

Solution Architect for Global Bioeconomy & Cleantech Opportunities

## **Energy Grids as Enabler?**



## **Expectations**

- ≻ Reliable and secure
- Cost-effective (investment, operation)
- > Smart, flexible, adaptive...

 $[l_1]$ 

**FLEX**<sup>e</sup>

# Flexibility in Energy Grids? It's all about...

**FLEX**<sup>e</sup>



### **POWER AND HEAT INFRASTRUCTURE...**



# Flexibility in Energy Grids? It's all about...

**FLEX**<sup>e</sup>



#### **ICT INFRASTRUCTURE...**



# Flexibility in Energy Grids? It's all about...

**FLEX**<sup>e</sup>



### **APPLICATIONS AND ALGORITHMS**





# Adaptive generation



**FLEX**<sup>e</sup>

**Under-frequency** = Consumption higher than generation

**Over-frequency** = Generation higher than consumption **Conventional way:** Power balance is guaranteed by the control of generation (generation follows the changes of consumption)

**Future flexible solution:** Power balance is managed cost-effectively by both solutions: control of adaptive generation as well as flexible load. *Dimensioning and operation of the grids enable this Flexibility!* 

# **Expectations for Energy Grids**

Case 1: Power Balance and Flexibility

## **Done in FLEXe**

FLEXe

Development of load control algorithms, frequency control applications

Development of high quality and advanced measurement, data management and communication systems

Development of methods for optimal dimensioning of energy infrastructure



**Expectations for Energy Grids** 

**Case 2: Reliable Connection** 





**FLEX**<sup>e</sup>

**Conventional way:** Reactive operation in interruptions of energy grids, long delays, centralized automation.

**Future flexible solution:** Proactive planning and management of energy grids utilizing high-quality measurements and Big Data analytics to avoid interruptions and allow flexibility actions in energy system. Advanced protection, fault isolation and supply restoration functions included.

### **Expectations for Energy Grids** Case 2: Reliable Connection

### **Done in FLEXe**

FLEXe



Adapted from: HubNet Position Paper Series, Smart Grids and Communications Systems (www.hubnet.org.uk/filebvid/613/SmartGridComms.pdf) **Expectations for Energy Grids** Case 3: Energy Independence (Island Operation)



**FLEX**<sup>e</sup>



**Conventional way:** Energy end-customers are dependent on continuous system level connection (one-direction power flow, no energy storage)

Future flexible solution: Energy endcustomers have local resources and solutions to continue energy usage during system blackouts. Local smartgrid solutions (microgrids) enable this!



## **Expectations for Energy Grids**

Case 3: Energy Independence (Island Operation)

### **Done in FLEXe**

FLEXe

Development of demand response algorithms (load control), storage management, ...

Development of microgrid ICT solutions allowing energy delivery in island mode.

Development of microgrid infrastructure allowing full-scale flexibility in the customer-end



Adapted from: HubNet Position Paper Series, Smart Grids and Communications Systems (www.hubnet.org.uk/filebvid/613/SmartGridComms.pdf) **Results in Enabler Grids** 

Future Energy System

**FLEX**<sup>e</sup>



- ✓ Ph.D. thesis
  - ✓ M.Sc. thesis
  - ✓ B.Sc. thesis
  - ✓ Conference papers
  - ✓ Journal papers
  - ✓ Research reports









## Thank You!

