses are deemed 

to be insignificant, Wn values and indoor temperature preferences are kept similar to 

Case I.  
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Additionally, sensitivity analyses are conducted to investigate the influence of customer 

DR enrollment and wind penetration on results. 

The load profile situation for the consumer group in Case I is illustrated in Figure 5.1. 

During mid-night and morning time the load profile is quite flat. However, in terms of 

hourly matching, the system load profile is far from the volatile generation profile.  Con-

sequently, the total deviation of load profile from volatile generation is about 416 kW. 

 

 

Figure 5.1.   Load balancing situation in Case I. 

 

The total demand profile of the studied user group in Case II, where operation of HVAC 

loads is optimized to minimize the deviation between supply and total demand is por-

trayed by Figure 5.2. The results indicate that the load tries to shift the operation in a 

timely manner in order to align itself with volatile generation. The DR potential is re-

leased by accumulating the amount of heat in building masses when down regulation is 

necessary. To carry minimum deviation between the load-supply profiles, the stored 

heat can be released from the thermal masses of building structures. Nevertheless, there 

is a limit to the DR potential in coping with the intermittent supply due to indoor tem-

perature limits and customers' comfort concerns. 

 

 

Figure 5.2.   Load balancing situation in Case II. 

 

The situation in Case III is illustrated in Figure 5.3, where the total load profile is ac-

quired by coordinating the operation of thermal storage combined with the HVAC load. 

The illustration clearly defines the inclination of the load profile of the consumer group 
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to accurately follow the volatile generation profile, thus resulting in least deviation be-

tween the supply-demand curves. The total deviations during the horizon decrease only 

to 55.41 kW, which is 4 times better than in Case II.  Because of the presence of thermal 

energy storage, this timely shifting of load is done flawlessly in this case. 

 

 

Figure 5.3.   Load balancing situation in Case III. 

Results Sensitivity Scrutiny 

Impact of reducing thermal comfort priority 

Representative studies are infused with different values on comfort objectives in order 

to explore the impact of users' thermal comfort on the success of the DR control. Cases 

II and III are simulated by altering the Wn value. For Cases II and III, the total deviation 

between supply and demand profiles for a different Wn value is listed in Table 5.I. Ac-

cording to acquired results, in Case II the DR performance increases (deviation de-

creases) almost by 5.1%, 9.7% and 15.4% when Wn is increased by 1/4th, half, and 3/4th, 

respectively. Case III portrays a significant improvement that can be observed as the Wn 
value is increased. If customers are willing to slightly relinquish their thermal comfort, 

the deviation is reduced by half. Furthermore, an analysis was conducted on the most 

positive case to examine the maximum potential for the representative study by setting 

weight coefficient (Wn =1) on customer comfort objectives. The results indicated the 

absolute improvement in Case I (29.2 %) and Case II (96.4 %).  

TABLE 5.I    

 INFLUENCE OF USERS’ THERMAL COMFORT ON COMULATIVE DEVIATION BETWEEN VOLATILE 

GENERATION AND DEMAND 

Change in Wn Case II Case III 

------ 247 kW 55.41 kW 

Wn increased by 1/4th 234.8 kW 45.0 kW 

Wn increased by half 223.1 kW 36.5 kW 

Wn increased by 3/4th 208.9 kW 28.4 kW 

Wn = 1 175.2 kW 1.6 kW 
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How much wind integration can be handled? 

The findings for Case II and Case III with nW = 1 are highlighted in Figure 5.4. The 

reported result gives a picture of the level of wind penetration that can be attained. These 

results can be construed as that around 30% of wind generation can be almost under-

taken by coordinating the HVAC loads. With the thermal storage integration with 

HVAC system, the wind integration potential is much greater. Visibly, a great deal of 

wind power (around 90%) can easily be facilitated by managing the population of 

HVAC loads equipped with thermal storage. 

 

Figure 5.4.   Wind power deviation capturing ability in different cases. 

 

5.3 Activation of HVAC DR for Wind Generation Balancing 

Considering Network RTTR 

 

This section presents a tool for optimal collaboration of residential HVAC DR and 

RTTR to match the distributed wind power output. Utilizing network real time thermal 

models, this section presents a tool to deploy the network capacity released as a result 

of robust dependence between wind power and the real-time network thermal state for 

tapping the HVAC DR potential. The benefits of applying RTTR in overhead networks, 

as a new tool to release network capacity, as well as DR, as a load shaping tool, when 

network capacity is limited is thoroughly investigated. Additionally, the study examines 

the influence of the DR penetration level and HVAC key parameters on the total benefits 

achieved by the joint optimization of DR and RTTR. The study utilizes a typical Finnish 

distribution network plan and relevant case studies are presented. 

5.3.1 Proposed Model 

This section includes a presentation of a chronological system to assess the joint benefits 

of coordinating DR and RTTR for wind generation utilization. Let there be an aggrega-

tor with a share of wind generation and a large population of HVAC loads. It is advan-

tageous for the aggregator to execute real-time management of the load such that the 

utilization of wind generation is maximized. In response, depending on their participa-

tion level, customers are awarded with a financial bonus. Consequently, it assembles 

information from the residential load and the wind forecaster to make sufficient control 

decisions. However, the aggregator must take into consideration each customer’s tem-

perature preferences. Furthermore, since the ramping capability of responsive loads can 
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be influenced by the network capacity, the power flow study has to be conducted at 

every time-step to determine that load commitment does not infringe upon any network 

capacity limits.  

The optimization routine is executed in real-time for the following 24 hours with 1-hour 

resolution in a moving window style. Figure 5.5 illustrates the simulation procedure and 

is discussed in the following. 

 

 Input detailed 

weather forecast for 

the next 24 hours

DG output forecast 

Run the developed model 

to achieve the modified 

total load profile 

Results accumulation and 

analysis

t=t+1

Module 2

Module 3

Module 4

Module 5

Module 1

 Critical load 

forecast

 

Figure 5.5.   Flowchart of the proposed methodology. 

 

The RTTR method is reorganized each hour using revised forecasts of weather variables 

for the next 24 hours. Dynamic thermal models of underground cables, overhead lines 

and transformers are used by the RTTR method to give the next hour capacity using 

previous hour initial thermal states and next hour forecasts of the weather variables, DG 

output and load. Numerical representation of every available heat transfer mechanism 

such as convection, conduction and radiation is incorporated in thermal modeling. This 

work studies the dynamic thermal model of underground cables in unfilled conduit in-

stallations which is employed from [40]. Standards IEEE Std. C57.91-2011 and IEEE 

Std. 738-2006 are used respectively in [105], [106] for distribution transformers and 

overhead lines.   

Module 1: At first, weather related data is obtained. The data is composed of infor-

mation for the next 24 hours. A simple Autoregressive Integrated Moving Average 

(ARIMA) model is used to forecast weather variables such as wind speed [107]. 

Module 2: In this block, wind output and non-HVAC load is forecasted. 

Module 3: In this module, the domestic load profiles of consumer groups are optimized 

such that total load matches the wind profile to the utmost. Following optimization 
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model determines the optimal load profile of consumer group with respect to wind pro-

file. The objective function is to minimize the deviation between the wind output and 

total load and is given by: 
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where,  

t is the wind generation at time t (kW) 

,
critical

n tP represents the power of all critical appliances at time t of customer n (kW) 

t  is the index of time 

T  is the set of time 

n is the index of customer 

N is the set of customer 

,
hvac

n tP is the electrical power of HVAC unit at time t of customer n (kW) 

,maxhvac
nP  is the power rating of HVAC unit of customer n (kW) 

t represents the demand limit at time t (kW) 

t is the time interval (hours) 

lh
nE is the energy demand of customer n during optimization horizon  (kWh) 

,
set

n tT denotes the set point temperature of dwelling at time t of customer n (oC) 

n is the internal temperature dead-band of customer n (oC)  

,

a

n tT  is the indoor ambient temperature of dwelling at time t of customer n (oC) 

,n tSoC represents the state of charge of thermal storage of customer n 

cap
nE is the maximum thermal storage capacity of customer n (kWh) 

min
nSoC  is the minimum allowable state of charge of thermal storage of customer n  

max
nSoC  is the maximum allowable state of charge of thermal storage of customer n 

,
hvac
n tQ is the HVAC thermal output power at time t  of customer n (kW) 
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,maxhvac
nQ  is the rated thermal output power of HVAC of customer n (kW) 

,n t denotes the storage thermal losses at time t of customer n (kWh) 

n  is the storage loss coefficient of customer n 

i, j are the indices of  bus 

f is the index of feeder 

ij
fP /

ij
fQ /

ij
fS  denotes active/reactive/apparent power flowing through feeder f  from bus 

i  to bus j  

ij
fY denotes the admittance magnitude associated with feeder f . 

iV is the voltage magnitude at bus i 

jV is the voltage magnitude at bus j 

i is the phase angle at bus i 

j is the phase angle at bus j 

ij
f represents the phase associated with feeder f  

_ _  ij

f RTTR LIMS is the RTTR capacity of feeder f  

/ /i i i
s s sP Q S is the active/reactive/apparent power flowing through the transformers in the 

secondary substations connected to bus i  

i

lP / i
lQ  is the active/reactive load served by the secondary substation at bus i  

i

lvgP / i
lvgQ  is the active/reactive power of renewable generation installed in the low volt-

age network served by the substation at bus i  

g/i i

lvgc lv cP Q is the active/reactive generation curtailment at the low voltage side 

_ _

i

s RTTR LIMS is the RTTR capacity limit for the substation transformer 

/i i
mvg mvgP Q denotes the active/reactive power of renewable generation installed in the 

medium voltage side of the secondary substation at bus i  

/i i
mvgc mvgcP Q  denotes the active/reactive generation curtailment at the medium voltage 

side of the secondary substation at bus i  

/i i

LOW UPV V is the lower/upper acceptable voltage magnitude level at secondary substation 

at bus i 

,
total
n tS  is the total apparent household load at time t of customer n (kWh) 
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The equation (70) establishes that the indoor temperature stays in range of the set-point 

temperature and does not breach the set temperature dead-band. HVAC system can 

work at continuos power level while bounded by maximum rated powers as described 

by (71) and (72). Maximum hourly demand limit is bounded by (73). The expression 

(74) determines the amount of stored energy in the tank. (75) bounds the SoC of thermal 

storage, while storage losses are determined by (76). The constraint (77) ascertains that 

total energy consumtion should be less than the business as usual daily energy require-

ment. (78) ascertains that the final and intial level of storage must be equal. This con-

straint confirms that the claimed advantages are not at the expense of the initial level of 

stored thermal energy in the storage tank.  

The network constraints are produced using a basic power flow study. Equations (79)-

(92) guarantee that voltage, feeder and substation capacity limits are not breached. Fur-

thermore, a contingency plan to curtail the DG and/or exploit DG potential is formed. 

In (82) and (86), the RTTR capacity limits are renewed for each time step. 

 

Module 4: In this step, trajectory of all the decision variables is gathered. However, the 

following time steps decisions are executed 

Module 5: Steps of Modules 1-4 are revised after updating the input variables.  

5.3.2 Case Studies and Results 

A typical Finnish distribution network of a 40 MVA primary substation feeding sixteen 

secondary substations in a 20 kV system as Figure 5.6 schematized is used as a test 

network while network paremeter are given in [VI]. It is assumed that 40 wind turbines 

of 1 MW capacity are connected directly to the primary substation only serving 600 

houses equipped with HVAC with storage. 2-Capacity building model (Figure 2.2) is 

employed to capture the dynamics of indoor ambient temperature. The input data relat-

ing to the building thermal parameters and HVAC system can be found in [VI]. The 

diversity is captured using Monte Carlo simulation and it is supposed that the parameters 

follow a uniform distribution.  

 

Figure 5.6.   Test network used in the simulation. 

 

To showcase the benefits offered from the proposed methodology, three distinct case 

studies were conducted as follows. 
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Case I: Without DR 

Case II: Activating DR for wind balancing considering network STR 

Case III: Activating DR for wind balancing considering network RTTR 

 

Figure 5.7 depicts the load profile after DR is applied in the presence of customarily 

used STR (Case 2). The result confirms that the load endeavors to match the wind gen-

eration with little success. The HVAC load is cleverly scheduled such that there is some 

minimization of the total deviation between wind and load. From Case I, the total devi-

ation is reduced by approximately 48%. The DR potential is unleashed thanks to the 

domestic thermal storages that enable load shifting in order to absorb wind power. No-

tably, customer preferences are respected during all times. However, as stated previ-

ously, distribution networks containing a high wind generation may be likely to face 

generation curtailment due to the network STR. This incident is examined between 

06:00-08:00 hours and during 17:00-19:00 hours, with a total generation curtailment of 

67.7 MWh.  The load supply matching is disturbed due to the high generation periods. 

As a result, due to the limited static network capabilities, the DR potential for wind 

generation balancing is not fully sustained. The operation of DGs could be improved if 

the network would have more permitted capacity. It is important to reveal that the mis-

matching and DG curtailment is a result of the thermally susceptible components which 

are limited by STR. 

 

Figure 5.7.   Load profile situation in Case II. 

 

Figure 5.8 portrays the load situation in Case III, where the total load profile is managed 

by applying RTTR alongside DR as a pair to curb the variability of the wind generation. 

Visibly, the load profile almost precisely matches the wind generation with the excep-

tion of a couple of evening hours. The DR potential is better utilized in this case due to 

the RTTR, which releases hidden network capacity to support the increased DG pene-

tration. From Case II, the expected generation curtailment is reduced by 83%. The re-

sults show RTTR has established itself as a useful tool in mitigating the congestion 

effects due to stochastic wind generation. When compared to Case I, the total mismatch 

decreases by 89%. Since there is about a 41% improvement if RTTR is used instead of 

STR, the results are promising. This slight mismatch during 17:00-19:00 proves that 

there is still a need for better capacity usage to fully accommodate intermittent genera-
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tion during the peak hours. Nevertheless, the curtailment of renewable generation con-

firms that the advantages of RTTR can reach upper limit. Although RTTR ratings are 

more elevated than STR, they are also bound. 

 

Figure 5.8.    Load profile situation in Case III. 

 

A summary of the basic results achieved are registered in Table 5.II. It is worth men-

tioning here that the aggregate energy consumption in Cases II and III are lower than in 

Case I. This endorses that the proposed tool is effective in coping with wind fluctuations 

without bargaining energy efficiency. 

TABLE 5.II   

OVERVIEW OF BENEFITS IN CASES I-III 

Characteristic Case I Case II 

 

Case III 

 

Energy consumption 324.4 MWh 323.2 MWh 323.3 MWh 

Total deviation 60.7 MW 31.8 MW 6.4 MW 

Wind curtailment 133 MWh 67 MWh 10.9 MWh 

 

Sensitivity Analyses 

The situation where RTTR and DR are jointly operated in network circuits composed 

of only overhead lines is illustrated in Figure 5.9. This case is simulated as RTTR ben-

efits greatly depend on network configuration and because the thermal state of overhead 

lines is highly dependent on weather variables like wind speed, which also favourably 

coincides with wind generation. The deviation decreases to 1.02 MW, which is roughly 

30 times less than that in Case II and 6 times lower than in Case III.  Additionally, the 

amount of wind speed curtailment is considerably diminished to just 1.5 MWh. The 

results conclude that networks with overhead lines can engage in more wind generation 

when DR and RTTR are in use. The RTTR system leads to greater efficiency in the 

overhead network due to the inherent lower thermal time constraints of overhead lines. 

The system performance has considerably improved because the RTTR of overhead 

lines greatly link with wind speed, which is not the case if the network has only under-

ground cables. 
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Figure 5.9.    Load profile situation when DR and RTTR employed in overhead networks. 

 

The evolution of the total standard deviation between wind-load versus HVAC rated 

power is exemplified in Figure 5.10. The result shows that a greater level of utilization 

of wind generation is attained as the HVAC rated power increases. As can be examined 

from the results, the total deviations between load and wind are visibly lessened when 

the HVAC rated power is increased from 3 kW to 4.5 kW. Higher HVAC power offers 

more flexibility in the ramping capability, as confirmed from the results; however, the 

advantages are restricted by the net storage capacity after a certain rated power level. 

Additionally, the effect of storage capacity on the performance of the strategy is prom-

inent. Here, full storage refers to storage capacity 80-100% of the energy utilization of 

a mild winter day, while partial storage lives up to its name of covering only a fraction 

of the total daily energy utilization (i.e., 15-20% of total energy demand).  The larger 

the storage size, the more improved the performance of the proposed model for wind 

generation balancing. It is apparent that full storage is about twice as suitable as partial 

storage for wind generation balancing with greater HVAC rated power. However, the 

most sensitive parameter is the rated power due to the ramping capabilities which are 

strongly linked to the charging power. 

 

Figure 5.10.   Impact of HVAC rated power on total wind-load deviation. 

 

In the standard simulation, it was presumed that all the customers are active participants 

in the DR programs; however, this may not be true in practice. Thus, it is essential to 

evaluate the impact of consumers' enrollment level on the benefits proposed by coordi-

nating DR and RTTR. Simulations are performed by altering the customers’ enrollment 

for Cases II and III only. Some information about the influence of the customers’ pen-

etration level on the results are provided in Table 5.III.  
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TABLE 5.III  

IMPACT OF CONSUMER’S PENETRATION LEVEL ON RESULTS 

 

    

    

 

 

 

 

 

As estimated, the advantages are greatly sensitive to the customer penetration level, 

particularly when RTTR is used (Case III) instead of STR (Case II). The benefits de-

crease as the number of enrolled customers decrease. It was observed that even if only 

50% of the customers are enrolled in DR programs, the employment of RTTR offers 

more advantages than the 100% customer enrollment in Case II. This result will act as 

a strong motivator for the aggregator to give incentives to distribution companies if they 

utilize RTTR instead of STR. 

5.4 A Framework to Optimize Aggregator Focused DR Ser-

vices 

The preceding section determines the methods for activating DR for wind generation 

balancing. Given the swift deployment of intermittent renewable generation in distribu-

tion network level, the opportunity of DR aggregator services will enlarge proportion-

ally. However, the restricted DR potential will render the electrical aggregator to opti-

mize its commercial portfolio considering technical issues and monetary remunerations 

of each service [108]. This section proposes a model for optimizing the aggregator fo-

cused DR services in distribution networks hosting large amount of wind generation. 

The model selects for the optimal activation of DR in energy market and wind genera-

tion balancing. Simulations performed on a typical Finnish distribution system indicate 

the worth of the proposed model. 

5.4.1 Proposed Model 

The commencement of DR takes place on a day-ahead basis between an aggregator and 

it’s customers. It is presumed that the responsibility of aggregator is to decrease the 

energy costs to customers as well as bear the cost of any wind curtailment at the same 

time. Therefore, the aggregator has two points to focus on; (a) The aggregator will at-

tempt to optimize the load management so they can bring minimum energy cost to the 

energy market, (b) By allowing the load to follow the wind profile so as to minimize the 

wind spill, the aggregator wishes to reduce the wind energy curtailment cost. 

 

Enrollment 

level 

Total Deviation (Wind-load) Wind Curtailment 

Case II Case III Case II Case III 

100 % 31.8 MW 6.4 MW 67.7 MWh 10.9 MWh 

95 % 33.0 MW 8.4 MW 68.03 MWh 11.2 MWh 

90 % 34.2 MW 10.5 MW 68.3 MWh 13.5 MWh 

80 % 36.7 MW 14.8 MW 69.2 MWh 19.9 MWh 

70 % 39.2 MW 19.4 MW 70.3 MWh 25.9 MWh 

60 % 41.8 MW 24.5 MW 71.3 MWh 31.3 MWh 

50 % 44.5 MW 30.0 MW 78.3 MWh 37.9 MWh 
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 ,,( ) ,     ,n t
total
n tS t T n N       (114) 

Where, 

t is the wind generation at time t (kW) 

bin
t  is binary variable, 1 if total wind generation is greater than modified load profile, 

0 otherwise 

,
critical

n tP represents the power of all critical appliances at time t of customer n (kW) 

t  is the index of time 

T  is the set of time 

n is the index of customer 

N is the set of customer 

,
hvac

n tP is the electrical power of HVAC unit at time t of customer n (kW) 

,maxhvac
nP  is the power rating of HVAC unit of customer n (kW) 

t represents the demand limit at time t (kW) 

t is the time interval (hours) 

lh
nE is the energy demand of customer n during optimization horizon  (kWh) 

,
set

n tT denotes the set point temperature of dwelling at time t of customer n (oC) 

n is the internal temperature dead-band of customer n (oC)  

,

a

n tT  is the indoor ambient temperature of dwelling at time t of customer n (oC) 

,n tSoC represents the state of charge of thermal storage of customer n 

cap
nE is the maximum thermal storage capacity of customer n (kWh) 

min
nSoC  is the minimum allowable state of charge of thermal storage of customer n  

max
nSoC  is the maximum allowable state of charge of thermal storage of customer n 

,
hvac
n tQ is the HVAC thermal output power at time t  of customer n (kW) 

,maxhvac
nQ  is the rated thermal output power of HVAC of customer n (kW) 

,n t denotes the storage thermal losses at time t of customer n (kWh) 

 
n  is the storage loss coefficient of customer n 

i, j are the indices of  bus 
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f  is the index of feeder 

ij
fP /

ij
fQ /

ij
fS  denotes active/reactive/apparent power flowing through feeder f  from bus 

i  to bus j  

ij
fY denotes the admittance magnitude associated with feeder f . 

iV is the voltage magnitude at bus i 

jV is the voltage magnitude at bus j 

i is the phase angle at bus i 

j is the phase angle at bus j 

ij
f represents the phase associated with feeder f  

/ /i i i
s s sP Q S is the active/reactive/apparent power flowing through the transformers in the 

secondary substations connected to bus i  

i

lP / i
lQ  is the active/reactive load served by the secondary substation at bus i  

i

lvgP / i
lvgQ  is the active/reactive power of renewable generation installed in the low volt-

age network served by the substation at bus i  

g/i i

lvgc lv cP Q is the active/reactive generation curtailment at the low voltage side 

/i i
mvg mvgP Q denotes the active/reactive power of renewable generation installed in the 

medium voltage side of the secondary substation at bus i  

/i i
mvgc mvgcP Q  denotes the active/reactive generation curtailment at the medium voltage 

side of the secondary substation at bus i  

/i i

LOW UPV V is the lower/upper acceptable voltage magnitude level at secondary substation 

at bus i 

,
total
n tS  is the total apparent household load at time t of customer n (kWh) 

 

The equation (95) establishes that the indoor temperature stays in range of the set-point 

temperature and does not breach the set temperature dead-band. HVAC system can 

work at continuos power level while bounded by maximum rated powers as described 

by (96) and (97). Maximum hourly demand limit is bounded by (98). The expression 

(99) determines the amount of stored energy in the tank. (100) bounds the SoC of ther-

mal storage, while storage losses are determined by (101). The costraints (102) ascer-

tains that total energy consumtion should be less than the business as usual daily energy 

requirement. Consstraint (103) ascertains that the final and intial level of storage must 

be equal.This constraint confirms that the claimed advantages are not at the expense of 

the initial level of stored thermal energy in the storage tank.  
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The network constraints are produced using a basic power flow study (104)-(114).  

5.4.2 Case Studies and Results 

3200 households are considered to be equipped with HVAC systems that are integrated 

with medium to large thermal storage (70-100% of daily energy demand storage capac-

ity). The critical load of the household is attained by executing the multiple regression 

analysis on a big set of hourly load data acquired from AMR data, while the HVAC load 

is attained from the 2-Capacity building model (Figure 2.2) simulation. To create variety 

in the load population, the critical load is randomized by evenly distributing around the 

mean value. The HVAC system and building data is borrowed from [VI] and is based 

on the Finnish scenario. The storage losses are assumed to be insignificant. Nordpool 

[77] is the source used to present the wholesale electricity prices while the outside tem-

perature profile is taken from the Finnish Meteorological Institute [41]. The current in-

feed tariff of wind power in Finland is the basis for the wind energy curtailment cost, 

X  , set at 0.083 €/kWh.  

The following case studies are offered to highlight the performance of the proposed 

framework.  

 

•Case 1: In this case, the aggregator deals with the HVAC load to lessen the total cost 

in the energy market only. 

•Case 2: This case comprises of the aggregator focusing on minimizing the wind en-

ergy curtailment cost only.  

•Case 3: This case includes a situation where the aggregator tries to optimize both DR 

services and therefore manages the total load profile to decrease the weighted sum of 

energy costs in the day-ahead market and cost of green energy curtailment as portrayed 

in (93).  

 

The overview of the costs and amount of wind spill in different cases is listed in Table 

5.IV. It can be seen that the total financial cost is the least when the DR service is opti-

mized jointly instead of a single focus optimization. The total cost is the largest if the 

aggregator greedily optimizes from the energy market perspective and disregards the 

wind spilling cost.  

TABLE 5.IV  

OVERVIEW OF BASIC RESULTS 

Case Energy cost      Wind spill Cost Total Cost Wind spill 

Case 1 9 k€ 16.89 k€ 25.89 k€ 203.5 MWh 

Case 2 11.11 k € 6.65  k€ 17.76 k€ 80.1   MWh 

Case 3 10.25 k€ 6.71  k€ 16.96 k€ 80.9  MWh 
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Sensitivity Analyses 

Impact of wind and market prices correlation on cost of different cases: 

Let us next study the influence of wind production and market price correlation. A graph 

is illustrated in Figure 5.11 and it portrays the evolution of total cost with correlation 

between wind power and market price.  

 

Figure 5.11.    Influence of wind power and energy price correlation on total cost volatility among differ-

ent cases. 

 

The coefficient of variance (CoV) is used as a parameter for the comparison between 

costs in different scenarios and shows the extent of variability in relation to the average 

costs in Cases 1-3. It can be seen that the greater the positive correlation, the larger the 

CoV thus the volatility of costs in different cases is higher. In contrast, when the corre-

lation is highly negative, the CoV is lower and subsequently the volatility of costs is 

lower as well. A higher CoV value indicates that the advantages of employing joint 

optimization of DR services are considerable compared to the benefits attained from a 

CoV that is lower. The aggregator will obtain the most benefits of optimizing the ag-

gregator DR services when wind and market prices have a highly positive correlation 

and vice versa. 

Effect of wind curtailment cost on different cases: 

To portray the impact of the cost inflicted by wind energy curtailment, a sensitivity 

analysis is conducted on Case 3 and the results are specified in Figure 5.12. The results 

indicate that the total cost of aggregator decreases in an almost linear fashion with the 

reduction in wind curtailment cost. In contrast, with the decrease in wind curtailment 

cost, the total wind curtailment increases almost exponentially. Interestingly enough, 

even if wind curtailment cost is reduced to about half i.e. 0.04 €/kWh there is no effect 

on the amount of wind spilling. This can be due to the large value of cost caused by 

wind curtailment. 
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Figure 5.12.    Influence of wind energy curtailment cost on total cost and wind curtailment in Case 3. 

 

5.5 Conclusion 

The integration of a large scale intermittent renewable generation in smart grids will 

necessitate additional operational flexibility. This chapter presented tools for optimal 

utilization of intermittent generation by activating DR through HVAC load. At first, an 

optimization model is formulated for managing the population of domestic HVAC loads 

for balancing wind generation while respecting customer temperature preferences. 

Then, joint optimization of RTTR and DR through HVAC load was proposed for coping 

the variability of wind generation. Using both the tools, wind utilization problem was 

solved for various scenarios encountered by utilities in a typical Finnish distribution 

system. A broad set of sensitivity analyses were also investigated to exhibit the influ-

ence of key parameters on the obtained results. Simulation results confirmed that opti-

mally managing the cyclic operation of population of HVAC loads will curb the varia-

bility of wind geneartion. It is showcased that the tandem of RTTR and DR will reap 

significant benefits in utilization of wind generation owing to the possible synergy be-

tween wind and weather depending network rating. These results will serve as a strong 

stimulus for the utlities to manage domestic HVAC loads for intermittent genartion bal-

ancing. 
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6. Conclusions and Future Works 

6.1 Conclusions 

Demand response (DR) is believed to be one of the most important tools to improve the 

effectiveness and dependability of the future smart grid. Rather than altering electricity 

generation to equal variations in demand, the demand itself could be made more flexible 

to ease the integration of intermittent renewable generation resources and reduce re-

quirements on the electric power generation infrastructure. The chief purpose of the 

dissertation was to evaluate the potential advantages of domestic DR under the smart 

grid paradigm. The treatment of DR in this study is limited to heating, ventilation and 

air conditioning (HVAC) load for potential DR applications. The HVAC load was con-

sidered due to its significant share in daily load profile and operational characteristic.  

The dissertation goals were segmented into three main tasks that were classified as 

standalone chapters. The first task includes an investigation of HVAC upward/down-

ward DR potential in various seasons with regards to customer temperature choices. To 

begin, an optimization model is suggested to measure the DR potential while taking into 

account temperature preferences. Simulations were performed regarding a typical Finn-

ish single household situation. According to the simulation results, the load presents 

remarkable flexibility for up/down ramping and DR potential increases as the customers 

permit wider temperature dead band. DR potential is value-added when the HVAC sys-

tem is incorporated with thermal storage, as illustrated by the results. To gain under-

standing about the availability and flexibility of the HVAC, the suggested optimization 

model can be put in place by electrical aggregators which can be then used for designing 

DR flexibility bids in markets. 

Chapter 4 illustrates the second task, which concentrates on the development of a cus-

tomer-oriented framework for optimal management of the HVAC load aimed at mini-

mizing customer energy payments. The task was further divided into three subtasks. 

The first subtask describes the mathematical model for optimal coordination of HVAC 

load and partial thermal storage for minimizing energy costs using an overview of the 

power prices. The second task deals with the uncertainty and risk features that are in-

cluded in the proposed model to make it more generic. The third subtask suggested a 

way to activate DR in both the energy and balancing market through a two stage frame-

work for HVAC load management. Additionally, using typical Finnish systems' case 

studies, simulations were conducted while taking into account a single medium massive 

structure house scenario. The results indicated the considerable financial savings that 

can be attained through the activation of HVAC DR without hindering a customer's 

thermal comfort and preferences. The proposed decision frameworks address the com-

fort, risk and cost economic concerns and hence will encourage the customers to actively 
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participate in DR program managed by electrical aggregator who aims at maximizing 

the economic gains and system efficiency.  

Lastly, tools for activating DR through HVAC loads in the midst of large scale wind 

generation are suggested in Chapter 5. This task was also further divided into three sub-

tasks. The development of an optimization model for managing the population of 

HVAC loads directed towards the maximal utilization of wind generation is dealt with 

within the first subtask. The second subtask is the improvement of subtask 1 where real-

time thermal rating (RTTR) and DR are combined to create one flexible tool for wind 

generation balancing. A tool for optimizing the aggregator based DR services in the 

presence of extensive wind generation is introduced in the third subtask. Taking into 

account a typical Finnish distribution network plan, simulations are conducted in order 

illustrate the application of the proposed tools. The results indicated that by optimally 

managing the cyclic operation of the HVAC loads, the proposed framework facilitated 

the integration of intermittent generation. Furthermore, the results prove that the RTTR 

and DR partnership will bring considerable advantages in terms of wind generation bal-

ancing especially in congested networks where the DR potential could be hindered by 

the static network ratings. Lastly, it is demonstrated from the aggregator's monetary 

gains perspective, that the joint optimization of DR applications (energy cost minimi-

zation and wind generation balancing) is advantageous.  The suggested tool will be es-

pecially useful to network operators and stakeholders in providing a clear picture of the 

available enabling technologies given the large access to intermittent renewable gener-

ation in distribution networks. 

 

6.2 Future Works 

The proposed frameworks will facilitate additional DR research and practical work. The 

following section discusses fascinating extensions of the current work. 

 The building thermodynamic modeling can be more refined by thoroughly con-

sidering the impact of internal heat gains on the ambient temperature dynamics. 

Internal heat gain plays a key role particularly in the nearly zero energy build-

ings and is defined as the percentage of energy consumed by domestic appli-

ances that counteracts energy that would otherwise be provided by the HVAC 

system. By taking internal heat gains and the complexity of human activities in 

the residential sector into consideration the building model can potentially be 

improved thus it will be useful in capturing a more precise picture of thermal 

comfort which is viewed as the foundation for any DR application.  

 In Chapter 4, a decision framework for HVAC load management amid uncer-

tainty environment is presented. The problem is solved using non-linear opti-

mization method. Nevertheless, simple heuristic algorithms like the genetic al-

gorithm or particle swarm optimization may be especially useful when compu-

tational complexity takes precedence over solution accuracy. However, conver-

gence and efficiency loss of these algorithms must be examined.  
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 DR is a tool to improve the overall system efficiency. However it is imperative, 

given the restructuring of power markets, to investigate the potential benefits of 

DR with respect to different market stake holders. For example, if DR is to be 

setup for network capacity management then ultimately the potential of DR for 

wind integration will lessen and vice versa. Ultimately, an interesting research 

venture would be the development of a framework for optimal DR allocation 

among different market players.  

 To mitigate the variability of intermittent generation, the dissertation introduced 

the idea to use DR through the HVAC load as a tool. However, enabling strat-

egies are needed for the large scale practical realization of the proposed frame-

work since the centralized framework experiences issues such as computational 

complexity and lack of customer privacy. Therefore, a possible interesting ex-

tension can include a multi-agent based system wide decentralized management 

framework in order to protect customer privacy and ensure robust control. 
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