

16.1.2017
Mika Horttanainen
Lappeenranta
University of
technology

Systeemisellä ymmärryksellä kestävyyttä ja liiketoimintaa yhdyskuntajätteiden käsittelyyn Kiinassa ja Brasiliassa

Objectives and Implementation

- The overall objective of the MSW theme was
 - to increase understanding of the municipal solid waste management systems (and nitrogen recovery from sludge),
 - thus increasing the value of the recovery and
 - facilitating sustainability
 - in different business environments.
- Implementation
 - Systems analysis in different operation environments
 - South Karelia, Hangzhou, Sao Paulo
 - Environmental LCA as the main method
 - Organization of MSW management and money flows
 - Co-operation with business analysis

Jouni Havukainen Miia Liikanen Mika Horttanainen Lappeenranta University of Technology, Sustainability Science

Systems analysis for MSW management of Hangzhou city in China

- Objectives
 - Analyzing the current MSW management system of Hangzhou city
 - Analyzing the possibilities to improve environmental sustainability with WtE solutions including Finnish technology
 - SRF production Avoiding coal use
- Environmental impact analysis with LCA method
 - ➤ Producing SRF from mixed MSW
 - > GHG emissions and emissions causing acidification and eutrophication
 - Comparing to current mixed MSW co-combustion with coal

Study region: Hangzhou city

- Inhabitants: 7 million
- Capital city of Zhejiang province
- Stark increase in MSW generation

MSW per person

2003: 142 kg/inhab./a

2013: 432 kg/inhab./a

MSW management system: Mass flows

MSW management: Money flows

MSW management: Organizing

Life cycle assessment

Hangzhou city MSW management system

- Functional unit is the MSW mass produced in 2013, i.e. 3 100 kt.
- Compared scenarios
- Scenario 0
 - Present incineration and landfilling
- Scenario 1
 - SRF production and incineration in existing incineration plants
- Scenario 2
 - SRF production and incineration in new CFB plants
- Scenarios 1 and 2 include sub-scenarios with different biodegradable reject treatment
 - 1. Landfilling
 - 2. Biodrying and incineration
 - 3. Anaerobic digestion, composting of digestate
 - 4. Ethanol production, anaerobic digestion of stillage, composting of digestate

Hangzhou city MSW management LCA

Results: Global warming potential (GWP)

Results: Eutrophication potential (EP)

Results: Acidification potential (AP)

Conclusions

- Main problem: lack of source separation
 - High food waste share → High moisture content → low LHV
 - Mechanical separation of recyclables difficult
 - Educating citizens is necessary
- The environmental performance would be improved a lot if the incineration plants could recover also heat
- Placing near the industry which uses steam
- SRF production could improve significantly the environmental performance of Chinese energy recovery of MSW
- Recovery of the reject from SRF production is important

Steps towards sustainable municipal solid waste management in São Paulo, Brazil

Miia Liikanen
Jouni Havukainen
Mika Horttanainen
Lappeenranta University of Technology
Sustainability Science

MSW management in São Paulo

- Brazil is the fourth largest MSW producer in the world
- São Paulo is the largest city in Brazil
- No proper source separation of MSW
- Landfilling is predominant treatment method for MSW
- 2 sanitary landfills, 3 waste transfer stations and 2 mechanical sorting plants in the city
- MSW management is contracted out to two companies, Ecourbis and Loga
 - 20-year contracts
- São Paulo plans to develop MSW management system
 - Need to diminish the volume of MSW landfilled
 - Separate collection for organic waste in future
 - Incineration opposed

São Paulo City

- Population: 11-12 million, depending on the source
- Surface area: ~1500 km²
- MSW generation: ~400 kg/capita/year

- Essencis landfill operated by Loga
- 8-9 kt of MSW is landfilled per day

- CTL landfill operated by Ecourbis
- 7.5 kt of MSW is landfilled per day

Material Value Chains

LCA of MSW management in São Paulo

- Functional unit: the treatment of domestic MSW generated in the city in 2015, i.e. 3.8 million tonnes
- Impact categories: global warming potential (GWP), acidification potential (AP) and eutrophication potential (EP)

Results

- Scenario 2.2 (i.e. home-composting + separate collection of organic waste (AD))
 had the lowest environmental impact in all impact categories
- MBT and incineration of mixed MSW did not decrease the environmental impacts of MSW management
 - In AP and EP impact categories, they even increased the emissions notably
 - However, it should be noticed that MBT and incineration decreases significantly the volume of MSW landfilled, i.e. they have other environmental benefits

LCA of MSW management in São Paulo

Conclusions

- Home-composting and Separate collection of organic waste beneficial from these impact categories point of view
- Electricity substitution is very important factor
 - Most of the electricity in Brazil produced with Hydropower
 - LFG collected and utilized for electricity production
 - Electricity generation from incineration not effective for environmental impact reduction (if average grid mix substituted)

Electricity production in Brazil

- Waste to energy could be used for other purpose
 - Cement kiln fuel
 - Replacing coal

Conclusions from different operation environments

- General MSW management situation important
 - Incineration increase + coal co-incineration in China
 - No proper source separation in most of the developing countries
- Political decisions important
 - Almost categorical incineration ban in Brazil
 - SRF/RDF proposed for emission reduction in Chinese standardization
- Scenario selection for the local needs
- Energy infrastructure important
 - Substituted energy
 - Possibility to recover heat (integration with process industry)
- Scenarios can be re-formulated after first results and conclusions
- Selling arguments for a MSW technology or service can be very different
- Correct system knowledge and sustainability knowledge is valuable

Contacts:

Mika Horttanainen (<u>mika.horttanainen@lut.fi</u>) Jouni Havukainen (<u>jouni.havukainen@lut.fi</u>) Miia Liikanen (<u>miia.liikanen@lut.fi</u>) Ivan Deviatkin (<u>ivan.deviatkin@lut.fi</u>)

Lappeenranta University of Technology Sustainability Science