Independent Loops Search in Flow Networks Aiming for Well-Conditioned System of Equations

Jukka-Pekka Humaloja, Simo Ali-Löytty, Timo Hämäläinen and Seppo Pohjolainen

ECMI 2016

Outline

Introduction

Background to the Problem

Concepts of Graph Theory
Choosing the Best-Conditioned Submatrix

Improving the Condition Number

Heuristics for Choosing the Loops Scaling the Equations

Test Cases and Results

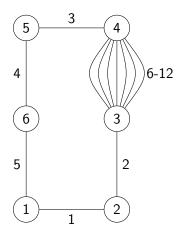
Case 1: 12 pipes, 6 nodes

Case 2: 618 pipes, 235 nodes

Case 3: 953 pipes, 78 nodes

Introduction

- Consider a pipeflow network with m pipes and n nodes.
- In order to solve the flow rates in the pipes, we need to find a well-defined set of equations for them.
- ► The flow rates behave analogously to Kirchoff's circuit laws, i.e., flow into a node equals flow out, and the pressure loss over any closed loop equals zero.



Introduction

- We obtain n equations based on continuity of flow (flow in = flow out), n-1 of which are linearly independent.
- ▶ Thus, we need to choose (at least) m n + 1 loops over which we compute the pressure losses.
- ► The pressure loss equations are nonlinear with respect to the flow rates, but they can be solved iteratively by solving a linearized version of them.
- ▶ Thus, we want to choose such m n + 1 loops that the resulting set of linear equations is well-conditioned.
- We will present ideas on how the loops should be chosen, and also, how can the condition of the equations be improved in general.

Concepts of Graph Theory

- ▶ In graph theory, a minimum set of edges that connect all the nodes is called a *spanning tree*.
- ▶ There are n-1 edges in the spanning tree, and the remaining m-n+1 edges are in the *cospanning tree*.
- When an edge from the cospanning tree is added to the spanning tree, a cycle (loop) is formed.
- By forming such cycle for every edge in the cospanning tree, we obtain a set of fundamental cycles.
- Since every fundamental cycle contains at least one unique edge, the set of fundamental cycles is linearly independent.
- ► Thus, the pressure loss loops have to be chosen to be a set of fundamental cycles to ensure linear independence.

How to Choose the Loops Optimally?

- ► Even though we know that the set of fundamental cycles gives a linearly independent set of loops, we do not know how well-conditioned the equations actually will be.
- Optimally we should find the set of fundamental cycles that is the most linearly independent.
- ► For PEEC problems, an algorithm that utilizes the topology of the circuit network has been presented by [Nguyen et al.] but such approach is problematic for pipeflow networks where the topology may differ significantly based on the application.
- ► Thus, we will resort to finding an excessive number of cycles in a network and aim to choose the ones that produce the best-conditioned equations.

Choosing the Best-Conditioned Submatrix

- ➤ The problem of choosing the loops optimally can be considered as choosing the best-conditioned submatrix, which is shown to be NP-hard in [Šrámek et al.].
- ► We will present the algorithm presented in [Šrámek et al.] and utilize it in our heuristics for choosing good loops.
- ▶ The main idea behind the heuristics is to choose such loops that the corresponding rows of *A* are as orthogonal as possible.
- ► Thus, the heuristics maximize $vol(A) = \prod_{i=1}^{m} \sigma_i$, whereas condition number is defined as $cond(A) = \sigma_{max}/\sigma_{min}$.
- Maximal volume and minimal condition number are obtained when A is orthogonal, but in general these properties behave in a slightly different way.

SFVW Algorithm from [Šrámek et al.]

- Aim: find the best-conditioned $m \times m$ submatrix B of an $M \times m$ matrix A. (M > m)
- ▶ The heuristic repeats the following steps *m* times
 - 1. On the *i*:th step, find the row a_i of A that has the largest norm. Choose the row as the *i*:th row of B, i.e., $b_i = a_i$.
 - 2. For each row of A, Subtract its projection to b_i from itself, i.e., update the remaining rows a_k by $a_k = a_k \langle a_k, b_i \rangle ||b_i||^{-2} b_i$.
- ▶ That is, on each step we choose the row of *A* most orthogonal to the previously chosen rows.
- Due to this criterion, the matrix B should be rather well-conditioned.
- ▶ The algorithm runs in $O(Mm^2)$.

Improving the Condition Number

- In addition to choosing the pressure loss loops such that the resulting linearized equations are well-conditioned, the condition number of the coefficient matrix can be improved by scaling.
- We will present three heuristics based on the SFVW algorithm for choosing the pressure loss loops.
- ▶ We will also consider scaling the rows of the coefficient matrix in order to improve its condition number.

Heuristic 1

- The SFVW algorithm can be used directly to find good loops.
- ► Firstly, generate a number of loops as the rows of *A*, e.g., by finding fundamental cycles with different spanning trees.
- ▶ Subtract the projection of A to B_0 from A, where B_0 contains the n-1 rows corresponding the continuity of flow equations, i.e, set $A = A (B_0^T (B_0 B_0^T)^{-1} B_0 A^T)^T$.
- ▶ Use the SFVW algorithm to find a well-conditioned $m n + 1 \times m$ submatrix of A, which gives the choice of the required m n + 1 loops.

Heuristic 2

- Heuristic 2 can be described by the following steps:
 - 1. Generate a number of loops as the rows of A, and generate a random $m \times m$ matrix A_0 .
 - 2. Find the row index j of A_0 that satisfies

$$j = \max_{n \le j \le m} \sum_{k=1, k \ne j}^{m} |\langle a_{0j} || a_{0j} ||^{-1}, a_{0k} || a_{0k} ||^{-1} \rangle|$$

and remove the row a_{0j} from A_0 . Denote $\tilde{A}_0 = A_0 \setminus a_{0j}$.

- 3. Compute the norm of the orthogonal component of a_{0j} to the rows of \tilde{A}_0 , i.e., $r = ||a_{0i}^T \tilde{A}_0^T (\tilde{A}_0 \tilde{A}_0^T)^{-1} \tilde{A}_0 a_{0i}^T||$.
- 4. Find the row a_i of A that has norm-wise the largest orthogonal component to the rows of \tilde{A}_0 .
- 5. If $||a_i^T \tilde{A}_0^T (\tilde{A}_0 \tilde{A}_0^T)^{-1} \tilde{A}_0 a_i^T|| > r$, swap a_{0j} and a_i and go to step 2, otherwise stop.

Heuristic 3

- ▶ Heuristic 3 combines the previous heuristics.
- ▶ Firstly, generate a number of loops as rows of A, and generate a random $m \times m$ matrix A_0 .
- ► Compute $\sum_{k=1,k\neq j}^{m} |\langle a_{0j}||a_{0j}||^{-1}, a_{0k}||a_{0k}||^{-1}\rangle|$ for $n \leq j \leq m$.

See for which rows the value is larger than the mean value and move them from A_0 to A. Denote $\tilde{A}_0 = A_0 \setminus A_{0,moved}$.

- ▶ Update A by $A = A (\tilde{A}_0^T (\tilde{A}_0 \tilde{A}_0^T)^{-1} \tilde{A}_0 A^T)^T$
- ▶ Use the SFVW algorithm to find a well-conditioned *N* × *m* submatrix of *A* that gives the choice of the *N* loops that replace the ones that were removed earlier.

Scaling the Equations

- ► Consider the linearized set of equations for the flow rates in the form Ax = b.
- ▶ Let the n-1 first rows of A represent the continuity of flow equations, hence consisting of elements -1, 0 and 1.
- ▶ The rest of the rows represent the pressure loss loops, and the corresponding nonzero elements of A are of the scale $10^3 10^5$.
- ► Thus, the matrix A may be badly scaled and therefore badly conditioned.
- ▶ We will consider simple row scaling by a diagonal matrix S so that the equations become SA = Sb.

Scaling the Equations

- ▶ A heuristic given in [Golub & Van Loan, pp. 138–139] suggests that the scaling matrix *S* should be chosen such that every row of *SA* has approximately the same ∞-norm.
- ▶ Thus, if a_j denotes a row of A, a suitable choice for S would be, e.g., $S = \text{diag}(||a_1||_{\infty}^{-1}, ||a_2||_{\infty}^{-1}, \dots, ||a_m||_{\infty}^{-1})$ so that every row of SA has ∞ -norm 1.
- ▶ We will also consider normalizing the rows of A with respect to the Euclidian (2-) norm.
- We will test the effect of scaling to the condition number of A in a few test cases.

Scaling the Equations

▶ The table below shows the average condition number of *SA* with different scalings *S* and the standard deviation for 100 different matrices *A*. The subindex of *S* refers to the norm and *I* is the identity matrix (no scaling).

	Case 1	Case 2	Case 3
S	m = 12, n = 6	m = 618, n = 235	m = 953, n = 78
1	$(14.3 \pm 5.5) \cdot 10^3$	$(9.4 \pm 1.8) \cdot 10^5$	$(13.4 \pm 2.2) \cdot 10^5$
\mathcal{S}_{∞}	17.6 ± 8.8	$(15.0 \pm 3.0) \cdot 10^3$	$(15.6 \pm 4.2) \cdot 10^3$
S_2	11.9 ± 4.2	$(12.2 \pm 2.7) \cdot 10^3$	$(7.7 \pm 2.4) \cdot 10^3$

► Scaling significantly reduces the condition number, and 2-norm seems to be more efficient than ∞-norm.

Choosing Loops for the Test Cases

- ▶ We consider choosing the pressure loss loops in the same test cases that we inspected the effect of scaling on.
- Since normalization with respect to 2-norm was found out to be effective, we will combine normalization with choosing the loops.
- ▶ We will perform the choosing of loops 100 times for each test case, and each time we generate a random initial matrix A_0 and approximately 10(m-n) additional loops.
- We will consider the mean values and standard deviations of numbers of iterations, computation times and obtained condition numbers for the heuristics over the 100 repetitions.

Case 1: 12 pipes, 6 nodes

	Heuristic 1	Heuristic 2	Heuristic 3
iterations	7	2.84 ± 1.58	3.18 ± 1.14
time (ms)	1.59 ± 0.26	0.76 ± 0.30	0.81 ± 0.31
cond(A)	7.11 ± 0.27	7.27 ± 0.21	7.26 ± 0.23
$cond(A_0)$	-	12.69 ± 4.16	12.69 ± 4.16

- ▶ All the heuristics produce virtually equal results and somewhat improve the condition number from the randomly chosen A_0 .
- Computational times and the numbers of iterations are very low for all the heuristics due to the small size of the test case.

Case 2: 618 pipes, 235 nodes

	Heuristic 1	Heuristic 2	Heuristic 3
iterations	384	51.0 ± 31.8	216.7 ± 36.7
time (s)	30.6 ± 1.2	8.0 ± 4.8	19.0 ± 3.5
cond(A)	6905 ± 4228	7119 ± 3910	9332 ± 4437
$cond(A_0)$	-	12312 ± 3083	12312 ± 3083

- ► Heuristics 1 and 2 produce the best results and reduce the condition number of A₀ relatively as much as in Case 1, while Heuristic 2 is somewhat weaker
- ▶ Heuristic 2 performs almost as well as Heuristic 1 with much less computational effort.

Case 3: 953 pipes, 78 nodes

	Heuristic 1	Heuristic 2	Heuristic 3
iterations	876	???±???	???±???
time (s)	???±???	???±???	???±???
cond(A)	???±???	???±???	???±???
$cond(A_0)$	-	???±???	???±???

► Computation in progress...

Conclusions

- We considered improving the condition number of the coefficient matrix of a linearized set of equations.
- ► The inspected methods were choosing the pressure loss loops optimally and scaling the rows of the coefficient matrix.
- ▶ We found out that normalizing the rows with respect to 2-norm was more efficient than normalization with ∞-norm.
- Heuristic 1 appeared to produce best results when choosing the loops, but it was also required the most computation time.
- ▶ Heuristic 2 required much fewer iterations and less computation time than Heuristic 1 and still produced virtually the same results, so it can be considered the best option for choosing the pressure loss loops.

References

- Golub, G. H. & Van Loan, C. F. Matrix Computations, 4th edition. The Johns Hopkins University Press, Baltimore, 2013. 756 p.
- T.-S. Nguyen, J.-M. Guichon, O. Chadebec, G. Meunier, B. Vincent, An Independent Loops Search Algorithm for Solving Inductive PEEC Large Problems, *PIER M* **23**, 2013. pp. 53-63,
- R. Šrámek, B. Fisher, E. Vicari, P. Widmayer, Optimal Transitions for Targeted Protein Quantification: Best Conditioned Submatrix Selection. Computing and Combinatorics, 15th Annual International Conference, COCOON 2009, Niagara Falls, NY, USA, July 13-15, 2009, Proceedings. pp. 287–296.

Thank you