

Improved Model for District Heat Consumption

Seppo Pulkkinen, Jarmo Koistinen, Annakaisa von Lerber – Finnish Meteorological Institute Ville Laukkanen, Marcus Grönlund, Anders Brunström - IndMeas

A combined regression/clustering approach for modeling:

- The effect of outer temperature on heating power consumption.
- Dependence of the consumption on weekday and time.

The model:

 $P \sim T + S + \varepsilon$

P = heating power consumption
T = outer temperature
S = social model
E = residuals

Multiple regression modeling for different consumption profiles (e.g. day/night)

- Outer temperature is used as the predictor for piecewise regression (with 7 knot points).
- Usually there are different consumption profiles during day and night.
- A single regression model is fitted first, and the Hartigan dip test is done for the residuals.
- If the residuals have a two-peak distribution, the regression modeling is done separately for the two clusters. Splitting of the data is done by using the Otsu method.

The remaining variation (i.e. residuals) is modeled on a weekly/daily basis (social model)

- Average residual value is computed for each weekday/hour.
- The modeling is done separately for the clusters

Factors contributing to heating power consumption

found above.

• Heating power consumption is strongly concentrated to certain weekdays/hours.

Solution Architect for Global Bioeconomy & Cleantech Opportunities