

How to predict energy flows? Guangrong ZOU, Kari Tammi, VTT Tomorrow's Energy Efficiency Solutions Seminar September 14th 2015, Espoo

" **Energy flow** here refers to the **flow** of **energy** in different forms through a series of **interconnected processes** of an **energy system**."

What is energy flow?

• Example – How energy flows through a **cruise ship**

"Good operators should accommodate to **uncertainties**, and adjust their operations according to **what is likely to happen in the near future (prediction)**."

For energy efficiency, and for safety.

How to predict energy flows?

White box	Grey box	Black box
Deterministic approach	"Combined" approach	Statistic approach
 Detailed physical modeling of complex systems 	 Some prior knowledge + some data Combined data information 	 Data-driven input- output models The models and their parameters have little physical significance System unknown Some environmental conditions unknown
 Model structure is known and deterministic Some environmental conditions unknown 	 with physical knowledge At some level or in some parts deterministic 	
	 System partly unknown Some environmental conditions unknown 	

Efficient Energy Use

Ex.– Ship engine water cooling system

• Aim: To evaluate **advanced algorithms** for energy flow prediction with **waste heat recovery** in focus

Efficient Energy Use

Grey box approach

- Previously developed **ship energy flow simulator** used as a test bench for various prediction algorithms
 - System-level approach without knowing the system details
- Heat energy need **unknown**
- Environment temperatures (air and sea water) unknown
- To evaluate: model structure, iteration, prediction horizon

Grey box approach (Regressive least squares (RLS) method)

Efficient Energy Us

Black box approach

- The ship energy cooling water system is considered as a **black box**
 - without knowing the information on the system
- A large set of **measurement data** available for use
- Heat energy need unknown
- Environment **temperatures** (air and sea water) **unknown**
- To evaluate: data set, model structure, training algorithm

Efficient Energy Use

Black box approach (Neural Network method)

- Expanded ship fresh water cooling system
- **Inputs**: engine load of the four DG sets
- **Output**: total WHR energy
- Method: NARX (nonlinear autoregressive exogenous) method with Levenberg-Marquardt algorithm

Conclusions

- Energy flow prediction can provide operators valuable insights into system operations with future aspects into consideration
- Both grey-box and black-box approaches can deliver good prediction results for small-scale systems within reasonable horizons
- The practical performances of energy flow prediction depend on some **key factors of specific approaches**
- The methods are **general in nature** and easily applicable to other energy systems: **building**, **plant**, **town**, **city**

Future plans

- To extend the energy flow prediction approaches to largerscale energy systems
- To identify possible **bottlenecks** and to evaluate the practical **feasibilities** of the developed prediction methods
- To combine system level optimization with energy flow prediction methods so as to improve energy efficiency and to reduce operational cost
- To work together with partners to identify **business potentials** of the developed methods
- **Publication** of the research results
- International collaboration with top European universities

