

LNG Port Interconnection with the Natural Gas Distribution Network in Finland M. Mikolajková, H. Saxén, F. Pettersson Tomorrow's Energy Efficiency Solutions Seminar September 14th 2015, Espoo

Finnish Natural gas network

2014

29 TWh NG sold

efeu

Efficient Energy Use

- 34 GWh biogas injected into network
- 3.9 TWh LNG sold in Nordic countries

What happens if:

- New larger consumers emerge ?
- The energy demand increases ?

efeu

Efficient Energy Use

- There is a NG supply shortage ?
- Regasified LNG is injected into the network ?

Modelling and Optimisation Approach

- Steady- state
- Known energy demands (Gasum)
- Mass and energy balances
- Pressure drop equation
- Network constraints (Gasum)
- Multi period formulation
- MINLP (mixed integer non-linear programming)

Balances

• Mass Balance

$$\sum_{j} m_{i,j,e} + O_{i,e} = \sum_{j} m_{j,i,e} + S_{i,e} \quad \forall i , \forall j \ i \neq j$$

• Energy balance

$$\begin{aligned} O_{i,e} \cdot H_{\mathrm{NG}} + \sum_{ft} m_{i,ft,e} \cdot H_{ft} \geq D_{i,e} & \forall i \in I, \forall e \in E, \forall ft \\ \in FT \end{aligned}$$

Pressure Drop

1

$$p_{j,e}^2 \le p_{i,e}^2 - p_{i,e} \cdot \zeta \cdot \frac{l_{i,j}}{d_r} \cdot \rho_{i,e} \cdot \left(\frac{m_{i,j,r,e}}{\frac{1}{4} \cdot \rho_{i,e} \cdot \pi \cdot d_r^2}\right)^2 + \left(1 - a_{i,j,r}\right) \cdot M$$

$$p_{j,e}^2 \le p_{i,e}^2 - p_{i,e} \cdot \zeta \cdot \frac{l_{i,j}}{d_r} \cdot \rho_{i,e} \cdot \left(\frac{m_{i,j,r,e}}{\frac{1}{4} \cdot \rho_{i,e} \cdot \pi \cdot d_r^2}\right)^2 - \left(1 - a_{i,j,r}\right) \cdot M$$

$$p_{i,e}^2 \le p_{j,e}^2 - p_{j,e} \cdot \zeta \cdot \frac{l_{j,i}}{d_r} \cdot \rho_{j,e} \cdot \left(\frac{m_{j,i,r,e}}{\frac{1}{4} \cdot \rho_{j,e} \cdot \pi \cdot d_r^2}\right)^2 + \left(1 - b_{i,j,r}\right) \cdot M$$

$$p_{i,e}^{2} \leq p_{j,e}^{2} - p_{j,e} \cdot \zeta \cdot \frac{l_{j,i}}{d_{r}} \cdot \rho_{j,e} \cdot \left(\frac{m_{j,i,r,e}}{\frac{1}{4} \cdot \rho_{j,e} \cdot \pi \cdot d_{r}^{2}}\right)^{2} - (1 - b_{i,j,r}) \cdot M$$

Case study

- Existing pipeline
- Potential extensions specified
- Multi-period: winter, summer, autumn + spring
- Set of possible LNG terminals with regasification
- Price for NG and alternative fuel fixed
- Price of regasified LNG varied

efeu Efficient Energy Use

LNG price higher

LNG price lower

efeu Efficient Energy Use

Mass flows (kg/s)

NG Supply (kg/s)	Period 1		Period 2		Period 3	
	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2
	107.1	98.9	97.2	77.8	66.6	25.5
Tolkkinen (LNG terminal)	14.0	0	3.8	0	0	0
Inkoo (LNG terminal)	0	20.0	0	20.0	0	20.0
Turku (LNG terminal)	8.8	20.0	7.1	7.1	2.5	2.5

Alternative fuel use (kg/s)

The optimization gives information about

- pressures, mass flows and flow directions in network
- new supply and demand points
- investment and operation costs
- consumption of NG, LNG and alternative fuel during the periods
- threshold values at which structural changes occur: new concept becomes feasible
- sensitivity of the solution
- limits of the system

- Expansion to a larger network
- Alternative or several objective functions:
 - Economics
 - Environmental issues
 - Primary energy use
 - Exergy use
- Sensitivity analysis
- Network in a larger supply chain scheme
- Sequential optimisation

• Thank for your attention!

