
Antti Aalto

Scalability of Complex Event Processing
as a part of a distributed Enterprise
Service Bus

Degree Program of Computer Science and Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 19.11.2012

Thesis supervisor:

Prof. Heikki Saikkonen

Thesis instructor:

M.Sc. Atso Haapaniemi

A’’ Aalto University
School of Science

aalto university
school of science

abstract of the
master’s thesis

Author: Antti Aalto

Title: Scalability of Complex Event Processing as a part of a distributed Enterprise
Service Bus

Date: 19.11.2012 Language: English Number of pages: 9+66+7

School of Science

Degree Program of Computer Science and Engineering

Professorship: Software Technology Code: T-106

Supervisor: Prof. Heikki Saikkonen

Instructor: M.Sc. Atso Haapaniemi

Complex event processing (CEP) is an emerging technology to facilitate analysis and
pattern matching in data streams and historical data. CEP can combine various types
of data from multiple streams, databases and other sources. Several CEP engines are
available but only few are both able to integrate seamlessly with multiple data sources
and to scale out to support high volumes of events.

In this thesis I discuss the latest progress in research and applications of CEP. I review
the requirements of an event-driven service oriented architecture. I designed and
implemented a scalable, distributed architecture integrating a complex event processing
service with an enterprise service bus (ESB).

The key architectural insight in the system is to separate the integration functionalities
of the ESB and the complex event facilities. This results to a stateless ESB, which can
be scaled out by adding more processing nodes. A dedicated CEP cluster can then be
tuned to handle high throughput and scaled out separately.

The results of the performance tests show that the system can be scaled out by adding
more compute instances to a cluster. The ESB achieved a throughput of 1 750 mes-
sages/s per instance in my test setup and could be scaled out linearly. The throughput of
the CEP cluster depends heavily on the required computations and data dependencies.
I demonstrate an example case, where the cluster handles 28 000 events per second on
eight processing nodes. The median latency for receiving an event at the ESB, sending
it to CEP and receiving the derived events for further processing is under 10 ms.

Keywords: complex event processing, enterprise service bus, event-driven service ori-
ented architecture, environmental data

aalto-yliopisto
perustieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Antti Aalto

Työn nimi: Monimutkaisten tapahtumien käsittelyn skaalautuminen hajautetun
palveluväylän osana

Päivämäärä: 19.11.2012 Kieli: Englanti Sivumäärä: 9+66+7

Perustieteiden korkeakoulu

Tietotekniikan tutkinto-ohjelma

Professuuri: Ohjelmistotekniikka Koodi: T-106

Valvoja: Prof. Heikki Saikkonen

Ohjaaja: FM Atso Haapaniemi

Monimutkaisten tapahtumien käsittely (CEP) on uusi teknologia, joka helpottaa
virtamuotoisen ja historiallisen datan analyysia ja säännönmukaisuuksien löytämistä.
CEP voi yhdistää tapahtumia useista virroista, tietokannoista ja muista lähteistä.
Markkinoilla on useita CEP-moottoreita, mutta harva niistä pystyy sekä käsittelemään
saumattomasti dataa useista lähteistä että skaalautumaan suurille tietomäärille.

Käsittelen tässä diplomityössä viimeisimpiä tutkimuksia CEP:ssä ja teknologian sovel-
luksia. Selostan tapahtumavetoisen palvelusuuntautuneen arkkitehtuurin vaatimukset.
Suunnittelin ja toteutin skaalautuvan, hajautetun arkkitehtuurin, joka mahdollistaa
monimutkaisten tapahtumien käsittelyn palveluväylässä.

Arkkitehtuurin suurin oivallus on erottaa palveluväylän integraatio-ominaisuudet ja
monimutkaisten tapahtumien käsittely erillisiksi kokonaisuuksiksi. Seurauksena on
tilaton palveluväylä, jota voidaan skaalata lisäämällä rinnakkaisia virtuaalikoneita.
Pelkästään monimutkaisten tapahtumien käsittelyyn tarkoitettua CEP-klusteria
voidaan silloin skaalata erikseen ja samalla ottaa datariippuvuudet paremmin huomioon.

Suorituskykytestit osoittavat, että järjestelmää voidaan skaalata lisäämällä virtuaa-
likoneita. Palveluväylä pystyy käsittelemään 1 750 viestiä sekunnissa yhdellä koneella
ja skaalautui lineaarisesti koneiden määrän kasvaessa. CEP-klusterin suorituskyky riip-
puu voimakkaasti laskennan vaativuudesta, tyypistä ja datariippuvuuksista. Esitte-
len esimerkkitapauksen, jossa klusteri käsittelee 28 000 viestiä sekunnissa kahdeksalla
koneella. Mediaanilatenssi tapahtuman vastaanotosta palveluväylässä, sen lähettämi-
sestä CEP-klusterille ja käsittelyssä syntyneiden vastineviestien vastaanottoon on alle
10 ms.

Avainsanat: monimutkaisten tapahtumien hallinta, palveluväylä, tapahtumavetoinen
palvelukeskeinen arkkitehtuuri, ympäristödata

Acknowledgements

This thesis was born from the hype of some of the hottest technologies in 2012. This

unlimited enthusiasm and inspiration slowly developed to a much more pragmatic view on

complex event processing, real-time stream processing, distributed systems and big data.

The research was done in MMEA project at HiQ Finland. I kindly thank Atso Haa-

paniemi for the guidance I received in various situations. I’m also grateful for the flex-

ibility to study and work I have enjoyed under the supervision of Jukka-Petri Sahlberg.

Special thanks go to the MMEA team members Juhani Jaakkola, Janne Juhola, Jussi

Kolehmainen, Juha-Matti Lehtinen, who have played a significant role in developing the

components relevant to this thesis.

From Aalto University I want to thank professor Heikki Saikkonen and D.Sc. Seppo

Törmä. They both expressed much interest in my work and provided rapid and to the

point feedback and comments.

And last but not least, I’m thankful for all the support I received from my family and

friends during this process.

Espoo, 19.11.2012

Antti Aalto

iv

Contents

Abstract ii

Abstract (in Finnish) iii

Acknowledgements iv

Abbreviations vii

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation for complex event processing . 2
1.2 CEP as a part of ESB . 2
1.3 Research questions and the scope of the thesis 3
1.4 Definitions and naming conventions . 4
1.5 Structure of the thesis . 4

2 Technical background 6
2.1 Enterprise application integration . 6

2.1.1 Service oriented architecture . 6
2.1.2 Web services . 7
2.1.3 Enterprise service bus . 7

2.2 Complex event processing . 8
2.2.1 Events in CEP . 9
2.2.2 Event processing networks . 9
2.2.3 Event processing agents . 10
2.2.4 Event producers and consumers . 11
2.2.5 Pattern detection . 12
2.2.6 Previous applications of CEP . 13

2.3 Scalability and high availability . 15
2.3.1 Scalability attributes for CEP . 15
2.3.2 Availability . 16
2.3.3 Two dimensions of hardware scaling 17

2.4 Complex event processing implementations 17
2.4.1 Aurora, Medusa and Borealis . 18
2.4.2 STREAM . 21
2.4.3 Shared state solutions . 23

2.5 Performance testing CEP . 24

3 Architecture for complex event processing 26
3.1 Architecturally significant requirements . 26

3.1.1 Scalability . 26
3.1.2 High availability . 28

v

vi

3.1.3 Configuration management . 28
3.1.4 Other non-functional requirements 29

3.2 Eight rules for stream processing . 30
3.3 Modelling MMEA Bus as an event processing network 30
3.4 Scalable architecture for MMEA Bus . 32

3.4.1 Event flow in the system . 32
3.4.2 Distributed CEP service . 33
3.4.3 Configuration and deployment management 35

4 Implementation 37
4.1 Distributed ESB . 37

4.1.1 Registries . 38
4.1.2 Communication between ESB instances 39
4.1.3 Load balancing . 40
4.1.4 Adapters . 40
4.1.5 Selectors . 41

4.2 Complex event processing cluster . 41
4.2.1 Storm . 42
4.2.2 Components of Storm . 42
4.2.3 Esper basics . 43
4.2.4 Esper on Storm . 44
4.2.5 Input and output . 45
4.2.6 Fault tolerance in Storm . 46
4.2.7 Partitioning example . 47
4.2.8 Web based CEP configuration . 49

5 Results and evaluation 50
5.1 Performance test practicalities . 50

5.1.1 The goals of performance tests . 50
5.1.2 Test environment . 51
5.1.3 Effects of JVM and JIT compilation 51
5.1.4 Latency and clock skew . 52
5.1.5 Ensuring the quality of results . 52

5.2 Message brokers . 53
5.3 ZeroMQ . 54
5.4 WSO2 Enterpirse Service Bus . 54
5.5 Complex event processing service . 55

5.5.1 Test setup . 55
5.5.2 Minimal topologies . 56
5.5.3 Micro benchmarks . 56
5.5.4 Performance of the partitioning example 58

5.6 System performance . 59
5.7 Discussion of performance test results . 61
5.8 Qualitative evaluation of MMEA Bus . 62

5.8.1 Comparison to the requirements . 63
5.8.2 The eight rules revisited . 63

6 Conclusions 65

Bibliography 67

Abbreviations

API Application programming interface

ASR Architecturally Significant Requirement

CEP Complex Event Processing

CSV Comma separated values

DS Data source

EBS Elastic Block Store

ED-SOA Event-Driven Service-Oriented Architecture

EPA Event Processing Agent

EPL Event Processing Language

EPN Event Processing Network

ESB Enterprise Service Bus

JAXB Java Architecture for XML Binding

JAR Java ARchive

JIT Just-In-Time

JVM Java Virtual Machine

MOM Message-Oriented Middleware

SOAP (formerly) Simple Object Access Protocol

SUT System under test

WSDL Web Service Description Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

vii

List of Figures

2.1 Persisting checkpoints . 16

2.2 Aurora system model (Carney et al. 2002) 18

2.3 Splitting a filter EPA in Borealis (Cherniack et al. 2003) 20

2.4 An concrete CQL query plan implementing the queries in listing 2.1 (Arasu

et al. 2006) . 22

3.1 An event processing network containing the basic building blocks of the

MMEA Bus and example functionality . 32

3.2 ESB is distributed on multiple cloud machine instances that forward events

to a specialized CEP service . 33

3.3 Closer look to the processing model: stateless ESB instances forward events

to Storm clusters . 34

4.1 A storm topology showing multiple spouts and bolts (boxes) running several

parallel in several tasks (circles) on separate machines 43

4.2 An EPN and a topology summarising the example 49

5.1 Test setup for ActiveMQ and ActiveMQ Apollo 53

5.2 CEP cluster test setup . 55

5.3 Four Esper micro benchmarks on Storm . 57

5.4 Measured latencies from the micro benchmarks with red line (upper) show-

ing mean and blue line (lower) showing median 59

5.5 Throughput of the partitioning example . 60

viii

List of Tables

5.1 ActiveMQ and ActiveMQ Apollo performance with 40 byte messages 54

5.2 Four micro benchmarks on Storm with one to ten m1.large EC2 instances . 58

5.3 Tests run with the example topology described in section 4.2.7 58

5.4 System tests with a four node CEP cluster and one to four ESB instances . 60

ix

Chapter 1

Introduction

Even though environmental data is produced in massive amounts, it is rarely exploited

to its full potential. The data is usually only used and kept within certain organisation

boundaries, partly because of the lack of interoperable formats and services to share the

data. The problem is boosted by the ever increasing number of new measurement formats

and the tremendous amounts of data produced by an increasing number of sensor networks

and computer models. (Kotovirta 2012)

Processing environmental measurements and making real, wide-spread use of it, is a big

data problem. More importantly, the processing must be nearly real-time, because few

are interested in yesterday’s weather forecast or a even a couple of minutes late tsunami

alarm. (Wächter et al. 2012) Because of the timeliness aspect of the data, efficient stream

processing technologies must be used to reap most benefit of it. However, to have more

general use, the measurements must be given a context and linked with other up-to-

date data, including other data streams, older measurements and computational models

(Kotovirta 2012).

One emerging technology for handling such complicated patterns is complex event process-

ing (CEP (Leavitt 2009)). CEP simplifies expressing relations between data and finding

patterns from “a cloud of events” (Luckham 2001; p. 28) It is a mix of old and new tech-

nologies and fits well in many event-driven applications. The multitude of applications,

as surveyed in Chapter 2, draws a very promising picture of the possibilities of CEP.

Another, a bit more established concept investigated in this thesis is enterprise service

bus (ESB). ESB is an architectural pattern which aims to ease integration of various

otherwise incompatible applications. It has also been implemented as many different

products carrying the name ESB. Event-driven SOA is a widely used design pattern in

ESBs and is a very natural fit to CEP. (Leavitt 2009)

In this thesis I describe an integration and processing platform for the environmental data,

called MMEA Bus. I explain several key technologies suitable for the application, present

an architecture for the platform and evaluate a prototype implementation. The goal of

this thesis is a prototype of an interoperable and performant complex event processing

platform for environmental data, which application developers can build on.

1.1 Motivation for complex event processing 2

1.1 Motivation for complex event processing

In contemporary enterprise organizations there are huge amounts of transactions happen-

ing that manifest themselves as events (Ghalsasi 2009). For instance, trades in a stock

market or natural disasters are easy to describe as events happening in some point of time

(Adi et al. 2006). In this section I will give two brief examples for applications of complex

event processing.

Events can be abstracted on many different levels (Luckham and Frasca 1998). In the stock

market a trade might consist of several bids, offers, payments and financial transfers. On

the lowest level a stock trader is responsible for executing them. At the end of the day

the trader is probably interested in how well he or she did and wants to see a list of all

transactions. The boss of the trader doesn’t care about every single trade that has been

made but is looking for something more complex. He might perhaps care of a complex

event of how much profit (if at all) our trader has made during the last month. (Luckham

2001; pp. 294-327)

The data may have even more users. An auditor might define some constraint (e.g. trader

may not buy stocks to his or her personal account, if he has just before received an buying

order and then proceeds to sell those stocks), which indicates breaking some rule (in this

case trading to an personal account), and then receive a notification, if this constraint is

broken. (Luckham 2001; pp. 294-327)

In this thesis project, complex event processing was used to process environmental data,

e.g. temperature, CO2 levels, light, humidity, chemical concentrations or vibrations. For

example, we might have vibration sensors installed in buildings sending their readings to

our CEP server. When the server receives the readings, it might detect that the sensor is

vibrating fast. CEP engine can then check if most of the other sensors in the same area

are reporting heavy vibrations to detect an earthquake. In a CEP system we might also

be able to leverage additional sensors. A pressure sensor under a road might allow us to

filter out cases where a large truck is driving through the district.

Complex event processing offers the users a way to automate the detection of anomalies

or other interesting phenomena. It is way too tedious for the auditor to correlate all the

trades made by all the traders to detect all the various blunders they might have done.

In the earthquake example we can use CEP to process the data real time and detect the

danger quickly. CEP system might be able to send alert to the inhabitants and authorities

critically faster than a human in its place. (Luckham and Frasca 1998)

1.2 CEP as a part of ESB

Enterprise service bus is an integration pattern and product. According to (Menge 2007)

there was no consensus of the definition, but a common thing in all products and solutions

1.3 Research questions and the scope of the thesis 3

marketed as ESBs was that it provides message-oriented middleware (MOM) for enter-

prise application integration (EAI) use cases. As noted by (Luckham 2001), the business

messages are very interesting input for CEP. Thus, CEP is widely presented as a natural

part of an ESB (Menge 2007, Bo et al. 2008, Leavitt 2009, Wishnie and Saiedian 2009).

From the implementation point of view the combination of CEP and ESB is not so straight-

forward. (Bo et al. 2008) recognized that most ESB products are weak in CEP. In their

paper they present an implementation of an ESB that is specifically intended for complex

event processing. Nevertheless, still their implementation lacked the capability to scale

out, by which I mean, to run CEP parallel on multiple machines.

(Wishnie and Saiedian 2009) recognized the problem of connecting CEP with the current

MOM products and their drastically different models for scaling out. In their paper they

describe an architecture and implementation of a complex event routing infrastructure

based on an unstructured peer-to-peer network. Their aim was to introduce CEP as a

first class citizen in MOM. In their P2P network, more computing nodes could be added

to increase the resources of the CEP engine. Still, this novel approach did not lead to a

breakthrough in performance and the maximum throughput was limited to less than 1500

events per second.

1.3 Research questions and the scope of the thesis

The main research question of this thesis is how does complex event processing fit to an

enterprise service bus. To answer this question, I must first understand the complications

posed by CEP in an ESB.

If an enterprise service bus can be implemented with completely stateless instances in a

cloud computing environment, the scalability should be only a minor concern. By stateless

it is meant that the instances don’t contain any volatile data about the current clients,

connections or messages they are serving. In completely stateless service a successful

strategy for achieving scalability would be to just add more server instances and distribute

the load evenly to those.

ESB is mostly based on the principles of event-driven service-oriented architecture, which

is by design stateless (Schmidt et al. 2005). However, the complex event processing breaks

this harmony by being inherently stateful. To match patterns of multiple events the engine

must have the information about the previous events, which in our beautiful stateless case

could have gone to any instance in the cluster.

In this thesis I investigate the current state of the complex event processing in enterprise

service buses. I review the previous research on implementing CEP and using it in different

business cases. I define the requirements for MMEA Bus, which is an ESB aimed for

serving environmental data. Following these requirements, I describe an architecture for

MMEA Bus and its implementation. Lastly, the implementation is evaluated qualitatively

and with performance tests focusing in throughput and latency.

1.4 Definitions and naming conventions 4

1.4 Definitions and naming conventions

Because complex event processing is such a new field, the terminology has only recently

begun to stabilise. For example, EPL has been used to mean “Event Pattern Language”

(Luckham 2001) before the currently most widely accepted “Event Processing Language.”

Other terms with essentially the same meaning are “Continuous Query Language” (CQL)

(Arasu et al. 2006), “Event Query Language” (EQL) (Eckert et al. 2011) and “StreamSQL”

(Luckham and Schulte 2008). In this thesis I will follow the Event Processing Glossary

- Version 1.1 (Luckham and Schulte 2008) whenever possible with the disambiguations

defined here.

Even the field of complex event processing has many names. The next most popular names

are stream processing (Stonebraker et al. 2005), data stream management (Babu and

Widom 2001), event stream processing (Arasu et al. 2006) and just plain event processing

(Luckham and Schulte 2008). All these terms mean essentially the same and the goals of

the academics using these terms have been very similar. Maybe the only difference is that

“complex event processing”, as described by (Luckham 2001; pp. 28-37), don’t inherently

think of events manifesting themselves in a stream but in a less structured manner. In

this thesis, I use always the term CEP, even if the original author of some cited system

called it something else.

In the seminal book “The Power of Events” written by David Luckham events are described

to reside in an event cloud (Luckham 2001; pp. 28-37). This vague notion gives impression

of static events that can be accessed repeatedly, independently of the time. Furthermore,

(Stonebraker et al. 2005) presents as a requirement for event processing systems that

they must seamlessly integrate stored and streaming data, although it is acknowledged

that it may be hard to fulfil. As there are little ready solutions for this problem and in

MMEA Bus the amount of sensor data is way too big to be stored completely in memory,

accessing events outside a defined window (e.g. last 24 hours) is not considered in this

thesis in detail. Nevertheless, combining historic data with the current data streams is an

interesting question in CEP (Stonebraker et al. 2005).

For word event there are two definitions referring to anything that happens (e.g. earth-

quake) and to the representation (e.g. high vibration sensor reading). Because of the

nature of the application I’m using CEP, I will use event always for the representation.

This also makes it sensible to refer to an earthquake by the term complex event as it is

something that is deduced from several strongly vibrating sensors in a certain geographical

locations.

1.5 Structure of the thesis

This thesis consists of four parts: a literature review, the architectural design of MMEA

Bus, its implementation and the performance test results. In detail, the chapter outlay is

the following.

1.5 Structure of the thesis 5

I begin in chapter 2 by introducing the technical background for service-oriented and

event-driven architectures. I will also explore the benefits offered by enterprise service

bus and take a detailed look in complex event processing. I will also introduce the fun-

damentals of scalability, high-availability and other general requirements often associated

with enterprise event processing. Before proceeding to my own architecture, I describe

the previous major research on complex event processing.

In chapter 3 I will explain the architecturally significant requirements of MMEA Bus. An

architecture fulfilling most most of the requirements is presented and its implementation

is described in chapter 4.

I evaluate the implementation with comprehensive performance tests. The results are

given in chapter 5. The main results are summarised in chapter 6.

Chapter 2

Technical background

2.1 Enterprise application integration

Enterprise application integration (EAI) means the act of creating new business solutions

by sharing data and business processes between different systems in a unified way (Ruh

2001; p. 2). EAI makes use of middleware that provides application-independent services

for communicating over a network. During the last 20 years there has been huge advances

in middleware solutions. Currently many state of the art systems utilize messaging based

asynchronous communication mechanism and are built on the principles of Service Ori-

ented Architecture (SOA). In this section I will describe the most relevant technologies

and concepts the MMEA Bus is built on.

2.1.1 Service oriented architecture

Service oriented architecture (SOA) models were created to facilitate the design of enter-

prise software. SOA addresses the following concerns. First, many systems need to be

integrated to a single interoperable entity. Second, the existing components may not talk

the same language. Third, businesses implement new products rapidly. Another source

of integration requirements are mergers, which bring new, incompatible systems to the

ecosystem. (IBM 2004; pp. 34-52)

These concerns elicit the following requirements to simplify the architectures: The existing

assets must be reused. The architecture must be implemented and adopted incrementally.

There must be a middleware, which provides transactions and multiple communication

models. The middleware must also provide security features, support multiple platforms

and programming languages. The enterprise platforms must scale to support high volumes

of events. (IBM 2004; pp. 34-52)

2.1 Enterprise application integration 7

These requirements can be fulfilled by encapsulating functionality in large grained services.

Services are defined by explicit, implementation-independent interfaces. They are loosely

coupled and provide reusable business functions. The services can often be composed to

create more powerful functionality. (IBM 2004; p. 37)

In many systems the aim is to define stateless services. In many cases this is not possible,

because there is much interdependent business data. A somewhat weaker goal is to design

connectionless services, where all the sent messages are self-contained. This allows efficient

implementations and fault-tolerance features. (IBM 2004; pp. 45-47)

SOA can be implemented in an event-driven way. Event-driven SOA decouples interac-

tions. The event publishers need not be aware of the receivers of their messages. It also

makes many-to-many communications easier. The communication is asynchronous, which

minimises delays on the implementation level. (Maréchaux 2006)

2.1.2 Web services

Web services are software providing an interface that can be accessed over a network.

They use XML-based technologies for data representation and interface definitions. Web

services exchange SOAP messages, typically over HTTP, although SOAP can be bound to

any transfer protocol. WSDL is a machine-processable interface definition language that

can be used to automatically generate code for client and server ends. (Haas 2004)

Web services are well fit to implement SOA. The key technologies are open and standard-

ised. SOAP offers an XML-based format for exchanging documents and passing messages.

WSDL is an open standard and machine readable interface definition language for web

services. The standards include also UDDI service registry, which was originally meant

for locating services over the Internet. Although that goal failed, it has found new uses in

the internal registries of enterprises. (IBM 2004; pp. 53-56)

Web services are independent from communication mechanisms and they have a wide

industry support. There are also many standardised extensions. Most important ones

are probably WS-Addressing, WS-Security, which move the respective functionality to the

middleware layer instead of a developer having to reimplement them in each application.

(IBM 2004; p. 54)

2.1.3 Enterprise service bus

Enterprise Service Bus is relatively new integration component that has gained a lot of

traction in industry. There are several commercial and open source products that call

themselves ESB, which have slightly different sets of features. Anyway, the term is most

commonly used for a message-oriented middleware component, which facilitates interaction

2.2 Complex event processing 8

of distributed services by providing routing and mediation infrastructure. ESB is built

on open standards, e.g. web services and other technologies exploiting XML. Common

features included in an ESB are invocation, routing, adaptation, mediation, security and

complex event processing. (Menge 2007)

An ESB is able to send requests to other services and combine the results. Because it is an

integration component, it is expected to be able to handle several protocols, for example

web services (SOAP), message queues (JMS), remote method invocation (RMI) or email

(SMTP). If there are new services behind previously unsupported protocols, the ESB is

expected to be the point of integration implementing the protocol and providing other

systems a standard interface most commonly over a web service. (Menge 2007)

Routing can be handled in an ESB by supporting WS-Addressing. WS-Addressing adds

new attributes to the SOAP header, which can be processed independently of the message

contents. (Box 2004) The ESB may not always obey exactly the routing information in the

headers but it might apply some changing rules too. One application is distributing the

load for several identical services on separate servers. Routing can also be content-aware.

(Menge 2007)

An ESB may be able to adapt different message formats to a unified one. At the very

least, it should be able to transform the messages from one format to another so that

different services are able to communicate with each others. In the simplest form this can

be a straight-forward XSL transformation between different XML schemas. However, the

ESB must be able to make adaptations between all the endpoints it integrates to. (Menge

2007)

There are some differences in the ways the ESB products define mediation. In some cases

the mediators are able to do powerful computation (Godage 2007) but in some cases they

are limited to the very basic and lightweight forwarding of messages with simple rules

(Wheeler 2011).

Security is an obvious requirement in an enterprise environment. An ESB is a good place

to support it as it is a very central component and is able to interact with many differ-

ent security providers. WS-Security defines multiple features, including authentication,

identification and encryption. (OASIS 2006)

2.2 Complex event processing

Complex event processing is an emerging technology which operates on event streams and

historical data. It can be used to detect patterns consisting of multiple events in near

real-time. CEP performs operations on events and their compositions while they occur

(Eckert and Bry 2009). It enables various use cases and extracting meanings and detecting

phenomena in event patterns.

In this section I give a brief introduction to the fundamentals of CEP from the viewpoint

of our application in environmental sensor data processing. I introduce the concepts of an

event, an event processing network and an event processing agent.

2.2 Complex event processing 9

2.2.1 Events in CEP

There are two parallel definitions for the word event. First, it can mean “anything that

happens, or is contemplated as happening”, e.g. a financial trade is made. Second, it may

also be understood as the object acting as the manifestation of something that happens,

a purchase order is sent. (Luckham and Schulte 2008) In MMEA Bus we mostly consider

the messages under mediation to represent events, which implies the second definition,

although in our usage there is not much possibility of confusion.

According to Luckham (2001; p. 88), an event always has three aspects: form, significance

and relativity. Form is the “real” physical or electronic representation of an event. In our

sensor data processing system the form is a SOAP message or some other message in our

internal format. Every event signifies an activity and thus the significance is the relation

to the real world phenomenon. Events are also often related to each other. Relativity

includes time, causality and aggregation of complex events.

In an ideal world we would like all the events to have a timestamp that exactly tells us the

time of the generation of the event. This timestamp would tell us the full ordering of the

events in the time and let us easily do reliable interval calculus and elicit causal relations.

(Luckham 2001; pp. 94-100) However, time in distributed systems is a complicated issue.

All nodes in the network have their own internal clocks, which are not perfect and may

have different skews and drift rates. If timestamps for two events are issued by different

machines, we cannot rely solely on them when defining an order for them. The only thing

that we can trust in clocks is that a single machine always gives a later timestamp to a

event that arrives later. (Coulouris et al. 2011; pp. 612-615)

One interesting question with timing information is, where should the timestamps be

issued. If we had some single event processing engine located on one physical machine

through which all the events would flow, we could use it to issue reliable timestamps. This

would not be a perfect solution, because there is network latency when the message is in

transmission from the source to the engine. Nevertheless, the latency can be tolerated, if

there is no jitter (the latency doesn’t vary), and if we are more interested in the relative

than absolute timing of the events. (Coulouris et al. 2011; pp. 615-617) If we ease the

requirement that the time must be exact, we can even use multiple machines for assigning

the timestamps. If we assume network latency of 20 ms, we can safely say that cloud

virtual machine instances using Network Time Protocol to set clock do not add measurable

inaccuracy to the time. (Windl et al. 2009)

2.2.2 Event processing networks

An event processing network (EPN) is a conceptual model describing the elements of

complex event processing. There are four types of components in an EPN: event producers,

2.2 Complex event processing 10

consumers, processing agents and channels. The EPN was first described by Luckham

(2001; p. 207) and later defined more formally by Sharon and Etzion (2008).

An EPN can be represented as a directed graph, where the nodes are event processing

agents, producers or consumers and the edges are event channels. The purpose of a channel

is to deliver events between the nodes of the graph, which implement data input, output

and the intended operations. As noted by Etzion and Niblett (2010; p. 117), the networks

can also have loops to allow feeding events back upstream. The EPNs can also be nested,

which means that EPAs can be implemented as EPNs (Etzion and Niblett 2010; p. 118).

Event processing network can be used for distributing the load in a complex event pro-

cessing system. Because the EPN graph shows explicitly the causality of the events, it

also shows the dependencies required by the EPAs. This is further explained in Section

3.4. (Lakshmanan et al. 2009)

2.2.3 Event processing agents

In a complex event processing system multiple rules are applied to the events that flow

through. These rules are applied in Event Processing Agents (EPA), which are the fun-

damental building blocks of CEP. EPAs monitor the patterns in event flows and react

according to their defined function. There are atleast two classifications of EPA types,

first one by Luckham (2001) and a later one by Etzion and Niblett (2010). On higher level

their differences are small: both take events as input and produce new events as output

according to some reaction rule

Luckham (2001; p. 177) classifies agents as in filters, maps and constraints. Filters

are event patterns that remove uninteresting events from the streams. Only relevant

events are passed further to maps and constraints. Maps are used to create higher level

complex events by aggregating multiple lower level events. These aggregations specify

event hierarchies. Constraints can detect the presence or absence of an event or a complex

event in a stream. They create notification events, when the constraint is broken.

The classification by Etzion and Niblett (2010; pp. 121-122) is more fine-grained and

reflects more closely the contemporary event processing systems. It begins by defining

the functions that a single EPA can execute. One filter can include one or more of the

functions filtering, matching and derivation. Filtering is defined as previously. Matching

finds patterns in the events and creates new events according to that pattern. Derivation

corresponds to Luckham’s aggregation with the output of matching as its input.

Etzion and Niblett (2010; p. 123) define nine different EPA types: filter, pattern detect,

transform, aggregate, split, compose, translate, enrich and project. The most important

types are filter, transformation and pattern detect. Filter can be included in any of the

2.2 Complex event processing 11

other EPA types as function described above, but it can be useful also as a standalone

agent. Pattern detection is discussed further in section 2.2.5.

Transformation is an abstract supertype of translate, aggregate, split and compose and

never used by such alone. Translation means directly mapping one event to another event.

In an enterprise software environment this can be done with for example XSLT. Two more

advanced translation agents are enrich, which bundles an event with data from some global

source (e.g. database), and project, which acts like a project operator in relation algebra

and can be used to select certain attributes from an event. (Etzion and Niblett 2010; pp.

125-126)

Aggregate works like explained above. Split creates new events by copying a subset of the

attributes of an event to new ones. Compose takes groups of events from multiple inputs,

matches them and creates derived events.

2.2.4 Event producers and consumers

Event producers, also known as sources and emitters, are nodes of the event processing

network that originate events and supply them for processing. It must be noted that

also event processing agents create new complex event. Thus defining the producers is

not always trivial. However, defining some sources and sinks for the events might help

to build abstractions and to understand the problem at hand. Etzion and Niblett (2010;

p. 87) define the event producers as those nodes of the event processing network, which

don’t take any inputs.

There are several ways for creating events. In many business systems the CEP module

observes traffic in the middleware layer (Luckham 2001; p. 129). In MMEA system the

environmental sensors emit readings and act as the source for events. Furthermore, in our

CEP engine we create complex events. These events can be observed again in other parts

of the system and are thus in every way regular events.

The definition of event producers depends always on the abstraction level and the bound-

aries of the event processing network (section 2.2.2). In MMEA system it is reasonable to

consider the environmental sensors as the producers, as they are the furthest observable

entity in the system. Furthermore, we cannot influence their inputs. Anyway it is healthy

to remember that even the sensor readings are, at least on some level, abstractions and

approximations of the real world events (e.g. “the sun is shining” or “gas is leaking”).

Event consumers, also known as sinks, are agents that don’t emit any events back to the

system. Their definition is in the same way quite arbitrary, as was the case with the

producers, but still possibly helpful. (Sharon and Etzion 2008)

2.2 Complex event processing 12

2.2.5 Pattern detection

Pattern detection is the crown-jewel of complex event processing. I’ll discuss here some

the basics of pattern detection as defined by Etzion and Niblett (2010; pp. 214-242).

Contemporary complex event processing engines using special event processing languages

(EPL) most of the EPAs are very powerful pattern detection agents (EsperTech Inc. 2012).

Later in section 4.2.7 I will show some example EPLs.

Pattern detection works always in some context. The context defines the relevant events

supplied for pattern matching. It can be temporally or spatially bounded. Context can

also be based on semantics of mutually referenced objects or entities. This context is often

called a window.

The definition of a pattern starts with pattern signature. The signature includes the

pattern type, parameters, relevant event types and policies. The events are selected to

detection according to the pattern type. (Etzion and Niblett 2010; p. 216)

Pattern detection is executed by filtering out the obviously irrelevant events. The stream

of filtered events is then forwarded to an event matcher, where the events are grouped into

sets of participant events. The matcher is run on a set and it chooses the eventual groups

of events that fill the conditions of the EPA and sends them to derivation. The derivation

step creates new complex events. (Sharon and Etzion 2008), (Etzion and Niblett 2010; p.

216)

In (Etzion and Niblett 2010; pp. 214-228) the patterns are divided in two categories,

basic patterns and dimensional patterns. They consist of logical operations (conjunction,

disjunction, negation), threshold patterns, subset selection patterns and modal patterns.

For example, there are patterns to detect if one instance of each types of the participant

set (or none of those) has been seen (Sharon and Etzion 2008). A threshold pattern might

trigger when three events of some type has been processed. Subset selection patterns can

select, for instance, the relative n highest values of a set. Modal patterns can check if

some assertion is true always or sometimes. (Sharon and Etzion 2007)

As the name implies, dimensional relate to some dimension: time, location or both. This

enables comparisons and orderings of events. Events can be processed as sequences in

time. For instance, dimensional patterns can be used to find trends or spatially close

events. (Etzion and Niblett 2010; pp. 228-242) Good examples of event algebra system

for an industrial application are described in (Paschke et al. 2010) and (Zang et al. 2008).

These patterns as such without clearly defined rules, e.g. for precedence and associativity,

can be very ambiguous. For instance, if we want to match a pattern that consists of

one instance of event type A and one of type B and we receive two As and one B, how

do we know, which A to select? Pattern policies (Etzion and Niblett 2010; pp. 237-

238) and directives (Sharon and Etzion 2007) allow us to express evaluation, cardinality,

2.2 Complex event processing 13

repeated type, consumption and order policies. Evaluation policy defines whether we want

to evaluate the pattern every time a new event is observed. Another option would be to

defer evaluation and run them as a batch. Cardinality policy determines how many times

one event can be part of a pattern matched. In the example, if we can either select only

the first A and classify the second as unmatched. Or we could match B twice and derive

two matches. (Sharon and Etzion 2007)

Repeated type policy defines which instances of a repeated type are kept in the set of

relevant events. Possible policies are the first, the last, all of them, or some more complex

criteria, e.g. one with the maximal value. By setting the consumption policy one can

dictate whether an event is removed from the set of participant events when included in a

matching set. Lastly, order policies let us define the attribute the events are ordered by.

(Etzion and Niblett 2010; pp. 239-242)

2.2.6 Previous applications of CEP

Several applications of CEP are described in academic literature. In this section I highlight

some practical applications of complex event processing in financial services, warehouse

management, manufacturing and healthcare.

Financial applications

Adi et al. (2006) present two other cases for exploiting CEP in financial services are

discussed. The first case is an alert system for banking, which is very similar to the

scenario later developed by Mukherjee et al. (2010) (discussed below). In the second case

an insurance underwriting process was automated. The latter case focused in decoupling

the rules of underwriting insurance from the business process the application goes through.

The scenarios described by Adi et al. (2006) elicit many requirements that are very gener-

ally applicable to CEP systems. First, changing the rules of the system must be feasible.

Second, it can be useful supply the newly produced events back to the system and apply

the rules again to them. Third, it is not always the best option to run the whole CEP

engine (AMiT (Magid et al. 2010) in their case) to match all patterns. Single events can

sometimes matched more easily with less powerful but faster techniques. These ideas are

also applied in this thesis.

Mukherjee et al. (2010) used IBM InfoSphere Streams to monitor capital markets. Their

aim was to timely detect fraudulent activities on stock market, for which purpose they

implemented a proof of concept system. For trade surveillance they created continuous

queries, which tested, for example, for suspicious long gaps, anomalies in trade prices and

quantities and variations in price.

2.2 Complex event processing 14

Traditional approach for detecting anomalies on stock market has been statistical analysis

after the trades have been completed. This method also has the benefit that new analyses

can be run when needed, as new ways to cheat are always possible. However, for fast

reactions for frauds, real-time monitoring is a necessity and can be as a complementary

method. In the tests ran by Mukherjee et al. (2010) the approach based on streaming data

proved to be orders of magnitude faster than a traditional approach based on relational

database and single issue queries. Their system was measured to handle 50 000–200 000

events per second with each single rule.

Monitoring material flows and business processes

Perhaps the most studied use case for CEP is its applications on RFID-based systems,

most prominently in warehouses and factories dealing with huge and moving inventories.

The specification of the second generation of RFID specification dictates that a reader

must handle 1 800 reads per second (EPCglobal Board 2008). In (Dong et al. 2006) the

core principles for applying CEP in RFID middleware are analysed and proposes a solution

based on Application Level Events defined in (EPCglobal Board 2009). The purpose of

the solution is to screen meaningful data from irrelevant one by matching event patterns.

Other examples of using RFID-generated data include research by Zang et al. (2008) and

Baarah et al. (2011). Zang et al. (2008) designed a system for monitoring a Chinese

refrigerator factory is described. The system is based on SOA and uses elaborate XML

representation for events. The system is fairly performant achieving 80 000 generated new

events per second in the test case they describe.

Integrating RFID-based data and business processes have also been studied. According

to Baarah et al. (2011) the possibilities of monitoring and controlling cardiac patient flow

in a large Canadian hospital was analysed. The proposed architecture includes four data

sources: medical equipment, physiological sensors, RFID tag readers and the BPM system.

This data was collected to a central repository and processed by a CEP engine.

It is clear that the raw RFID data is not useful but must be connected with BPM to

give the messages a meaning. This resulted in real-time dashboard that could show the

most interesting timely information of the healthcare processes in a matter of seconds, in

contrast to the conventional systems, in which similar analysis could take hours or days.

Events processed by CEP can be very fine grained and could be used to enhance care

delivery instead of only for administrative purposes. For example, the system could alert

if some patient had stood in a queue too long, or it could just be used to optimise resource

utilisation.(Baarah et al. 2011)

While the CEP systems are often developed bottom-up by first identifying the event

information available, Kellner and Fiege (2009) describe a top-down approach. This allows

businesses first to define key performance indicators and other abstract measures, and then

2.3 Scalability and high availability 15

hierarchically proceed down to find the correct low level events in a changing environment

to calculate them.

One of the most influential academic CEP projects that been undertaken, Borealis, was

demonstrated in (Ahmad et al. 2005). In the demonstration Borealis was used to cre-

ate real-time gameplay information for team management in an open source first-person

shooter game Cube. The analytics could provide notifications, for instance, when there

are more than 20 enemy players near the own home base. The system was shown to han-

dle an increasing and variable load while still maintaining low latency. Borealis is further

described in Section 2.4.1.

2.3 Scalability and high availability

Scalability and high availability are timeless, hot topics in distributed enterprise systems.

Services provided over the Internet are required to handle millions of requests per second

and even a short period of downtime can be costly for a business. In this section I will

explore the theoretical backgrounds of scalability and high availability.

2.3.1 Scalability attributes for CEP

Complex event processing systems have a very wide variety of scalability requirements.

The best collection of different variables is in the book written by Etzion and Niblett

(2010; pp. 264-266) and I’ll mostly follow it in this section while complementing with

some details from other sources.

Volume of events: The most straightforward variable is the number of input events

processed per second. It is also the most benchmarked variable in literature (Mendes

et al. 2008; 2009, Kleiminger et al. 2011). Another dimension of the volume of events is

the message size. The larger message size can affect the performance of some components

quite a bit, as seen in chapter 5.

Event processing agents: A useful CEP system must also scale to support a large

collection of event processing agents. Large computations are often most easily presented

as simple steps of a complex event processing network. This requires that data can be

passed fast from EPA to next EPA or that there is some other optimisation to remove this

step.

Producers and consumers: In our application the system must accommodate many

producers and consumers of the data. A substantial number of individual users might

want to make their data available to others. The system must also be able to send the

processed data and identified complex events to the correct subscribers.

2.3 Scalability and high availability 16

Window size: Window size is a substantial source of complexity. Window size affects

on how many events a computation is applied at a time. For example, a pattern detection

might be applied for all events for the last five minutes. The window size can have drastic

effects on EPAs if the computational complexity grows faster than linearly in respect to

the input size.

Computational complexity: Even though the focus in CEP and in this thesis is in

Big Data, the traditionally much researched challenge of computational complexity still

plays a big role (Etzion and Niblett 2010; p. 266). Much of the depends on how well the

computation can be partitioned, parallelised and distributed (Etzion and Niblett 2010; p.

271) (Heinze 2011).

Environment: The developer of a CEP system must take into account the specifics of

the system. Different environments offer variable amounts of memory and CPU cycles.

Some environment have limitations in power consumption. In a distributed environment

message passing adds limits to latency. Sometimes the bottlenecks can even reside outside

the CEP part of the system, for example in input or output channels like message queues

or web services transmitting the events. (Etzion and Niblett 2010; p. 266)

Constants: There are also some factors that influence heavily the constants of the com-

putational requirements. In addition to the already noted variable message size, also

its encoding matters much. While SOAP-enveloped XML-based messages might offer a

good support for enterprise integration patterns, their serialisation and deserialisation are

computationally expensive compared to lighter and flatter representations.

2.3.2 Availability

When developing a distributed version of Aurora stream processing system, Cherniack

et al. (2003) recognised three sources of failures in distributed stream processing: 1) server

and communication failures 2) sustained congestion levels and 3) software failures.

CEPCheckpoint Checkpoint CEP

Figure 2.1: Persisting checkpoints

The CEP engines depend heavily on the context information of the events, which includes

summaries of the past events. If an engine fails, this context can be lost. As an example

of a fault tolerance scheme, the figure 2.1 shows checkpoints which persist the data. If a

CEP engine fails, the data can be retrieved from the queue held by the checkpoint and

used to refill the window. (Stonebraker et al. 2005)

2.4 Complex event processing implementations 17

2.3.3 Two dimensions of hardware scaling

Scaling a computing system can be achieved by scaling up or scaling out. By scaling up I

mean using a bigger, faster computer with more CPU cores and more memory. By scaling

out I refer to adding more computers (or cloud virtual instances) to a cluster of computers.

Scaling up offers some clear benefits, because it allows the software to run on a single

machine with a shared memory. This reduces the architectural constraints imposed on the

software run on the hardware. Furthermore, management of a single big machine is easier

than management of a cluster. Vertical scaling is not always the perfect solution. Michael

et al. (2007) showed that scaling up can be very expensive. It was also observed that to

efficiently use all the power in one box, it might be necessary to use similar techniques as

in a distributed system. This was referred as “scaling-out-in-a-box.”

When considering only hardware costs, scaling out can often be cheaper. Horizontal

scaling can utilize affordable commodity hardware and the buyer doesn’t have to pay

hardware vendor a premium for highly specialized business hardware. However, to leverage

distributed hardware the software must be carefully designed to distribute the processing.

Execution running on one of the machine instances cannot refer to memory located on an

another instance. (Michael et al. 2007)

Sometimes the best results can be achieved by combining both vertical and horizontal

scaling. Sometimes the biggest possible single machine is not fast enough and the system

builder must resort to a distributed, scaled-out architecture. In section 2.4 I will describe

a solution, which will utilize multiple instances of the biggest EC2 instance type available.

2.4 Complex event processing implementations

MMEA Bus is required to be able to process a large amount of messages per second.

Because we want to allow non-expert application developers to define their own EPL

statements, we cannot rely solely on fast code, minimalistic implementations and quick

processing, when addressing the performance. Thus we must make sure that our hardware

offers enough processing power and that our system is able to exploit it.

In this section I explain the basic principles in scaling complex event processing. I review

the literature describing the different approaches taken before. During the review I will

comment on how the different ideas were considered while designing MMEA Bus and

which were eventually incorporated in it. A more detailed view on the implementation is

given in Chapter 4.

As already explained in section 1.3, we cannot just scale out by adding more nodes and

then forward events to them randomly. CEP must be able to correlate and aggregate

2.4 Complex event processing implementations 18

arbitrary events in an event window and thus the events in processing are inherently

interdependent.

There are different granularities on which we can distribute computation in CEP. Heinze

(2011) calls this elasticity and identifies three levels of it in CEP: engine, query and

operator level. In engine level elasticity the smallest unit of processing is a window, and

every engine runs on one machine. More machines are employed by adding more engines

to the EPN. In query level elasticity, queries of a single engine are deployed on multiple

machines and the input data is split between them. The operator level elasticity is the

most fine-grained level and allows every operator to run parallel on different machines.

However, this increases the communication overhead inside a single query.

2.4.1 Aurora, Medusa and Borealis

Carefully crafting finer grained event processing networks rather than defining too powerful

and complicated event processing agents may allow breaking the processing down to a

series of steps. The steps can then be pipelined on multiple machines. The most important

project taking this approach is Borealis, a distributed complex event processing engine

developed at Brandeis University, Brown University and MIT. It is a successor to the

Aurora and Medusa projects. (Ahmad et al. 2005)

Aurora

Aurora is a CEP engine, although the term used by the research group is “stream pro-

cessing engine.” Aurora system is expressed by a simple boxes and arrows flowchart as

shown in Figure 2.2. The boxes are EPAs and arrows event channels. The EPAs offered

by Aurora include filter, binary merge (union), sorted window, map, join, an extrapolation

operation and several aggregation operations and they are further described by Carney

et al. (2002). The queries in Aurora are defined with a graphical user interface (Carney

et al. 2002) or an XML-based query language (Borealis team 2006).

Figure 2.2: Aurora system model (Carney et al. 2002)

There are three query models: continuous queries, views and ad hoc queries. Continuous

queries operate on real-time data. They process events as they arrive and store data only

2.4 Complex event processing implementations 19

for the time required by any given window. Views execute continuous queries but store

the results so that they are available for user initiated retrieval. Ad hoc queries create

new paths to the network and run their operations on all the events that are still available

in the queue supplying data for the EPN. (Carney et al. 2002)

Some channels between boxes act as connection points. In these points input events are

stored in Aurora storage manager (ASM) for some predefined time. Aurora supports

adding new boxes and workflows downstream from the connection points, which can be

used to create new queries during runtime. The ASM is also responsible for managing the

queues needed by the windows in EPAs and buffering messages when they arrive faster

than they can be processed. (Carney et al. 2002)

Medusa

Medusa provides a networking infrastructure for distributed processing. For example, it

implements a distributed naming scheme for connecting workflows on one site to one on

another. It multiplexes different streams to reduce the number of TCP/IP connections

to improve efficiency. (Sbz et al. 2003) According to Cherniack et al. (2003), Medusa is

most useful in geographically distributed environments, because it facilitates federation

and has a market system for sharing workload to different parties. These features are not

discussed further, because MMEA Bus is a centrally managed system, and the workload

is not geographically distributed to different organisations.

Borealis

Cherniack et al. (2003) envisions a distributed version of Aurora. The system is later

implemented in the Borealis project (Abadi et al. 2005). The architecture allows running

Aurora queries on clusters of machines located in several administrative domains. I will

here describe only the intra-domain parts, because those match best to the goals of MMEA

Bus.

Load balancing in Borealis is based on two features: repartitioning of the Aurora networks

and load shedding. The repartitioning is done by sliding EPAs from an overloaded node

to a neighbour, which has spare capacity. Most of the operators, which don’t have massive

data dependencies, are easily movable. One remarkable feature of the EPA sliding is that

the current windows of data don’t have to be lost. After the initialisation all the EPAs

might run on a single node and then be redistributed to the other nodes. (Xing et al.

2005)

Because finding an optimal solution for the load distribution is an NP-hard problem and

not feasible, Borealis uses a much simpler scheme for sharing work. The optimisation is

mainly done on local level. Every Aurora node runs a local optimiser, which schedules

2.4 Complex event processing implementations 20

events for processing and makes load shedding decisions. Moreover, every node has a

neighbourhood optimiser, which negotiates with the nearest nodes in the network and

makes decisions for sliding windows. If these mechanisms cannot bring the performance to

an adequate level in a certain time, a global optimiser is triggered to make more thorough

modifications to the system. (Abadi et al. 2005)

To make sliding the EPAs more efficient, the system allows splitting heavy EPAs into

smaller ones, as illustrated for the sake of an example in figure 2.3. A splitted EPA

is preceded by a filter, which divides the load in two streams, which can be handled

independently. After the splitted filters there is a union, which combines the streams to

one again, and the result stream is equivalent to the one before splitting. (Cherniack et al.

2003)

Borealis uses quite sophisticated methods for distributing the load. Xing et al. (2005)

describe a method to minimise the variance of event processing latency. The system pro-

duces performance data for the streams, and it is used to calculate correlations coefficients

for the load experienced in each of the EPAs during bursts. The optimiser then tries to

assign negatively correlated EPAs to the same machine to minimise slack.

Figure 2.3: Splitting a filter EPA in Borealis (Cherniack et al. 2003)

Borealis also adds some other novel features. Abadi et al. (2005) states three new require-

ments for a “second generation” CEP. Borealis combines the functionality of both Aurora

and Medusa, but also adds support for revisioned query results and query modification.

It also enhances the optimisations.

Revisioned query results address the issue that a CEP engine must sometimes operate on

incomplete data. The data model of Aurora is an append-only stream of tuples. Borealis

adds the possibility to remove and modify already processed tuples later. This is useful

sometimes when data producers have some preliminary information on events and get

more accurate data later. An enhanced query model includes control lines for query

modification. Control lines allow changing parameters of the EPAs, for example giving a

new test function for a filter. (Abadi et al. 2005)

2.4 Complex event processing implementations 21

2.4.2 STREAM

The Stanford Data Stream Management System (STREAM) is one of the earliest big

efforts to create a CEP engine. The greatest contributions of the project are a continuous

query language and their adaptive optimisation schema. The STREAM project has been

discontinued, but many of the key people have moved to develop commercial applications.

(Owens 2007)

Continuous query language

The CQL continuous query language takes its inspiration from SQL. It extends SQL by

adding operations, which operate on streams. The streams differ from relations in that

they are unbounded in length. The elements of streams also have timestamps denoting

the logical arrival time of the event. (Arasu et al. 2006)

CQL is not the only SQL-like language for complex event processing. Many other projects

have defined their own languages with stream operators. Some of the most famous lan-

guages are StreamSQL, TelegraphQL, Cayuga Event Language and Esper EPL. Because

the languages mostly share the same purpose and the starting point (SQL), they are very

similar. (Owens 2007) Although it is not published anywhere, it seems that CQL has acted

as an inspiration for the EPL of Esper, which makes the research around CQL interesting

in our case.

Listing 2.1 shows two example queries as given by Arasu et al. (2006). The first query,

Q1, holds maximum value of field S1.A from the last 50 000 events. Q1 outputs a tuple

containing two values: the field B of the last arrived event and the maximum of A. The

second query, Q2, creates a sliding window over two streams. It operates on two windowed

streams, S1 and S2, containing the last 40 000 events of S1 and all the events seen in S2

during the last 10 minutes, but no more. The Where clause is used to express that the

events selected to the output window must have equal elements in their A fields, exactly

like in SQL.

The queries are translated into query plans. The plans run continuously and include

three types of components. First, there are operators, which execute some function (e.g.

addition). Second, the operators are connected by inter-operator queues. Third, the oper-

ators are associated with synopses, which summarise the tuples seen on a given operator.

(Motwani et al. 2003)

Figure 2.4 illustrates a query plan that can be generated from the queries in Listing 2.1.

Note that the events flow in from the bottom, streams S1 and S2. The queues on top of

the picture contain the results for the queries Q1 and Q2. For instance, the plan includes

following components: Both queries Q1 and Q2 operate on stream S1 with 50 000 and

40 000 events, respectively, and this adds a sliding window seq-windowS1 to the plan. The

2.4 Complex event processing implementations 22

synopsis Syn1 contains always the last 50,000 events, because it is the largest of the two.

When new events arrive, the operator transmits inserts and deletions to the queues q3 and

q4 so that both will contain the required events for their next operators. (Arasu et al.

2006)

The aggregate operator on the leftmost path of the plan is created by the max operator

in query Q1. When the queue q3 changes, it selects the maximum of As and maintains it

in synopsis Syn6. Although the operator can work incrementally using the latest inserted

A as the maximum value, if it is bigger than the last maximum. However, the operator

clearly cannot be incremental in a case where the event carrying maximum A is removed.

In the worst case, this requires going through all the last 50 000 events in the queue.

Without any optimisation, the operator might store the events in its input synopsis Syn3.

However, because all its contents are always already stored in Syn1, Syn3 can be dropped

and replaced with a link to Syn1. The other paths in the plan are described in detail by

Arasu et al. (2006).

Listing 2.1: Two example CQL queries shown in (Arasu et al. 2006)

Q1 : Select B, max(A)

From S1 [Rows 50 ,000]

Group By B

Q2 : Select Istream (*)

From S1 [Rows 40 ,000] , S2 [Range 600 Seconds]

Where S1 .A = S2 .A

Figure 2.4: An concrete CQL query plan implementing the queries in listing 2.1 (Arasu
et al. 2006)

2.4 Complex event processing implementations 23

Optimisation and approximation

The developed system includes an optimising query processing engine called StreaMon.

This allows the system to maintain its low overhead in event processing and transmission.

StreaMon includes an executor running the queries, a profiler as a part of the executor

to collect performance data and a reoptimiser to make changes to the query plans and

memory structures. (Babu and Widom 2004)

When STREAM becomes overloaded or encounters bursts, it may resort to combined

load shedding and query approximation. STREAM supports static and dynamic approx-

imation. Static approximation modifies queries before they are supplied to the query

processor. It may reduce window size or sampling rate in operators which use them. In

ideal case, the static modifications don’t alter the query results at all. (Motwani et al.

2003)

Dynamic approximation leaves the queries unchanged. The dynamic approximation al-

lows the accuracy of the results to vary over time depending on the current load. The

dynamic approximation techniques include synopsis compression, sampling and load shed-

ding. (Motwani et al. 2003)

Babcock et al. (2004) note also that the operator on which the approximation takes place

has impact on the processing in downstream. Dropping messages mostly lowers the work

required in the rest of the query, but sometimes the effect can be the opposite. One

example is a sliding window dropping duplicates. Shortening the window makes the set of

checked messages smaller and increases the volume of messages emitted.

STREAM is a centralised complex event processing system and runs on only one machine.

In the project a need for developing a distributed system was recognised and expected to

help with scalability. However, no papers on a distributed architecture or implementation

were published. (Arasu et al. 2003, Babu and Widom 2001, Arasu et al. 2003; 2006)

2.4.3 Shared state solutions

Another approach to distributing complex event processing could be a solution based on

shared state. JavaSpaces had already been used to issue computations in a cluster (Ku

et al. 2008). In their solution they implemented an architecture based on the master-

slave pattern, where one master node receives all the events and deals them forward to

worker nodes for computation. JavaSpaces implements Linda spaces concept (eg. Gelern-

ter (1989)), where nodes can write tuples to and read them from a logical memory space

residing sharedly on the machines. It fits well the master-slave pattern, if the computations

can be split into independent pieces.

2.5 Performance testing CEP 24

According to Ku et al. (2008), worker nodes would run local event processing agents

(LEPA) over the events generated by the same machine and also domain event processing

agents (DEPA) to detect composite events outside the scope of a single machine.

Depending on the implementation details, the shared state solution could open up many

interesting opportunities for optimisation. The first is multiquery optimisation (Heinze

2011). MQO searches for common parts in simultaneous queries. It has been extensively

studied with database management systems (Sellis 1988). Because the EPL queries are run

continuously and for long time after they are issued, MQO can be economically leveraged

to a much greater degree than in a DBMS, where query is issued once, lasts less than a

millisecond and then triggers and return only once.

Although (Ku et al. 2008) observed the system to scale linearly with the five nodes tested

with, there is an obvious bottleneck in the master-slave pattern: the master. All the

traffic must go the single node. Also in the implemented architecture the master node did

some intermediate computations, which still adds to the burden of the master. Because of

the nature of CEP, I believe it can be very difficult to remove these computations, as the

dependencies of events can be very interwoven. It must also be noted that the performance

results reported by Ku et al. (2008) are very vague and also the complex event detection

rate seems quite poor, only 27 events per second. The paper is quite unclear on what they

mean by a detected event.

This inspired us to consider group communication for sharing the state of the CEP engine.

Apache Tomcat includes Tribes cluster communication module, which could be used for

accessing objects on other nodes. Tribes would have been an ideal candidate, because

it supports forming groups based on well-known-agents in contrast to the more popular

multicast agent discovery, because AWS EC2 doesn’t support multicast. However, modi-

fying Esper engine to be shareable over Tribes turned out to be too big a task. Also there

are some closed source add-on modules for Esper and in their case modifications wouldn’t

even be possible (EsperTech Inc. 2011).

2.5 Performance testing CEP

There are a couple of proposed benchmarks for performance testing of CEP. For the

performance tests explained in chapter 5 I draw mostly from Linear Road (Arasu et al.

2004) and BiCEP (Mendes et al. 2008). They both describe a selection of standardised

test cases that all CEP products supposedly are able to perform efficiently.

Linear Road was one of the earliest benchmarks, and it was endorsed both by Aurora

and STREAM projects (described in sections 2.4.1 and 2.4.2, respectively). It simulates

a road toll system in a simple city with multiple expressways. The toll system is required

to detect accidents and congestion from the traffic data on the fly. It must also calculate

2.5 Performance testing CEP 25

demand based toll prices. The traffic monitor must also support queries for historical data

and the patterns appearing in it. (Arasu et al. 2004)

The test results by Arasu et al. (2004) suggest that CEP systems are superior over database

management systems. The paper shows that Aurora topped the an unnamed DBMS by

being able to process five times more traffic data during the specified time. Furthermore,

the latencies of Aurora stood quite low even with full load when the DBMS could not

produce results any more.

Mendes et al. (2008) describe FINCoS framework for evaluating CEP performance. The

FINCoS tool includes load generators and sinks for performance testing. It includes a

plug-in driver for Esper CEP engine and offers a Java API for developing custom drivers

for other engines. The FINCoS framework was used to study the performance of three dif-

ferent CEP systems in micro benchmarks testing the most fundamental stream processing

features of CEP. (Mendes et al. 2009)

Both Arasu et al. (2004) and Mendes et al. (2009) detect the following challenges in

performing performance tests on and creating a benchmark for CEP. First, the CEP

systems can produce multiple different correct results. This leads to challenges in the

output validation. Second, there are no standards stating what features a good CEP

product must have. Third, the metrics for results can vary by the application domain.

Also mentioned are the lack of common query language and creating semantically valid

input data.

Chapter 3

Architecture for complex event

processing

The requirements are defined by a Tekes financed MMEA project work group. The vision

of MMEA Bus includes developing an interoperable and scalable integration platform with

complex event processing capabilities.

In this chapter I discuss the architecturally significant requirements (ASR) for the plat-

form. I present an architecture enabling complex event processing in MMEA Bus.

3.1 Architecturally significant requirements

The categories of non-functional requirements for MMEA Bus consist of 1) scalability 2)

high-availability and 3) ease of configuration and management. In this section I explore

what these requirements mean in our system. I describe their significance and the possible

solutions in the respective order. I also consider conflicts and trade-offs that might arise

between them.

3.1.1 Scalability

The primary concern in this thesis is throughput. In the most optimistic business scenario

there could be millions of sensors and other data sources feeding the system new data

every second. This requires us to be able to provide either very powerful computing units

for complex event processing or to be able distribute the workload over a large set of

machines. Because there is always a limit to how big machines are available, scaling out

(adding more parallel machines) is the only solution, when the system grows big enough

(Michael et al. 2007).

3.1 Architecturally significant requirements 27

Another concern is the event processing latency. Alerts and other perishable information

must not be delayed because of the centralised system generating and mediating them

(Wächter et al. 2012). For a single statement Esper can have latencies as low as a couple

of microseconds (EsperTech Inc. 2007). There are also solutions that can handle hundreds

of simple statements in 10 microseconds (Cugola and Margara 2012). Anyway, these

latencies are small enough that they wont matter in a system that operates over the

Internet with network latencies in excess of milliseconds.

To make the satisfying of the latency requirement measurable, I take 50 ms as a practical

time limit to detect a triggering event. The starting time shall be the timestamp issued

by the input queue, when the message arrives in the system. The ending time shall be

determined by the output queue the system uses to send the generated complex event

forward.

The rate of production of the data supplied to the system may not be a constant. In

Amazon EC2 cloud the instances are billed by a machine-hour, so we can potentially

reduce costs by not having any more resources than needed (Amazon Web Services LLC

2012a). A CEP system can be designed to scale up and down elastically (Heinze 2011).

AWS provides developers with tools to programmatically add and remove instances to the

cloud (Amazon Web Services LLC 2012b). This enables us to spawn new instances of

similar computing units to handle the increased load and terminate the ones that are no

longer needed.

Because most of the target data is generated by environmental sensors or batch driven

computational models, the required throughput is fairly constant. However, for the periods

longer than few hours it is conceivable that there is some variation, which might be periodic

or aperiodic. For example, a periodic variation in the volume of events might arise weekly

(e.g. during weekends many office buildings are empty and frequent updates from them

are not needed) or yearly (seasonal changes in nature might impact the amount of data

sensors produce). Periodic variation with known periods can be addressed by scheduled

up and down scaling.

Acyclic variations in required throughput are harder to address, if the rate of changes is

relatively fast and unexpected. If this case, the up and down scaling must be automated.

Autoscaling raises several new issues. Some entity must coordinate the addition and

removal of nodes. They must also be well defined metrics on which to base the decisions

of scaling. Examples of metrics offered by AWS are messages per second and average

request latency. (Amazon Web Services LLC 2012b)

In a distributed environment load balancing is an interesting issue. Especially in complex

event processing when there are multiple interdependencies between the events, load bal-

ancing is not a trivial issue. The processing must be distributed evenly on the processing

nodes. (Lakshmanan et al. 2009)

3.1 Architecturally significant requirements 28

In a case where load spikes up quickly for a short time, the system must not choke under the

flood of messages but to queue them up in a buffer. Bursts might appear for instance when

some networking equipment is faulty or disconnected temporarily and a set of messages

are released simultaneously from a lock-up. Bursts also affect decisions on autoscaling,

because they might temporarily degrade performance metrics, even though the system

could cope with the load and scaling up would be unnecessary. (Kleiminger et al. 2011)

3.1.2 High availability

Bursts are also an important issue from the high availability viewpoint, especially because

they may be more usual during a crisis time. It is also the time when the information is

most valuable, and in an emergency system errors or delays in processing may result in

loss of lives. The effects of bursts can be mitigated by overprovisioning or by allowing the

events to accumulate in a buffer. (Kleiminger et al. 2011)

When the load on the servers increase dramatically in a short time, some CEP systems

have resorted to load shedding or approximate query answering (Gurgen et al. 2005). Load

shedding in an emergency situation would require knowledge about which messages can

be safely dropped.

Other sources of unavailability are hardware failures and networking issues. The more

there is hardware, the bigger is the probability that at least some piece of it breaks

down. In distributed systems the failures are often partial, which means that only some

processing nodes or links are down. In many cases these failures can be masked or detected

and tolerated. (Coulouris et al. 2011; pp. 37-38)

Although high availability issues side closely with the scaling issues in this thesis, I have

limited them outside the scope of my research. Some sophisticated HA and QoS can be

implemented as extensions to the system described here, especially to the ESB.

3.1.3 Configuration management

I describe here some configuration management requirements for the system to give a

clearer picture on what the end product would look like. The issues described here are

out of the scope of my research question. Nevertheless, they are anyway a very visible

part of the system, and I discuss some possible solutions in the architectural design later

in section 3.4.

3.1 Architecturally significant requirements 29

Data sources and streams

The MMEA Bus is an integration product and will be connected to multiple data sources

and endpoints of multiple customers. This requires the software to be easily configurable,

such that new data sources and customers can be easily added, removed and reconfigured.

The different data sources in the system will be presented as streams to the users. The

users can then subscribe to the streams and define their own CEP rules on a combination

of those streams. The complex events produced by the CEP are then shown as their own

stream and is again subscribable.

Access control

These streams require some kind of access control, because some derived events will be

to private use. This is closely connected to the other user management issues. The users

must be authenticated. In some cases the data flowing in and out the bus should be

encrypted to prevent eavesdropping, tampering and forging events, preferably always.

CEP management

Carney et al. (2002) recognise a need for three types of queries: continuous queries, views

and ad hoc queries. These were previously discussed in section 2.4.1. In MMEA Bus the

aim is to first support continuous queries, because they can be executed without storing a

history of messages. There are plans to incorporate a storage system to MMEA Bus, but

the implementation falls out of the scope of this thesis.

To be usable in a wide range of applications, the CEP system must support defining new

queries during runtime. In our initial plan CEP would be implemented as an complex

event network, which means that we must support both the creation of the networks and

the agents of those networks.

3.1.4 Other non-functional requirements

The potential customers and users of the MMEA Bus must be billed. This requirement is

out of the scope of this thesis but can be taken into account when designing the architec-

ture. The customers might want their costs to vary with their real usage of the integration

service, which can be tracked with AWS tools.

In a distributed system operating over Internet, security is a key issue. The fine-grained

access rights and application level security is best addressed in a separate security compo-

nent in the ESB and is not considered in this thesis. However, for transport and network

3.2 Eight rules for stream processing 30

level there are some points that must be taken into account when developing a platform.

For example, our architecture must allow the usage of WS-Security add-on (OASIS 2006).

On transport level it must be possible to use HTTPS. Furthermore, Amazon Web Services

provide network level security groups for creating a simple firewall. Security groups can

be used to block connection attempts from the outside world and to allow access from

only the other nodes in the same cluster (Amazon Web Services LLC 2012b).

3.2 Eight rules for stream processing

In their seminal article, Stonebraker et al. (2005) introduce eight requirements for a real

time stream processing system. These are all highly relevant to the MMEA Bus, and in

the design and implementation I will follow most of them. Here are the eight rules in brief.

I will return to these rules in section 5.8 and evaluate the implemented system in respect

to them.

The first rule is to keep the data moving. Disk storage access is many orders of magnitude

slower than any other activity in computing. Persisting events to a disc is often used as

a fault tolerance feature. However, recomputing the lost data can often be faster option.

The second rule prompts to use an SQL-based language. A domain specific language makes

the system much faster and easier to develop and maintain.

The third and fourth rule deal with stream imperfections and predictability of outputs. In

a networked environment messages can be dropped or arrive out-of-order. These effects

can result in wrong outcomes in an unsophisticated system.

Rule five says to integrate streams and stored data. Users often want to compare past and

present data. This is a very hard requirement to implement efficiently and also a bit in

conflict with the first role, keep the data moving.

The last three concern the nonfunctional qualities of a CEP system. The data must

be always available and its safety must be guaranteed. The system should partition the

workload and scale automatically. Finally, the CEP engine must be highly optimised to

handle all the data in real time without building up buffers or delaying processing.

3.3 Modelling MMEA Bus as an event processing network

To better understand the semantics of the required complex event processing system, I

drew the event processing network corresponding to it. Figure 3.1 shows the MMEA Bus

as an EPN. The defined topology draws heavily from Luckham (2001; p. 208) and adds

a feedback loop like discussed by Adi et al. (2006). Effects of loops in event processing

network were also discussed in by Etzion and Niblett (2010; p. 117).

3.3 Modelling MMEA Bus as an event processing network 31

Sharon and Etzion (2007) identify two traditional infrastructure types, which an EPN can

be built on: Messaging Systems and Data Stream Management Systems (DSMS). The

messaging system is closely related and often based on an event-driven service oriented

architecture. ED-SOA has all the benefits described in 2.1.1, but implementations often

lack the CEP capabilities, as noted by Wishnie and Saiedian (2009). DSMSs are readily

capable of running continuous queries and other processing on the data. Thus it is already

very ready component for an EPN.

Another model Sharon and Etzion (2007) present is a hybrid of a Messaging System and

DSMS. In MMEA Bus we try to bring the best of both worlds by integrating CEP in an

ESB. ESB provides us with flexibility in enterprise application integration and a custom

stream processing system enables efficient complex event processing, expressed in an EPL.

Producers: All the events handled by the system are produced by environmental sensors.

Because of its nature as an integration platform, we could of course allow also other event

sources, if they would add some value to the users. Nevertheless, even then it might be

sensible to view the new sources as “special sensors”, as our sensors already can be a very

heterogeneous set.

Adapters: An enterprise service bus by definition supports a wide variety of data sources.

In our current implementation the most prominent protocol for submitting messages for

processing is SOAP. Data is represented as XML, which can be adapted to our internal

format using Extensible Stylesheet Language Transformations (XSLT). The SOAP mes-

sages are typically sent over an HTTP or HTTPS binding (Gudgin et al. 2007), and that

is the case in MMEA Bus too. Another possible route for message transmission is Java

Message Service (JMS).

Filters: Inside the ESB the relevant events are selected and forwarded to an event pro-

cessing network constructed by a user. For scalability reasons the filtering step must be

completely stateless, because we cannot give any guarantees on which CEP engine an

event flows.

Pattern detection: Pattern detection can be defined arbitrarily by a user. Users can

define their own event processing networks to handle complex processing. Events can be

fed back to the filtering step to allow processing them again by the same or some other

EPN. This acts as a feedback loop, as noted by Etzion and Niblett (2010; p. 117), and

requires special care. By always forwarding back to the system the same events we can

easily construct an infinite loop.

Consumers: The ESB provides us with several prebuilt and custom services, such as

notification service and storage. These can be universally used by supplying events with

correct structure to the ESB. These services act as event consumers, because we cannot

influence the event flow at that stage any more. Nevertheless, for example the data stored

in a database can be activated later, but later instantiations of data shall be considered

separate data.

3.4 Scalable architecture for MMEA Bus 32

Filter
Selector
for company

Adapter
XSLT

Event producer
Sensor

Pattern detect
User defined EPL
Recursive EPN

feedback loop

Event consumer
Notification service
Storage service

Figure 3.1: An event processing network containing the basic building blocks of the MMEA
Bus and example functionality

3.4 Scalable architecture for MMEA Bus

The architecture implemented for this thesis is based on distributed, stateless instances

of enterprise service bus that forward filtered events to a dedicated complex event pro-

cessing cluster. Figure 3.2 shows the division of the responsibilities between the ESB and

the CEP cluster, the physical setup and the message flows between the machines. The

implementation of the architecture is described in chapter 4.

The architecture allows us to exploit the strengths of both the ESB and the CEP sepa-

rately. The ESB is used to define adaptations and transports that operate only on one

single message at a time. The scalability model utilises parallel, stateless instances to the

extreme, and there is very little the ESB instances must know about each others.

In CEP the data dependencies play much bigger role. Thus we want to limit all the extra

work done on the CEP cluster to the minimum. This means that the events supplied to

the CEP cluster are already in the correct format and free from other complications, such

as access rights management or encryption. The sole purpose of the CEP cluster is to

execute the pattern matching and other fundamental functions of CEP.

3.4.1 Event flow in the system

Figure 3.3 depicts a logical flow of the events inside the system. Events produced by the

sensors are fed to the enterprise service bus, which converts them to an internal format

in the adapters. The variety of possible protocols for sending events to the ESB is wide,

because supporting a new protocol in the ESB only requires writing a new adapter. The

currently supported protocols are SOAP over HTTP, HTTPS and Java Message Service

(JMS) with various data source dependent file formats.

The events received by the ESB are run through a series of filters, which act as selectors for

interesting data. The filters are stateless and defined by the users of the data. By defining

filters the users are able to subscribe to events and event streams they are interested in.

3.4 Scalable architecture for MMEA Bus 33

In fact, they implement the first stage of an event processing network and can be seen

as event processing agents, as illustrated by Luckham (2001; p. 208) For example, filters

could be implemented using XPath, which matches the interesting messages by some of its

elements. If there are some restrictions (e.g. usage or billing limits) to the event streams

the users are allowed to subscribe, they must be applied before these selectors.

The selected events are forwarded to a message queue, which is read by a Storm cluster.

The Storm cluster consists of spouts, which read the message queue, and bolts, which run

the data through EPL statements (i.e. are event processing agents) or forward the events

back to the ESB for further processing (i.e. act as local event sinks). The basic Storm

terminology is be explained in sections 4.2.1 and 4.2.2.

The architecture fully decouples complex event processing from the enterprise service bus.

This enables us to handle their scalability separately. In fact, we could even replace

the whole event processing system built on Esper and Storm with something completely

different. The only requirement is an event-driven architecture and ability to interact via

message queues.

Enterprise Service Bus

ESB instance

Selector

Selector

Selector
ESB instance

ESB instance

Raw events

Load balancer

CEP Cluster
on Storm

Generated complex events

Adapter

Adapter

Adapter

EPN

EPN
Pub/sub

Pub/sub

Pub/sub

Event subscribers

Queue

Queue

Queue

Figure 3.2: ESB is distributed on multiple cloud machine instances that forward events
to a specialized CEP service

3.4.2 Distributed CEP service

The distributed CEP service aims to provide a very flexible platform for users to define

their own event processing networks. There are three kinds of nodes in our EPN. First,

3.4 Scalable architecture for MMEA Bus 34

Enterprise Service Bus

Company A

Company B

Storm CEP Cluster

Connection back to ESB

Storm CEP Cluster

Adapters

Other services
offered by ESB

Figure 3.3: Closer look to the processing model: stateless ESB instances forward events
to Storm clusters

there are event producers, which read tuples from a message queue. Second, these tuples

are forwarded to the EPAs all running an instance of Esper engine. There may be several

statements running on one instance but it is discouraged, because it inhibits parallelism, as

explained later. The third type is a local event consumer, which acts as a leaf node in the

network and forwards the received events back to a message queue of the ESB for further

processing. Figure 4.1 should give a clear picture on an example network, presented as a

Strom topology.

The selected level of distribution in this architecture is the engine level. It is a natural

choice, because Esper does not allow distributing a single engine on multiple machines.

This decision imposes some limitations on our implementation. As discussed by Heinze

3.4 Scalable architecture for MMEA Bus 35

(2011), engine level granularity makes multiple query optimization (MQO) less powerful.

MQO would help pruning unnecessary, overlapping computations, when multiple queries

have similar parts. Still, the queries running on the same machine could make use of MQO

locally, if the CEP engine supports it.

Because we have multiple separate CEP engines running on different machines, the only

way they can share data with each other is by messaging, that is, by creating and consum-

ing events. This creates some overhead but makes implementation much simpler. This

approach forces the user to think the event processing as a flow of events and define the

desired computations as a network.

The architecture still leaves some requirements unaddressed. There is no support for

automatic elasticity. When one wants to increase the size of a Storm cluster, the message

processing must be stopped for a moment. Another issue is that we currently cannot

control the internal load balancing of Storm.

3.4.3 Configuration and deployment management

Because the ESB and CEP cluster are completely decoupled, they don’t share any con-

figuration. The ESB usually uses its own registry for configuration. The CEP cluster is

backed by another database.

ESB configuration

The responsibilities of the ESB include adapting data sources, identifying streams, filtering

events in the selectors, forwarding streams to their subscribers and integration with other

services like user management.

The adapters in the ESB are stored centrally in the configuration and governance reg-

istries. This allows all the instances to share same configuration and act identically. The

implementation is discussed in section 4.1.1.

For identifying and selecting events in the ESB, every event belongs to a stream. This

stream can then be selected for complex event processing in conjunction with an XPath

selector or to be sent to stream subscribers. Note that the selectors are part of an EPN,

even though they are not run on the cluster. They implement the stateless filter layer of

an EPN. This means that the developer defining an EPN for the CEP cluster must also

select the required events for processing from the ESB.

Another point of configuration in the ESB is a subscription management for external

applications. The system must be able to forward raw and complex events to external

3.4 Scalable architecture for MMEA Bus 36

users, so that they can build their own applications based on them. This service is still

under development.

The stream identification information, metadata and the subscriptions are served by a

separate web service called Stream Catalog. The service is accessed through a proxy

service defined in the ESB, which makes the service seem like an undistinguishable part of

the MMEA Bus. The data storage used by the Stream catalog can be chosen independently

from the rest of the system, because the interface of the service doesn’t have to change.

The ESB can retrieve the subscription lists from the service periodically.

CEP configuration

The requirements of the CEP service state that one must be able to define event processing

networks with replaceable event processing agents. Because the EPNs are defined as Storm

topologies, changing them is not possible. However, we can program the single bolts to

be able to change the EPL they are executing on the fly.

I designed a web based cluster configurator that could be used to define Storm topologies

and to deploy them to a Storm cluster via the API provided by Storm. The topologies could

include arbitrary number of data sources reading events from the ESB, EPAs, sinks sending

events back to the ESB and connections linking these components. Because modifying a

topology would require first completely removing it, modifications to a running EPN would

not be supported. A brief prototyping attempt is described in section 4.2.8.

Anyway, single EPAs can be modified while a topology is running. To make this possible,

the EPLs are stored in a database accessible from all the nodes of the cluster. The database

backed EPAs would then periodically poll the database to retrieve the possible changed

EPL.

Chapter 4

Implementation

The biggest contribution of this thesis is the complex event processing platform, MMEA

Bus, which was implemented following the architectural design presented in 3.4. The

system consists of two separate parts: a distributed enterprise service bus and a com-

plex event processing cluster. This approach enables us to address the radically different

scalability requirements of the two components.

The users of the data streams can define simple filters selecting events they are inter-

ested in. These filtered streams are forwarded to a CEP service that implements a high-

performance, customizable event processing network. In this section I show how to im-

plement the architecture on WSO2 ESB and Storm stream processing cluster with Esper

event processing engine.

The implemented system makes use of a collection of open source software. The ESB is

built on WSO2 ESB, which in itself includes many other open source projects: Apache

Tomcat runnin Axis2 for web services and Synapse for providing configuration and inte-

gration features. In addition, there is Apache Tribes for group communication between

the ESB nodes.

The CEP cluster is built on Storm stream processing system, which offers a distributed

framework. CEP capabilities are provided by Esper. The JMS of choice is ActiveMQ,

but also a subproject called ActiveMQ Apollo was tested. For message transmission from

ESB to CEP ZeroMQ was used, because it offers superior performance. These software

products are further explained later, when I explain how they are used in the system.

4.1 Distributed ESB

The basic infrastructure for MMEA Bus is provided by the WSO2 ESB. WSO2 is a

software vendor specialising in enterprise middleware. It has developed and packaged

4.1 Distributed ESB 38

many software products, which can function as components of an enterprise system. Most

of the products and solutions offered by WSO2 are based on open source projects and open

standards. (WSO2 2012) Specifically, WSO2 ESB is built on Apache Synapse, to which

WSO2 has added their own package management system and a management console.

The ESB cluster consists of multiple separate EC2 instances, whose awareness of each

others in our setup is only limited. In my design there are two kinds nodes, masters and

slaves. All the nodes run CentOS 5.5 and WSO2 ESB. In addition, the master nodes run

WSO2 Governance Registry (G-Reg) and PostgreSQL database management system.

The purpose of a master node is to manage the configuration of the ESB. WSO2 ESB

offers a web console, which can be used to define endpoints, mediation sequences, tasks and

other services provided by the ESB. The only difference in the WSO2 ESB configurations

between masters and slaves is that the slaves have read-only rights to the shared registries

that carry the configuration information.

The architecture supports more than one master node. In the case of multiple masters,

one of them acts as an “active master”, meaning that it holds the Elastic IP, and the

others are “passive.” The passive masters act normally like the slave nodes mediating the

messages, but they are ready to receive the Elastic IP and take the role of the active one,

if there is a failure in the previous master instance. The databases running on the passive

masters are replicated from the active master.

For the deployment on AWS EC2, I have created two elastic block store (EBS) images,

one for the master nodes and one for the slaves. When booted, the slave (and passive

master) nodes retrieve the configuration from the master node. Although WSO2 promises

that the ESB instances are able to copy the configuration of the master (Azeez 2008), I

encountered some severe bugs in it: the deployed JARs do not get copied to the newly

starting nodes, which did not previously have them. Nevertheless, the bugs could be

worked around with some start-up scripts, which copied required libraries to the booting

slave node. The modifications done to the WSO2 ESB during runtime replicated correctly

to all of the slaves.

4.1.1 Registries

The registry of WSO2 ESB consists of three parts: local, configuration and governance.

The local registry contains runtime data and system configuration that is local to each

running ESB instance. It resides always on the same machine as the software that uses it

and nothing of it is shared. (Fernando 2010)

The MMEA Bus runs a WSO2 Governance Registry (G-Reg) as a separate service on the

master nodes. In our setup, G-Reg maintains the configuration and governance registries,

like in the strategy B explained by Fernando (2010), and it is stored in the PostgreSQL

4.1 Distributed ESB 39

database running on the master nodes. The configuration registry includes the definitions

for mediation sequences, proxy services, queues and other activities performed by the

ESB. It is also used to distribute Java archives containing the bytecode of our own custom

mediators.

The governance registry carries SOA metadata for the use of the ESB (WSO2 2011). For

example, it includes the XML schema definitions for the internal messages used by the

bus. In the future, it could also be used to serve metadata of the data sources. The local

registry is run in the embedded Derby database bundled with WSO2 ESB.

4.1.2 Communication between ESB instances

There are still some applications where the ESB instances cannot operate completely

independently of each others. One is the polling of external services. Because all data

sources are not able to push their data to the ESB, the platform must fetch it from a remote

server by periodically checking if there are new messages and then retrieving them. To

make sure that the polling task runs only on one ESB instance, they must somehow decide

the host for it.

WSO2 ESB is based on multiple open source projects maintained by Apache Software

Foundation. It comes with Apache Tribes, which is a group communication module for

Apache Tomcat (Apache Software Foundation 2011b). Apache Axis2 web service en-

gine (Apache Software Foundation 2012) provides several shared contexts in a hierarchy,

where members of the groups can push objects and from where they can then be globally

retrieved, and Tribes makes communicating the contents of these objects to the other

members of a group.

Group communication was used to prevent multiple ESB instances from launching a poller

and to monitor the state of the polling node. When each of the nodes starts up, they

check in the shared context, whether there is a poller already running. If not, it registers

itself as the poller and then, from time to time, updates a timestamp of the previous

polling attempt. The other instances periodically check, whether the instance is still up

by comparing the timestamp to the current time. If the timestamp is too old, the polling

node is deemed failed and the next instance registers itself as the poller.

Group communication was first also planned for distributing objects in complex event

processing. However, because of the heavy changes required in Esper and the lack of

distributed locks in Tribes (Apache Software Foundation 2012), this line of research was

abandoned. There were also some small hindrances with Tribes. According to the docu-

mentation of Axis2, it is supposed to handle all the calls to actuate the communication

over Tribes (Apache Software Foundation 2012). However, in the mediators of WSO2

ESB the calls never happened but must be forced by adding extra calls to the replicator

module.

4.1 Distributed ESB 40

The machines belonging to a group must first find each others to be able to communicate.

The first choice for identification in a group on a local network is a multicast membership

query. In addition to easy discovery, multicast also offers superior performance in message

transmission, because it saves bandwith by sending single messages that can be received

by multiple recipients. AWS EC2, however, doesn’t support multicast (Amazon Web

Services LLC 2012b), so it cannot be used. Another membership scheme offered by Tribes

is using well-known addresses (WKA). A WKA allows nodes to first connect to a pre-

issued network address belonging to the group, which then answers by giving the list of

all the other nodes in the group. In my setup, every node knows the Elastic IP issued to

the master.

Another solution for poller selection and other synchronisation issues would have been to

use the governance registry. Governance registry could facilitate the development espe-

cially when there are multiple stakeholders making use of the shared contexts.

4.1.3 Load balancing

AWS Elastic Load Balancing (ELB) (Amazon Web Services LLC 2012c) is used as the

load balancer for the ESB cluster. ELB passes through HTTP and HTTPS requests to the

proxy web services running on the ESB instances. Load balancing works in a round-robin

manner selecting the next node by taking the node with the lowest latency.

The EC2 instances running the ESB were configured to automatically register with the

ELB. The registration was done in a boot script. Also, a deregistration script was added

to the shutdown. Nevertheless, the ELB keeps account of the latest performance of the

nodes and marks them as failed, if they don’t respond in time.

If needed, ELB could also coordinate autoscaling. With Amazon Cloud Watch one can

define metrics to monitor and threshold to decide, when to add new EC2 instances and

when to remove. However, this was never tested. At least the scale-out should work fine,

but the decision on which nodes to remove when scaling back would need some work. In

principle, the removal procedure would consist just of deregistering the node from ELB

and waiting until all the messages in the queue are all processed.

4.1.4 Adapters

Adapters are the first component of MMEA Bus, which are part of the complex event

processing network, as described by (Luckham 2001; p. 208). Adapters are implemented

as mediators in WSO2 ESB. They are deployed to the ESB and their purpose is to supply

events in our internal XML message format to the selectors. In the simplest case the

incoming messages are already in our format and a plain schema validation is sufficient.

4.2 Complex event processing cluster 41

Often the input is a some kind of an XML document and an XSL transformation can be

specified to convert the messages into correct format.

Because an ESB is expected to handle all kinds of integration patterns, the adapters can

be very powerful, if needed. WSO2 ESB allows implementing mediators and tasks in

unconstrained Java, which we have exploited in our implementation. For example, some

data producers allow fetching the data over FTP in their own CSV format. This data can

be polled with a poller task and then parsed to an XML format with a Java mediator.

4.1.5 Selectors

Selectors supply messages to the CEP service according to user defined rules. They are

implemented as mediators in the ESB. They correspond to the filters in (Luckham 2001; p.

208). The selectors can be defined in XPath, which are fetched from PostgreSQL database

on the master node. There is not yet a user interface for defining XPaths, but the plans

for one are described in Section 3.4.3.

The selectors first check if a received message matches with some XPath rule. Then the

corresponding consumers for the rule are looked up. As explained previously in Section

3.4, the consumers are event processing networks running on the Storm stream process-

ing cluster, and a consumer is called a CEP service. The selected events are sent over

ZeroMQ to the service. The ZeroMQ sockets use a push-pull pattern, which is suitable

for pipelining processing in this way (ØMQ community 2011). As another choice I could

have used publish-subscribe pattern, but in my case with only one or a few consumer the

configuration would have been more complicated with no extra benefit.

The selectors are fully stateless. Initially, I planned to use Esper in the selectors too.

However, there is no real use for the Esper engine at that point, because we cannot give

any guarantee on which events flow through a certain node. Anyway, it can still be

considered as an option, if some need arises.

4.2 Complex event processing cluster

A complex event processing cluster was implemented in as a part of this thesis. In the

cluster, instances of Esper CEP engine are run on a distributed real time computation

system called Storm.

In this section, I explain how Storm works, the basics of Esper, and how I use Esper

on Storm. I also demonstrate how a complex event network consisting of small and fine

grained event processing agents is a very natural way of designing and implementing CEP.

Such an EPN can also be distributed efficiently on a cluster of computers.

4.2 Complex event processing cluster 42

4.2.1 Storm

Storm is a distributed stream processing cluster framework developed for near real-time

computation. It aims for extreme scalability while still guaranteeing fault tolerance and

lossless data. Storm is often described analogous to Hadoop, with which one can easily

parallelise MapReduce batch jobs. (Marz 2012c) Though excellent in stream processing,

Storm lacks any built-in complex event processing features. Nevertheless, the focus on

scalability and reliability make it a very usable platform to extend with CEP.

The computational model of Storm relies heavily on the notion of a topology. Topologies

are essentially flow graphs similar to ones used in Borealis, described in Section 2.4.1. The

nodes of a topology are very powerful parallel processing units, which can be deployed on a

cluster of computers. Storm provides a command line utility for controlling a cluster (e.g.

deploying topologies) (Marz 2012d). For creating a Storm cluster in AWS EC2 one can use

storm-deploy, which includes an automatic setup for the required components of a cluster

(Marz 2012e). There is also possibility to test a topology locally, or even a production

system could be run only on one system, if no scalability or fault tolerance requirements

are set.

Storm was initially developed by BackType, which was subsequently acquired by Twitter

during summer 2011. It is free software and published under Eclipse Public License (Marz

2012a).

4.2.2 Components of Storm

The Storm tutorial (Marz 2012d) explains the basic concepts very clearly. Storm cluster

has three components, Nimbus, supervisors and ZooKeeper. Nimbus is the master node

and is comparable to Hadoop’s JobTracker. It distributes code to the cluster, assigns tasks

and monitors for failures.

Supervisors are run on every node participating in Storm. It listens to the commands from

Nimbus and manages worker processes. Each worker runs its own part of the topology

assigned to Storm, as explained later.

ZooKeeper (Apache Software Foundation 2011c) cluster handles the coordination between

Nimbus and supervisors. It offers often needed primitives for implementing synchroni-

sation, configuration management, groups and naming in distributed systems. Although

ZooKeeper plays very central role in Storm, no messages from node to node pass through

ZooKeeper, as it would grow a bottleneck fast.

The computations performed on Storm are defined as topologies. The topologies consist

of spout and bolt nodes. Spouts are the source of data in a topology. Bolts can perform

arbitrary functions on the data streams. Spouts emit data as tuples to the topology in

4.2 Complex event processing cluster 43

a stream. A stream is an unbounded sequence of tuples. For example, a stream emitted

by a spout in MMEA context could consist of CO2 level measurements. A bolt reading

the stream might calculate the average level over last five minutes and push the average

downstream. There is no limit on how many streams a bolt may subscribe to.

The idea is that the spouts and bolts can be run as parallel tasks, which is shown in figure

4.1. The figure exhibits an example topology, with two spouts and four bolts, drawn as

boxes. Both spouts are run as two separate task (depicted as circles), which implies that

there can be in total four separate machines supplying data to the topology. The level of

parallelism on bolts depends on their data dependencies.

In addition to their functional difference, the biggest implementational difference between

a spout and bolt is in the fault tolerance features. If there is a failure detected in some

stream and some tuple is missing, fail method on the respective spout is called, and the

spout is expected to replay the respective upstream tuple, if necessary. The missing tuple

is then reprocessed by all the downstream bolts. However, because the fault tolerance

model is based on reprocessing, it has some disadvantages in complex event processing.

Namely, some messages may be observed multiple times on some nodes in a stream. To

address this issue, there are also methods to guarantee at-most-once semantics for message

processing. (Marz 2012b)

Bolt A

Spout S

Spout T

Bolt B

Bolt C

Bolt D
(Sink)

Figure 4.1: A storm topology showing multiple spouts and bolts (boxes) running several
parallel in several tasks (circles) on separate machines

4.2.3 Esper basics

Esper is a complex event processing engine. It is written in Java and can be included as a

JAR archive in any software supporting Java bytecode. Esper is developed by EsperTech

Inc. and it is available in both Java and .Net versions. The core of Esper is licensed under

GNU GPL, but there are also proprietary parts. The most interesting add-on is EsperHA,

which provides resiliency to Esper, which otherwise has no fault tolerance capabilities.

4.2 Complex event processing cluster 44

There are also extra input adapters and graphical tools for EPN definition. (EsperTech

Inc. 2011)

The basic interfaces provided by Esper are EPServiceProvider, EPStatement and Up-

dateListener. EPServiceProvider represents an instance of Esper engine. It provides means

for defining EPL statements as EPStatement objects. In Esper one EPL is equivalent to

an EPA. An EPL can be an INSERT statement, which creates a new stream inside the

engine, and the stream can be read by the other EPLs in the engine. Note that in Storm

we have streams on different level, flowing between the nodes of a topology. Also one bolt

running (possibly distributed) Esper engine corresponds to an EPA in an EPN spanned

by a topology. This is an example of a recursive EPN, which was discussed in Section 3.3.

(EsperTech Inc. 2012)

Events can be input to the engine as Java objects, Java Maps, Java Object[] arrays or

XML documents (EsperTech Inc. 2012). Because our internal format in MMEA Bus is

an XML document, the last solution sounds good. In an early phase of the development,

when we experimented with running Esper inside the ESB as a mediator, we used to send

events to the engine in XML format. This worked fine, but in the final implementation

events are first efficiently converted to Java objects to maximise performance.

To act on the events triggered by an EPL, an EPStatement must be associated with an

UpdateListener. UpdateListener is an interface, which defines an update method that is

always called, when the selection matched by an EPL changes. An UpdateListener has

access to the events, which have just entered the selection, and those, which have just

been removed from it. (EsperTech Inc. 2012)

Although Esper can be run without any configuration, usually at least event definitions are

given to the engine. Event definitions can be given programmatically as Java classes, as an

XML schema or as an Apache Axiom XML definition. With Esper as a mediator, we tried

defining events with Axiom, because it could have been embedded in the configuration

registry of the ESB (Section 4.1.1). However, the Axiom interface in Esper cannot handle

arrays at all, which is a serious limitation in our use case. (EsperTech Inc. 2012)

4.2.4 Esper on Storm

Esper is run on special bolts on Storm. Because there was already a working implemen-

tation aimed to bring Esper’s functionality on Storm, I based my work on it (Dudziak

2012). Each EsperBolt defines a number of EPLs and their inputs and outputs. When the

topology and its bolts are deployed, every task running EsperBolt has its own instance of

Esper engine.

In Storm the UpdateListener can be very simple. Its only purpose is to emit the matched

events downstream. Because Storm needs all the fields of the emitted tuples to be named,

4.2 Complex event processing cluster 45

the names for output fields are given during topology construction. The same mechanism

allows defining multiple streams, where events can be pushed to. The field names link

directly to the names used in EPL statements. In EPL one can name elements in SELECT

clause with the AS keyword (like in SQL) and the element names must match the names

used in the Storm topology.

4.2.5 Input and output

As described in Section 3.4, the communication between the ESB and CEP service is

conducted over ZeroMQ and JMS. Selectors push events to the CEP service in over Ze-

roMQ and the CEP service transmits complex events back to the ESB over ActiveMQ

JMS. The CEP cluster supports all three major datatypes of MMEA Bus, SensorData,

ForecastMessage and ComplexEvent, as both input and output types.

ZeroMQ spout

ZeroMQ acts as an interface to the CEP. For approximately every worker node of Storm,

one ZeroMQ spout is created during runtime. It starts listening to a port by opening a pull

socket on it. It then registers itself as a listener in a database held on the ESB master node.

The registration information includes the IP address and port of the ZeroMQ socket, the

name of the EPN and a timestamp. The name and the address information can be used

by the selectors of the ESB to route events to the correct event processing networks. The

timestamp is updated every 30 seconds and can be used for error handling in selectors.

The ZeroMQ spout receives events in XML format. Because only one thread can read

from a ZeroMQ socket (ØMQ community 2011) and unmarshalling the XML messages

computationally very costly, the unmarshalling is done in a separate bolt to prevent it

blocking the receiving thread. This unmarshaller bolt can be then parallelised more ag-

gressively. The unmarshaller converts the XML messages to a Java object representing

the corresponding SensorData, ForecastMessage or ComplexEvent message. To improve

performance in the internal message passing of Storm, the Java objects are serialised with

Kryo, which is much faster than using the built-in Java serialisation or XML (Smith 2010).

JMS bolt

The CEP cluster sends its produced events back to the ESB via JMS. It first serialises

the complex events to an XML format with JAXB and then puts the XML messages to

a queue read by the ESB. The JMS sender bolt uses the ActiveMQ client libraries. In

addition, because I also tested the performance oriented, experimental child project of

4.2 Complex event processing cluster 46

ActiveMQ, Apollo, an implementation bound to Apollo client libraries was created and

tested.

Apollo offers a JMS API for Java applications. It differs from ActiveMQ in that it uses

different wire protocols. ActiveMQ uses OpenWire version 2 by default (Apache Software

Foundation 2011a), while ActiveMQ Apollo is built on STOMP 1.0 and 1.1 (Apollo com-

munity 2012). STOMP is a simple, text oriented for message oriented middleware. It has

an easy wire format, which allows interoperability between different stakeholders. (Fus-

eSource Inc. 2011) Because FuseSource, the developer of ActiveMQ products, offers a JMS

wrapper library (Chirino 2011) for STOMP, it was very easy to use it as a replacement

for ActiveMQ.

Creating complex events

The event creation in the EPL clauses of Esper is a bit too limited for our needs. Although

one can define schemas for complex events in Esper (EsperTech Inc. 2012), there are no

straightforward ways for creating events of our internal complex event type, ComplexEvent.

The internal type is very useful, because it can readily be understood by our facilities

offered by the ESB. ComplexEvent also has a well-defined XML representation, which can

be used in external communications, too.

Currently, complex event creation is handled by separate bolts. An EsperBolt selects in

its SELECT clause the fields needed as parameters of the event creation. These fields are

packed in a map object and fed to complex event factory, which constructs a ComplexEvent

object and emits it downstream as an event. This event can then be processed in CEP like

any other event or be sent via a JMS bolt back to the ESB, or both. Similar bolts could

also be used for the creation of new SensorData and ForecastMessage events, if needed.

4.2.6 Fault tolerance in Storm

The current implementation provides only partial fault tolerance. As explained before,

Storm guarantees that all the events sent to it will be processed at least once. Also a

message-wise at-most-once guarantee is available. What it doesn’t guarantee is by which

physical machine the events are processed. If there is a failure in some machine, it will be

removed from the cluster and events will be routed to other participants in the cluster.

Eventually a new EC2 node can be instantiated and attached to the cluster.

The reliability API of Storm is very easy to use. Only thing one must take care is anchoring

the emitted events to a corresponding tuple tree and acking them, when they are processed

further in the downstream. This is also implemented in EsperBolt. The API is further

described in (Marz 2012b).

4.2 Complex event processing cluster 47

The problem with CEP on Storm is that we lose the current window of the previous

messages. By default all the data used by the engine is held in memory and is lost, if the

machine suddenly goes offline. (EsperTech Inc. 2012) If the used windows are small, this

might not be a problem. When a new window is created to another machine, it begins

filling when new events arrive, which is very similar in behaviour observed when the service

is started. However, if we use long windows, which store days worth of history, it can take

very long time until the EPA starts to function at its full potential. In any case, it is a

case which must be taken into account when creating the EPLs and EPNs.

One solution to increase the fault tolerance is EsperHA (Esper High-Availability) add-on

to Esper. EsperHA enables saving the state of the processing to any database, which

has a JDBC driver (EsperTech Inc. 2008). Of the databases recommended by EsperTech

especially Cassandra has promising scalability attributes when the total throughput is

considered. In a recent study it achieved linear scalability in throughput when adding

nodes. However, latency figures cast some doubt on how well it would really perform

under heavy CEP load. (Rabl et al. 2012)

4.2.7 Partitioning example

In the following example I describe a quite simple set of four EPL queries, shown below

in Listings 4.1 to 4.4. I try to argue that creating simple event processing agents forming

powerful event processing networks is a natural and easy way designing complex event

processing. The simple EPAs also exhibit beneficial features in the context of a complex

event cluster, because they can be easily pipelined. Reducing the size of an EPA also allows

running it in parallel, because the dependencies between the input events are simpler.

The purpose of the example EPN is to detect open doors via monitoring the temperature

differences received from thermometers installed near the doors. The example EPN takes

SimpleSensorData objects as an input. SimpleSensorData is a simplified version of the

SensorData messages and defined for illustration purposes in this example. It has three

fields: temperature, door and location. Temperature is a floating point valued temperature

measurement denoted in Celsius. Door denotes the nearest door. Location tells whether

the sensor is inside or outside the building.

The first EPL, represented in Listing 4.1, is a filter. It drops all sensor events coming

from doors that are not listed as monitored in a database. Note that in the where clause

we can call an arbitrary static Java method, and e.g. access a database. Esper caches

the result of getMonitoredDoors(), because it takes no parameters. Filters like this are

infinitely parallelisable and can be run on any number of nodes of Storm.

Listing 4.1: A filter EPA dropping non monitored doors

INSERT INTO MonitoredDoor

SELECT *

FROM SimpleSensorData

WHERE door IN Database . getMonitoredDoors ()

4.2 Complex event processing cluster 48

The second EPL, shown in Listing 4.2, calculates a moving average for every source sensor

identified by a door-location key. For simplicity, we may assume that there is only one

sensor on both sides of every door. This EPA can also be easily parallelised. Storm

provides a fieldsGrouping primitive, which ensures that all events with the same contents

in certain fields are sent to the same tasks. The grouping is done by calculating a hash

from the fields and is barely slower than the default routing option (Marz 2012d).

Listing 4.2: An aggregation EPA calculating a moving average

INSERT INTO Average (temperature , l o ca t i on , door)

SELECT AVG(temperature) , l o ca t i on , door

FROM MonitoredDoor . win : time (1 min)

GROUP BY door , l o c a t i o n

The third EPL (Listing 4.3) in effect makes a join of the Average and MonitoredDoor

streams created in the previous EPAs. The join key used is again door-location, which

can be supplied to fieldsGrouping to parallelise the EPA. Note that as a side effect of

splitting the messages to different Esper engines, the windows on which the joins operate

become drastically smaller. The EPA outputs the difference of the average and the latest

measurement, if it exceeds the threshold of 2 ◦C.

Listing 4.3: A combined composition and filter EPA

INSERT INTO D i f f (average , d i f f , door , l o c a t i o n)

SELECT a . temperature , a . temperature − d . temperature AS d i f f ,

d . door , d . l o c a t i o n

FROM Average . std : lastevent () a , MonitoredDoor . std : lastevent () d

WHERE a . l o c a t i o n = d . l o c a t i o n

AND a . door = d . door

AND Math . abs (a . temperature − d . temperature) > 2

The last EPA of the example matches the temperature differentials from both sides of the

door. It then creates an alert with a message ”Door open.” The whole EPN is summarised

in figure 4.2 to show the dependencies between EPAs. The figure is also equivalent to a

topology, which could be running on Storm.

Listing 4.4: A composition EPA triggering an alert

INSERT INTO Aler t (door , message)

SELECT i n s i d e . door , ’ Door open ’ AS message

FROM D i f f (l o c a t i o n = ’ i n s i d e ’) . std : lastevent () i n s i d e ,

D i f f (l o c a t i o n = ’ out s id e ’) . std : lastevent () ou t s id e

WHERE i n s i d e . door = out s id e . door

4.2 Complex event processing cluster 49

Filter 4.1SimpleSensorData

4.2 AggregationMonitoredDoor

4.3 EPAMonitoredDoor

 Average

4.4 CombinationDiff Alert

Figure 4.2: An EPN and a topology summarising the example

4.2.8 Web based CEP configuration

We designed a web based topology creator and configuration management system for the

CEP service. The work for a prototype written in Grails was initiated, but because of

resource allocation in the project, it was never finished. During early prototyping the GUI

was not yet practical for development purposes, but the necessary topologies were hand

coded. Anyway, I describe here the design we arrived at.

A web GUI would be used to define a topology by first creating the required spouts

and then adding the required data types, bolts and streams. There would be a set of

predefined spouts, for example reading a JMS queue, which could be instantiated and

given the correct configuration (server URL, queue name, authentication credentials and

other JMS configuration). The user would then create the bolts and connect the spouts

to bolts (and bolts to the downstream bolts) by defining the flows of tuples between the

nodes. The connection information would also carry the types of the data read from the

streams. This topology definition is then saved to PostgreSQL.

Note that defining EPLs for the EPAs doesn’t appear anywhere in the topology definition

process. EPLs could be dynamically added and removed to and from a running topology.

They would simply be added to a database, and the bolts running Esper would check for

configuration updates periodically.

Before the topology definition could be deployed, it must pass a validation. The validation

makes sure that all the EPAs really have the required inputs and that they produce the

promised outputs. The inputs are clearly defined by the topology, and only thing we

have to and can do is to check that the upstream spout or bolt has the required events

defined. Because the outputs are dependent of the runtime behaviour of the EPLs, the

outputs cannot be verified more strictly. Also, when EPLs are defined, they are validated

by precompiling them before attempting to deploy them on the cluster.

For an end user, the usability of the web-based topology creation can be disputed. How-

ever, for our development team the attempt brought much needed experiences with bot

Storm and Esper. Whatever the final form of the MMEA Bus will be, an end user inter-

face for topologies, parts of topologies or single EPLs might very well be practical. For

example, there must certainly be a means for changing threshold values in EPLs, and that

would require an approach similar to ours.

Chapter 5

Results and evaluation

The main contribution of this thesis project was to create a scalable, distributed enterprise

service bus with complex event processing capabilities and to evaluate its performance. In

this chapter I describe the performance tests run on the system and their results. I also

evaluate the system qualitatively with respect to the rest of the requirements described in

section 5.8.

5.1 Performance test practicalities

5.1.1 The goals of performance tests

The combined ESB and CEP service architecture is designed to achieve a high throughput

of events. In the tests I focus on measuring the throughput while varying the number of

computing instances participating in the cluster. In addition, I give the approximate

message processing latencies where applicable.

The throughput of the system is defined as the number of events that can be read from an

input queue of the ESB in a unit of time while the system is under a full load. The latency

is the time that it takes to read an event from an input queue of the ESB and to place

the events derived from it back to the same queue. The latency is measured on a system,

which is under a very minimal load. Because ZeroMQ and Storm can buffer substantial

amounts of events before processing them, it is clear that we cannot give an upper bound

to the latency, when the input rate is higher than the maximum throughput.

To get a complete picture on the bottlenecks, I measured the system from bottom up. I

tested the system first in parts and then as a whole. The tested parts were ActiveMQ,

ActiveMQ Apollo, ZeroMQ, WSO2 ESB, Storm, CEP cluster and the system including

all these components. The results of previous stages were used to ensure the feasibility of

next level tests.

5.1 Performance test practicalities 51

5.1.2 Test environment

All the tests were run on Amazon EC2. I used large instances (m1.large), which provide

four EC2 compute units and 7.5 GB of memory. Amazon doesn’t give out any number

on the internal network bandwith in EC2, but in my experiments it was not a relevant

bottleneck. Only ZeroMQ was possibly affected by it, and that didn’t matter to the

system. The chosen instance type is by no means the most powerful type available on

EC2. For example, “Cluster Compute Eight Extra Large Instance“ (cc2.8xlarge) offers

60.5 GB of memory and 88 EC2 compute units. (Amazon Web Services LLC 2012b)

I chose m1.large instances, because my intention is to demonstrate the scale-out capabili-

ties. With smaller and cheaper instance types I could deploy the system on a bigger number

of instances (an on-demand m1.large costs $0.34/hour whereas cc2.8xlarge is $2.7/hour

(Amazon Web Services LLC 2012a)). A less powerful cluster also makes performing the

tests easier. Because the throughput of the cluster is not in millions of events per second,

I could run the tests with only one load driver and after minor modifications with only

one sink.

Using a cloud environment adds noise to the tests. In EC2 it is not possible to control the

other users on the same physical hardware. Neither can an EC2 user control, whether a

cluster of instances is located physically close to each others. Especially the speed of I/O,

which happens often over the local network in an Amazon datacenter, can be variable.

The instances used as load drivers and sinks used Centos 5.5 like the ESB instances. For

setting up Storm cluster I used storm-deploy utility (Marz 2012e) (described briefly in

4.2.1). Storm version was 0.8.1 and Esper version 4.6.0.

5.1.3 Effects of JVM and JIT compilation

Because most of the software to be measured is written in Java and run on the Java virtual

machine, one must take possible effects of JIT compilation into account. Because JVM

optimizes the execution of bytecode during runtime, the efficiency of certain parts of the

program may vary. This means that programs that have been run longer tend to be faster.

The phenomenon is sometimes called a warm-up effect. (Bull et al. 1999)

Also in my performance tests I observed some variation in the performance during the

beginning of the tests. To eliminate the warm-up effect the tests were run several times

before collecting the final results. In practise this meant that the software was fed at least

million events and run for at least five minutes to give the JIT compiler enough data to

optimise the execution.

5.1 Performance test practicalities 52

5.1.4 Latency and clock skew

Because Amazon EC2 cloud doesn’t provide a synchronized global clock, a clock skew

could inadvertently affect the test results. To address this one could run NTP on all

EC2 instances, which should make sure that the clock differentials stay below 100 ms.

However, if the NTP daemon would make corrections to the system clock during a test

run, the whole test run would be invalidated. (Windl et al. 2009)

I measured the time differences by sending messages from client to servers and then com-

paring timestamps carried by the messages. For most of the tests depending on timestamps

issued by multiple EC2 instances, I ran the clock test with 1 000 messages. The clock

difference was then estimated with the following formula:

skew =
1

1000

1000∑
n=1

receivedts − sentts
2

− remotets

where sentts, receivedts and remotets are the timestamps issued by the client when sending

a reply request, by the client when receiving a reply and the one issued by the server and

included in the reply, respectively. The measured skew ranged from -500 ms to 500 ms

and it is taken into account in the test results. Anyway, because the skew can be so

surprisingly big, the only way to get reliable results is to try to cope with only one clock.

5.1.5 Ensuring the quality of results

Before calculating any result numbers for the tests, the test data was validated. The

messages received from the message queues was checked by ID to contain all of and no

more than the messages originally sent. With CEP tests I carefully took into account the

peculiarities of CEP benchmarking explained in 2.5, most importantly that there might

be multiple correct results.

All the tests were run at least three times. If the results seemed stable, I accepted the

middle number as the result. If the results seemed in any way sketchy, I repeated the

tests. When I had enough measurements, I eliminated clear outliers and chose the median

of the rest.

My criterion for “stable” was that all three were differed with maximum of 5 % of each

others. I also analysed the sending and receiving rates graphically and rejected results

at my discretion. If the graphs included unexplainable distortions or gaps, I made an

attempt to find causes for them and rerun the tests. For instance, a longer than usual

garbage collection run initiated by the JVM sometimes resulted in latencies of more than

two seconds.

5.2 Message brokers 53

5.2 Message brokers

The message queues are the simplest components to test. For ActiveMQ and ActiveMQ

Apollo servers I tested the input rate and the output rate separately. After some ex-

ploratory testing it became apparent that the broker (as opposed to a client acting as a

driver or a sink) is the bottleneck for both input and output in both vanilla and Apollo

implementations of ActiveMQ.

The test setups for input and output are shown in figures 5.1 (a) and (b). For input one

EC2 instance was set up as a load driver (client), which would supply messages to one

or more ActiveMQ servers, running on their own, dedicated machine instances. In initial

testing it became apparent that one client could easily generate enough load for several

servers. Same measurements also showed that the best performance would be achieved by

having always two client threads per server.

client
(source)

Message Borker

Message Borker

Message Borker

(a) input

Message Borker

Message Borker

Message Borker

client
(sink)

(b) output

Figure 5.1: Test setup for ActiveMQ and ActiveMQ Apollo

I tested the message brokers with two sizes of messages, 40 byte long CSV strings and 470

byte long XML documents. Both included headers identifying the sender, an increasing

ID number and a timestamp issued by the client right before sending the message. The

message brokers were configured to add a timestamp to each message when received, and

these timestamps were used to determine throughput and latency. While measuring the

output rate, the client issued timestamps were used.

The messages were set not to be persisted in the broker. ActiveMQ was also configured

to use asynchronous sending, which increased the throughput somewhat over the normal,

synchronous method. Apollo did not offer a similar option for synchronisation. The

brokers were run with -server and -Xmx2G JVM options.

The results for 40 byte messages are shown in table 5.1. I tested the brokers with combi-

nations of one to four instances. When graphed, the results show a clear linear increase

in throughput when more broker nodes are added.

5.3 ZeroMQ 54

Table 5.1: ActiveMQ and ActiveMQ Apollo performance with 40 byte messages

input events/s output events/s
nodes ActiveMQ Apollo ActiveMQ Apollo

1 3 676 81 854 3 199 1 301
2 7 133 110 960 6 359 2 523
3 9 301 183 445 9 158 3 867
4 11 174 242 337 11 319 5 173

The tests with 470 byte messages were only run with one broker to get a picture on how

the message size affects the performance. With ActiveMQ the difference was very small,

and the input rate dropped to 3300 messages per second. With Apollo the impact was

much bigger, and I could reliably send 20 000 messages per second. The difference in

output rates in both cases was too small to be measured.

5.3 ZeroMQ

One key feature of ZeroMQ is that it is really lightweight and fast. From the beginning

it was clear that ZeroMQ will not present any kind of bottleneck to the system. Hence I

only validated my components that depend on it.

I ran a test using two EC2 instances, one sending messages and the other receiving them.

The average throughput with 40 byte messages was at least 200 000 messages per second

and with 470 byte messages about 120 000 messages per second. Latency was less than 1

ms, which was the finest granularity for the latency test. ZeroMQ was shown to be fast

enough not to have impact to the overall results.

5.4 WSO2 Enterpirse Service Bus

I tested WSO2 ESB by running the ESB and ActiveMQ on the same machine instance.

I first filled a JMS queue with a million messages and then opened a proxy service to

read that queue and to record the rate of reading. The rate of reading was not measured

rigorously, but it was about 2 000 messages per second with 470 byte messages. The

scalability of the ESB is further discussed in the system tests in section 5.6.

The integration patterns and implementations on the ESB can be computationally very

expensive. For example, doing an XSL transformation to all of the incoming messages

can drastically slow down the throughput. Perera (2007) observed a three times decrease

in transactions per second after introducing an XSLT mediator to a simple proxy service.

Thus the most of the tuning of the ESB can be done in the adapters.

5.5 Complex event processing service 55

5.5 Complex event processing service

The performance of the complex event processing cluster is a very complicated issue com-

pared to any other part of the system. We have already seen that the throughput of the

message queues and the ESB can be increased just by adding more parallel instances.

However, CEP can have very complex dependencies between the events. Inside the cluster

there are also many distinct parts, which affect the performance in different ways.

5.5.1 Test setup

The test setup consisted of one load driver, one to ten Storm worker nodes and sink node

running ActiveMQ Apollo. In Storm cluster there were also always one ZooKeeper and

one Nimbus node for cluster management. The setup is illustrated in figure 5.2. In section

5.3 we saw that ZeroMQ can handle a very high number of messages per second. It also

turns out that just one load driver is enough to keep the whole cluster busy. Being able to

cope with one load driver makes testing and analysing the test results much easier, because

all the sent messages can be issued a rising serial number and a reliable timestamp.

ZeroMQ
driver

Apollo
sink

Worker 1

Storm

Worker 2

Worker n

ZK Nimbus

Figure 5.2: CEP cluster test setup

Although the overall performance of Apollo showed a bit more unreliable than that of

the original ActiveMQ, I chose it as the sink because of its way superior input data rate.

If we could use only one sink, it would give us similar benefits as with the single driver:

messages would have unambiguous timestamps issued by a single receiving Apollo server.

Using only one sink naturally limits the maximum output rate. The maximum size of the

messages produced in my CEP test cases is 470 bytes. In the previous section we saw that

the maximum input rate of Apollo with this message size is 19 000 per second. However,

because CEP systems, by their nature, often take in much more events than they produce,

we are primarily interested in the input rate of CEP and can limit the output to a tolerable

levels.

5.5 Complex event processing service 56

Storm allows setting parameters to control the number of workers on a topology and the

number of tasks per bolt. Finding the best parameters took quite a bit time, but after

exploring the effects, I ran the tests with the fastest parameters I found. As a rule of

thumb, on AWS EC2 the best number of workers was six workers per m1.large instance.

The task parallelism is a more complicated issue, but I’m confident that I managed to find

reasonable settings.

5.5.2 Minimal topologies

First I tested the very simplest EPN possible. The only components of the EPN were a

ZeroMQ spout for getting the test data in and a JMS sender bolt to get the results back

to a queue. The topology would get input strings over ZeroMQ and then forward them to

a JMS queue.

The input consisted of 470 byte XML documents. No processing on it was done in Storm,

but the events carried the common headers for identification and timing measurements.

With one processing node of Storm the measured throughput was 19 720 messages per

second. This is clearly limited by Apollo. To confirm this I ran the same test with two

nodes and got 19 897 as the result. The result is same and limited by Apollo. The average

latency was 4 ms and 95 % arrived in under 35 ms.

The second test topology was almost as simple. The only thing that was added was an

Esper bolt in between the spout and the sender bolt. The Esper bolt matched all the

messages as they were and forwarded them to the JMS sender bolt. With one node the

throughput was 8 791 messages per second and with two nodes 19 483. We clearly see that

Esper engine slows down the system even without any meaningful function. The latency

was around 4-5 ms.

5.5.3 Micro benchmarks

Mendes et al. (2008) presented a collection of micro benchmarks. They devised seven

test cases for benchmarking the fundamental functionalities and also some nonfunctional

features common to most of the CEP engines. The tests include filtering, aggregation,

joins, pattern matching, large windows, handling bursts and multiple simultaneous queries.

I chose the first three of them to be run on the CEP cluster. In addition I experimented

with an identity EPL, which matches all the events and forwards them.

The test topology included a ZeroMQ spout for input, a separate unmarshaller bolt, an

Esper bolt with the given EPL and a JMS sender bolt. The XML documents are bound to

Java objects in a separate bolt, because parsing XML is very time consuming. With this

arrangement the thread reading the ZeroMQ socket is always dedicated to transferring

data and the unmarshaller can be parallelised separately.

5.5 Complex event processing service 57

I ran the tests with six different cluster sizes. The throughput results are given in the

table 5.2. The first thing to note from the results is that the throughput is at about five

times less than in the minimal topology. This is due to the parsing of XML documents

when the events arrive to the cluster. According to the statistics produced by the Storm

control panel, unmarshalling one message took between 1-3 ms.

In the figure 5.3 we see that identity and selection scale linearly. This is expected, because

these cases don’t have any data dependencies. The reason why selection is faster than

identity is that it drops 90 % of the events before sending them back to a queue while the

identity case must send all the events back.

Aggregation I used calculates an average of a field over a moving window. In the system

there is no simple way of distributing this computation and the aggregating Esper engine

is limited to a single machine instance. The same is true with join, which calculates a

Cartesian product over two 1 000 event windows. In both cases the throughput increases

first fast when the new resources can be used to receiving XML messages. When the speed-

up from parallel unmarshalling is exhausted, running the EPLs becomes the bottleneck.

0 1 2 3 4 6 10

0
50

00
10

00
0

15
00

0
20

00
0

identity
selection
aggregation
join

ev
en

ts
/s

nodes

Figure 5.3: Four Esper micro benchmarks on Storm

The measured latencies for the micro benchmarks are shown in figure 5.4. These results

are from a cluster with four worker nodes. The latencies were quite stable: In identity,

selection and join test cases 80 % of the were processed arrived in less than 10 ms and

95 % in less than 20 ms. Aggregation, which did not scale so in our näıve case processed

75 % under 10 ms and 90 % under 20 ms.

5.5 Complex event processing service 58

Table 5.2: Four micro benchmarks on Storm with one to ten m1.large EC2 instances

events/s

nodes identity selection aggregation join

1 1 647 1 873 1 452 1 524
2 3 639 4 204 2 831 2 689
3 4 627 5 470 3 939 3 862
4 5 645 7 561 4 729 4 926
6 8 353 12 200 5 300 4 471

10 12 255 18 250 5 815 5 408

5.5.4 Performance of the partitioning example

In section 4.2.7 I presented a simple topology, which could be used to detect open doors

by comparing temperature differentials over time and matching anomalous readings. I

implemented the presented EPLs as a Storm topology and tested, how many temperature

readings the CEP cluster can handle per second. The aim of this test is to see how well

the cluster performs under a more real life complex event detection workload.

Because XML unmarshalling and binding to Java objects was observed to take so much

time, I used a much simpler data format for this test. The temperature readings were

supplied as 20 byte CSV strings. The strings contained three values: temperature, door

ID and indication whether it represents a reading of an internal or an outside thermometer.

The partitioning example tests the CEP cluster in a very different way than the micro

benchmarks. The computational requirements for data type transformations and the

data transmitted over the network per event are greatly reduced. This means that more

resources are used for pattern matching and other CEP functions.

The practical example shows that a distributed EPN running on Storm fits the problem

class well. The results of the throughput tests are shown in table 5.3 and plotted in figure

5.5. Because most of the operations can be run completely in parallel, the throughput

increases fast when more processing nodes are added to the CEP cluster.

Table 5.3: Tests run with the example topology described in section 4.2.7

nodes events/s

1 8 282
2 10 084
4 13 962
6 20 687
8 28 206

5.6 System performance 59

0 50 100 150 200

10
20

30
40

50
60

message

m
s

 mean
 median

(a) identity

0 50 100 150 200

10
20

30
40

50

message

m
s

 mean

 median

(b) selection

0 50 100 150 200

10
20

30
40

50

message

m
s

 mean

 median

(c) aggregation

0 50 100 150 200

10
20

30
40

50

message

m
s

 mean

 median

(d) join

Figure 5.4: Measured latencies from the micro benchmarks with red line (upper) showing
mean and blue line (lower) showing median

5.6 System performance

For the final validation of the system I tested it as a whole. I set up four m1.large EC2

instances running WSO2 ESB and ActiveMQ. I chose ActiveMQ to be used with the ESB,

because the output performance of Apollo was inadequate and it crashed too often. For

CEP I built a simple topology running the selection test selecting 10 % of the processed

events.

I used one EC2 instance to drive load to the ActiveMQ queues on the ESB instances.

The ESBs read the messages from the queues and forwarded them to the CEP service

5.6 System performance 60

0 1 2 4 6 8

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

ev
en

ts
/s

nodes

Figure 5.5: Throughput of the partitioning example

over ZeroMQ. CEP service filtered out 90 % messages based on the message ID and then

sent the rest to a JMS queue acting as a sink. The events preserved in the sink queue

were retrieved and their timestamps analysed to get the total throughput. The results

are shown in table 5.4. The system is shown to scale linearly when more ESB nodes are

added, if the CEP service is not overloaded.

No filtering was used in the ESB, but all the messages were subject to forwarding to the

ESB. Filtering will probably slow down the ESB a lot, because it would require parsing

the XML documents. However, the ESB already must manipulate the SOAP elements of

the message, and the slowdown might not be as huge as in the CEP cluster. Furthermore,

we observed in section 5.5.4 in the case of the partitioning example that we can save a lot

of processing time by using a more concise event representation.

Table 5.4: System tests with a four node CEP cluster and one to four ESB instances

nodes events/s

1 1 757
2 3 417
3 5 264
4 7 017

I tested the latency of the system when it was idle. I sent single messages with the size

5.7 Discussion of performance test results 61

of 470 bytes to the input queue. The average time it took for them to return to the same

queue was 9 ms and most of the events were processed and transmitted in under 35 ms.

When the system is overloaded, the latencies approach infinity. The message queues (JMS

and ZeroMQ) and Storm can build huge buffers of events. During the tests I observed

Storm taking almost half an hour to empty an input buffer, after the load driver sending

the messages had been shut down.

5.7 Discussion of performance test results

I now summarise the results and discuss the performance of the components of MMEA

Bus. Although the system is functionally divided in two separate parts, an ESB and a

CEP cluster, the machines running ESB provide much of the infrastructure that make

CEP easier. For instance, the CEP outputs its complex events to a JMS queue running

on an ESB node. Therefore I proceeded in tests from the individual ESB components

towards the CEP cluster and then the whole system.

The message queues used in this project, ActiveMQ, ActiveMQ Apollo and ZeroMQ can

be trivially scaled just by adding multiple parallel instances. With the message size of 470

bytes, one ActiveMQ node was measured to handle about 3 000 messages per second on

our hardware. The performance of Apollo was much more volatile, and while an Apollo

broker could receive 80 000 messages per second, those messages could not be sent forward

with a comparable rate. The output rate was only 1 300 messages per second. The much

more simplistic ZeroMQ could send about 120 000 of the same messages per second.

The performance of CEP is a very complex issue. We saw that when computation is simple,

Storm can process a magnitude more of messages. Storm creator Nathan Marz has on

multiple occasions announced on storm-user mailing list performance results of more than

100 000 messages per second per worker node. Most recently, on 29.6.2012, he claimed that

he sees throughputs of over a million messages per second per node with Storm version

0.8.0. However, the type of hardware was not specified, but I assume it is comparable to

the largest machines available from Amazon Web Services, Cluster Compute Eight Extra

Large Instance (cc2.8xlarge).

In my tests the throughput of CEP cluster was limited to maximum of 1 600 messages per

second per node when using the chosen 470 kB messages. My best explanation for the puny

performance is the slow XML unmarshalling, which is performed for every message received

at the CEP cluster. The statistics of Storm reveal that unmarshalling one message takes

1-3 ms. If the execution is heavily pipelined, one CPU could handle 1 000 unmarshallations

per second. Because the m1.large instance type used in these tests has two CPUs, the

result of 1 600 events/s is very close to this estimate.

5.8 Qualitative evaluation of MMEA Bus 62

The explanation that the system is heavily constrained by the XML unmarshalling per-

formance fits also the experiments with the minimal topologies. When Esper engine was

introduced to a dummy topology (section 5.5.2), the throughput dropped from something

more than 20 000 events/s to 8 000 events/s (my setup did not allow measuring the peak

performance of Storm). Esper supports XML documents as one of its input object formats

(EsperTech Inc. 2012), but it is not clear, what kind of processing Esper did to it in our

case. Nevertheless, even if Esper engine did not build comparable Java objects, because

the simple EPL did not require it, we clearly see that the format radically slowed down

the system.

In the case of the other two micro benchmarks, which were not parallelisable, we saw that

the performance tops at about 6 000 events/s. This is due to the change of a bottleneck

from the XML unmarshalling to the CPU-limited EPA running aggregation or join. If

we considered using the fastest instances offered by AWS, cc2.8xlarge with 88 EC2 com-

pute units (m1.large has four), we could expect seeing 20 times speed-up in ideal case,

which totals 120 000 events/s. However, it is unlikely that Esper could make use of all

the available CPU cores and hyperthreads. Anyway, this kind of performance would cer-

tainly be adequate to fulfil any requirements of MMEA Bus. This speed-up should be

experimentally verified, but it requires a much more scalable test setup.

One option to increase the performance would be to serialise the events already in the

ESB. The ESB is required in any case to peek into the headers and possibly contents

of the XML-based messages. By converting the XML documents to e.g. Kryo serialised

messages, we could reduce duplicate processing on CEP. This would especially beneficial,

if the ESB forwards the same events to multiple EPNs.

I also considered some other possible bottlenecks. On storm-user mailing list, there are

many different sources of misconfiguration slowdown. For instance, the number of ex-

ecutors on each worker nodes must be sufficiently high. Also, garbage collection of the

JVM can add delays. On faulty bolts the messages might not be acked correctly. Some

of these issues were already discussed in section 5.1.3. Based on my tests run during the

development, can quite reliably say that these are only minor issues at most.

5.8 Qualitative evaluation of MMEA Bus

In addition to the performance tests, I evaluated the other nonfunctional attributes of

MMEA Bus qualitatively. In this section I go through the rest of the scalability, high

availability and configuration requirements, which could not be measured in the previ-

ous tests. Finally, I compare the implementation with the eight requirements posed by

Stonebraker et al. (2005).

5.8 Qualitative evaluation of MMEA Bus 63

5.8.1 Comparison to the requirements

The ESB can be scaled up elastically. I tested adding new EC2 instances to the ESB

cluster, and the instances registered to the load balancer, fetched the required configuration

and started acting as slave nodes of the ESB as expected. I could also scale down the

cluster by removing nodes, but this sometimes resulted to missing messages, if the clients

were not configured to resend messages or a polling task running on the killed instance

was not shut down cleanly. The AWS EC2 environment provides tools for autoscaling.

Scaling out could be enabled with a correct configuration, but it was not tested.

Storm cluster does not support moving running tasks from a node to node without pausing

the execution. Additionally killing moving the context of an Esper engine from worker to

worker is not possible.

The elastic load balancing feature of AWS is responsible of balancing the load on the ESB.

In the CEP cluster Storm should distribute the work equally on every node. However,

these features were not tested.

The high availability issues were not addressed in this thesis. The ZeroMQ spout I wrote

does not support resending messages, which is a requirement for the Storm fault-tolerance

API. However, Storm still handled removing arbitrary nodes quite cleanly.

The current version of MMEA Bus provides a solid base for building configuration man-

agement features. There is no user interface for the configuration but some plans were

discussed in sections 3.4.3 and 4.2.8. Also the stream and subscription management is

not yet complete. The ESB provides many opportunities for defining access controls and

securing connections.

5.8.2 The eight rules revisited

The eight rules for stream processing (summarised in section 3.2) give clear guidelines for

CEP. The first rule is actualised completely in MMEA Bus: the data is not stored during

processing. The data is only persisted to a database after the analysis is complete.

To fulfil the second rule, MMEA Bus supports Esper EPL language. EPLs can be used

to define event processing agents. The third and fourth rules, stream imperfections and

ensuring predictable outputs, are not enforced on the platform level. The application

developers who write EPLs and define EPNs must take into account the implications of a

distributed system.

Although not discussed in this thesis, the platform has a preliminary support for storing

data into a cloud storage service. To prevent the conflict with the first requirement, the

data is stored only after all the processing is completed and all the directly derived events

5.8 Qualitative evaluation of MMEA Bus 64

are created. However, as of yet, this stored data cannot be mixed with stream data in

CEP, which was required by the fifth rule.

The sixth rule says that the data must be highly available and safe. These concerns were

left out of the scope of my research. Also the architecture doesn’t have any facilities to

help with the partitioning of the workload, as suggested by the seventh rule. Nevertheless,

the CEP cluster provides a highly scalable platform which suits event processing networks

well.

The last rule says that the CEP engine should be highly optimised. The components used

in the CEP cluster, Storm and Esper, are both known for their performance. However,

the benchmarks run and presented previously in this chapter leave some doubt on whether

the implementation is really optimal. For instance, using XML and parsing it showed very

expensive.

Chapter 6

Conclusions

Complex event processing is an emerging technology which operates on event streams and

historical data. It can be used to detect patterns consisting of multiple events. CEP of-

fers huge performance improvements over traditional database management systems when

applied to real time data.

Enterprise service bus is an integration product. It can be used to connect multiple

endpoints in a heterogeneous environment. The enterprise software uses often event-driven

service oriented architecture. Many academics say that as an integration product acting

as a centralised mediator for the business events, an ESB is a natural host for complex

event processing.

This thesis focused in the scalability issues of CEP as a part of an ESB. The main issue

is that the scalability models required by CEP and an ESB are completely different. ESB

can often be completely stateless, because it usually operates only on a single message

at a time. However, in complex event processing the data dependencies between events

can be very complicated. To explore this issue I developed a prototype for complex event

processing enabled enterprise service bus, called MMEA Bus.

The architecture of MMEA Bus tries to answer this mismatch by deploying CEP as a

separate service outside the ESB. I described a dedicated CEP cluster built on Storm

real time stream processing framework. The cluster performed CEP with multiple Esper

CEP engines, which were run on different machines with their own contexts. The commu-

nication between the Esper engines is done over the network by passing complex events

created by the engines.

The two parts of MMEA Bus can be scaled out separately by adding more processing nodes

in a cloud computing environment. The performance tests I performed show that one ESB

instance can mediate 1 750 messages of 470 bytes scaled linearly by adding more instances.

The throughput of the CEP cluster depends a lot on the computational requirements of

6 Conclusions 66

pattern detection. Nevertheless, in a simple real life example case the throughput was

28 000 events per second on a cluster with eight worker nodes. The latency of the system

was very low, usually less than 10 ms.

The implemented platform fits its integration purposes well, because the ESB product

offers a wide variety of different adapters and mediation patterns. The platform allows

building authentication services and ensuring the security. The system also offers a solid

base for configuration management.

Further research and development

There are several rough corners in the current prototype implementation. The biggest

problem with the current implementation is the lack of fault-tolerance and high availability

features. Although Storm provides primitives for guaranteeing message processing, MMEA

Bus doesn’t currently implement the required interfaces.

Storm requires a reliable input queue to be able to replay messages that go missing during

the processing on the cluster. This would need a separate, distributed message broker to

act as a reliable message store. In my implementation the communication between the

ESB and the CEP cluster was done over ZeroMQ, which doesn’t have a separate broker.

Thus messages can be lost, if the other endpoint of a communication fails.

Replaying the missing events is not enough for complex event processing, because the CEP

engines rely heavily on their current state. A highly tuned engine can hold in its context

windows thousands or even millions of previous events. If this window is lost because of

some failure, the following produced results tend to be incorrect. The provider of Esper

offers a proprietary add-on, EsperHA, which persists the current state in a database and

allows recovering it after a failure.

There are also some more minor issues, which would be nice to have addressed in the

system. The CEP cluster doesn’t support any kind of elastic scaling without stopping the

processing for a while. In configuration management of CEP there are many things that

could make the development much more user friendly. One thing is making tools to check

and test the topologies before deployment. The topology definitions would allow many

kinds of static analysis, which are currently done only during runtime.

One interesting opportunity for future research lies in the the performance tests run on the

CEP cluster. I focused only in a limited number of CEP functionality. The performance

tests described by Mendes et al. (2009) have yet five more micro benchmarks that were

not run yet on my implementation.

Bibliography

Abadi, D. J., Ahmad, Y., Balazinska, M., Cherniack, M., hyon Hwang, J., Lindner, W.,

Maskey, A. S., Rasin, E., Ryvkina, E., Tatbul, N., Xing, Y., and Zdonik, S. (2005). The

design of the Borealis stream processing engine. In In CIDR, pages 277–289.

Adi, A., Botzer, D., Nechushtai, G., and Sharon, G. (2006). Complex event processing

for financial services. In Services Computing Workshops, 2006. SCW ’06. IEEE, pages

7–12.

Ahmad, Y., Berg, B., Cetintemel, U., Humphrey, M., Hwang, J.-H., Jhingran, A., Maskey,

A., Papaemmanouil, O., Rasin, A., Tatbul, N., Xing, W., Xing, Y., and Zdonik, S.

(2005). Distributed operation in the borealis stream processing engine. In Proceedings

of the 2005 ACM SIGMOD international conference on Management of data, SIGMOD

’05, pages 882–884, New York, NY, USA. ACM.

Amazon Web Services LLC (2012a). Amazon EC2 pricing. http://aws.amazon.com/

ec2/pricing/.

Amazon Web Services LLC (2012b). Amazon elastic compute cloud - user

guide. http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/

using-network-security.html.

Amazon Web Services LLC (2012c). Elastic load balancing. http://aws.amazon.com/

elasticloadbalancing/.

Apache Software Foundation (2011a). Apache ActiveMQ - OpenWire. http://activemq.

apache.org/openwire.html.

Apache Software Foundation (2011b). Apache Tribes - the Tomcat cluster communication

module. http://tomcat.apache.org/tomcat-6.0-doc/tribes/introduction.html.

Apache Software Foundation (2011c). ZooKeeper: Because coordinating distributed sys-

tems is a zoo. http://zookeeper.apache.org/doc/r3.3.3/index.html.

Apache Software Foundation (2012). Axis2 clustering support. http://axis.apache.

org/axis2/java/core/docs/clustering-guide.html.

Apollo community (2012). Apollo. http://activemq.apache.org/apollo/.

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-network-security.html
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-network-security.html
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://activemq.apache.org/openwire.html
http://activemq.apache.org/openwire.html
http://tomcat.apache.org/tomcat-6.0-doc/tribes/introduction.html
http://zookeeper.apache.org/doc/r3.3.3/index.html
http://axis.apache.org/axis2/java/core/docs/clustering-guide.html
http://axis.apache.org/axis2/java/core/docs/clustering-guide.html
http://activemq.apache.org/apollo/

BIBLIOGRAPHY 68

Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., and

Widom, J. (2003). STREAM: The Stanford stream data manager (demonstration de-

scription). In Proceedings of the 2003 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’03, pages 665–665, New York, NY, USA. ACM.

Arasu, A., Babu, S., and Widom, J. (2006). The cql continuous query language: semantic

foundations and query execution. The VLDB Journal, 15(2):121–142.

Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A. S., Ryvkina, E., Stonebraker,

M., and Tibbetts, R. (2004). Linear road: a stream data management benchmark. In

Proceedings of the Thirtieth international conference on Very large data bases - Volume

30, VLDB ’04, pages 480–491. VLDB Endowment.

Azeez, A. (2008). Auto-scaling web services on Amazon EC2. http://people.apache.

org/~azeez/autoscaling-web-services-azeez.pdf.

Baarah, A., Mouttham, A., and Peyton, L. (2011). Improving cardiac patient flow based

on complex event processing. In Applied Electrical Engineering and Computing Tech-

nologies (AEECT), 2011 IEEE Jordan Conference on, pages 1 –6.

Babcock, B., Datar, M., and Motwani, R. (2004). Load shedding for aggregation queries

over data streams. In Proceedings of the 20th International Conference on Data Engi-

neering, ICDE ’04, pages 350–, Washington, DC, USA. IEEE Computer Society.

Babu, S. and Widom, J. (2001). Continuous queries over data streams. SIGMOD Rec.,

30(3):109–120.

Babu, S. and Widom, J. (2004). StreaMon: an adaptive engine for stream query processing.

In Proceedings of the 2004 ACM SIGMOD international conference on Management of

data, SIGMOD ’04, pages 931–932, New York, NY, USA. ACM.

Bo, D., Kun, D., and Xiaoyi, Z. (2008). A high performance enterprise service bus plat-

form for complex event processing. In Proceedings of the 2008 Seventh International

Conference on Grid and Cooperative Computing, GCC ’08, pages 577–582, Washington,

DC, USA. IEEE Computer Society.

Borealis team (2006). Borealis application programmer’s guide. http://www.cs.brown.

edu/research/borealis/public/publications/borealis_application_guide.

pdf.

Box, D. C. F. e. a. (2004). Web services addressing (WS-addressing). http://www.w3.

org/Submission/ws-addressing/.

Bull, J. M., Smith, L. A., Westhead, M. D., Henty, D. S., and Davey, R. A. (1999). A

benchmark suite for high performance Java. In Proceedings of ACM 1999 Java Grande

Conference, pages 81–88. ACM Press.

http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf
http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf
http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
http://www.cs.brown.edu/research/borealis/public/publications/borealis_application_guide.pdf
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

BIBLIOGRAPHY 69

Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,

M., Tatbul, N., and Zdonik, S. (2002). Monitoring streams: a new class of data man-

agement applications. In Proceedings of the 28th international conference on Very Large

Data Bases, VLDB ’02, pages 215–226. VLDB Endowment.

Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y.,

and Zdonik, S. (2003). Scalable distributed stream processing. In In CIDR.

Chirino, H. (2011). The JMS interface to STOMP. https://github.com/fusesource/

stompjms.

Coulouris, G., Dollimore, J., and Kindberg, T. (2011). Distributed Systems: Concepts and

Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 5th edition.

Cugola, G. and Margara, A. (2012). Low latency complex event processing on parallel

hardware. J. Parallel Distrib. Comput., 72(2):205–218.

Dong, L., Wang, D., and Sheng, H. (2006). Design of RFID middleware based on complex

event processing. In Cybernetics and Intelligent Systems, 2006 IEEE Conference on,

pages 1 –6.

Dudziak, T. (2012). Storm-Esper. https://github.com/tomdz/storm-esper.

Eckert, M. and Bry, F. (2009). Complex event processing (CEP). Informatik-Spektrum,

32:163–167. 10.1007/s00287-009-0329-6.

Eckert, M., Bry, F., Brodt, S., Poppe, O., and Hausmann, S. (2011). A CEP babelfish:

Languages for complex event processing and querying surveyed. In Helmer, S., Poulovas-

silis, A., and Xhafa, F., editors, Reasoning in Event-Based Distributed Systems, volume

347 of Studies in Computational Intelligence, pages 47–70. Springer Berlin / Heidelberg.

EPCglobal Board (2008). Class 1 generation 2 UHF air interface protocol standard “gen

2”. http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.

EPCglobal Board (2009). Application level events (ALE) standard. http://www.gs1.

org/gsmp/kc/epcglobal/ale.

EsperTech Inc. (2007). Esper performance. http://docs.codehaus.org/display/

ESPER/Esper+performance.

EsperTech Inc. (2008). EsperHA: High-availability for event processing. http://www.

espertech.com/products/esperha.php.

EsperTech Inc. (2011). Understand EsperTech licensing. http://www.espertech.com/

download/public/EsperTech%20licensing%20v5.pdf.

EsperTech Inc. (2012). Esper reference. http://esper.codehaus.org/esper-4.6.0/

doc/reference/en-US/html_single/index.html.

https://github.com/fusesource/stompjms
https://github.com/fusesource/stompjms
https://github.com/tomdz/storm-esper
http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2
http://www.gs1.org/gsmp/kc/epcglobal/ale
http://www.gs1.org/gsmp/kc/epcglobal/ale
http://docs.codehaus.org/display/ESPER/Esper+performance
http://docs.codehaus.org/display/ESPER/Esper+performance
http://www.espertech.com/products/esperha.php
http://www.espertech.com/products/esperha.php
http://www.espertech.com/download/public/EsperTech%20licensing%20v5.pdf
http://www.espertech.com/download/public/EsperTech%20licensing%20v5.pdf
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/html_single/index.html
http://esper.codehaus.org/esper-4.6.0/doc/reference/en-US/html_single/index.html

BIBLIOGRAPHY 70

Etzion, O. and Niblett, P. (2010). Event Processing in Action. Manning Publications Co.,

Greenwich, CT, USA, 1st edition.

Fernando, S. (2010). Sharing registry space across multiple prod-

uct instances. http://wso2.org/library/tutorials/2010/04/

sharing-registry-space-across-multiple-product-instances.

FuseSource Inc. (2011). STOMP protocol specification, version 1.1. http://stomp.

github.com/stomp-specification-1.1.html.

Gelernter, D. (1989). Multiple tuple spaces in Linda. In PARLE ’89 Parallel Architectures

and Languages Europe, volume 366 of Lecture Notes in Computer Science, pages 20–27.

Springer Berlin / Heidelberg.

Ghalsasi, S. Y. (2009). Critical success factors for event driven service oriented archi-

tecture. In Proceedings of the 2nd International Conference on Interaction Sciences:

Information Technology, Culture and Human, ICIS ’09, pages 1441–1446, New York,

NY, USA. ACM.

Godage, U. (2007). Writing a mediator in WSO2 ESB - Part I. http://wso2.org/

library/2898.

Gudgin, M., Hadley, M., Mendelsohn, N., Lafon, Y., Moreau, J.-J., Karmarkar, A., and

Nielsen, H. F. (2007). SOAP version 1.2 part 1: Messaging framework (second edi-

tion). W3C recommendation, W3C. http://www.w3.org/TR/2007/REC-soap12-part1-

20070427/.

Gurgen, L., Labbe, C., Olive, V., and Roncancio, C. (2005). A scalable architecture for

heterogeneous sensor management. In Database and Expert Systems Applications, 2005.

Proceedings. Sixteenth International Workshop on, pages 1108 – 1112.

Haas, Hugo; Brown, A. (2004). Web services glossary. http://www.w3.org/TR/2004/

NOTE-ws-gloss-20040211/.

Heinze, T. (2011). Elastic complex event processing. In Proceedings of the 8th Middleware

Doctoral Symposium, MDS ’11, pages 4:1–4:6, New York, NY, USA. ACM.

IBM (2004). Patterns: implementing an SOA using an enterprise service bus. IBM Corp.,

Riverton, NJ, USA.

Kellner, I. and Fiege, L. (2009). Viewpoints in complex event processing: industrial expe-

rience report. In Proceedings of the Third ACM International Conference on Distributed

Event-Based Systems, DEBS ’09, pages 9:1–9:8, New York, NY, USA. ACM.

Kleiminger, W., Kalyvianaki, E., and Pietzuch, P. (2011). Balancing load in stream pro-

cessing with the cloud. In Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering Workshops, ICDEW ’11, pages 16–21, Washington, DC, USA.

IEEE Computer Society.

http://wso2.org/library/tutorials/2010/04/sharing-registry-space-across-multiple-product-instances
http://wso2.org/library/tutorials/2010/04/sharing-registry-space-across-multiple-product-instances
http://stomp.github.com/stomp-specification-1.1.html
http://stomp.github.com/stomp-specification-1.1.html
http://wso2.org/library/2898
http://wso2.org/library/2898
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

BIBLIOGRAPHY 71

Kotovirta, V. (2012). Ympäristömittaustiedosta uusiin palveluihin. Automaatioväylä,

2:30–21.

Ku, T., Zhu, Y., and Hu, K. (2008). A novel complex event mining network for monitoring

RFID-enable application. In Computational Intelligence and Industrial Application,

2008. PACIIA ’08. Pacific-Asia Workshop on, volume 2, pages 925 –929.

Lakshmanan, G. T., Rabinovich, Y. G., and Etzion, O. (2009). A stratified approach for

supporting high throughput event processing applications. In Proceedings of the Third

ACM International Conference on Distributed Event-Based Systems, DEBS ’09, pages

5:1–5:12, New York, NY, USA. ACM.

Leavitt, N. (2009). Complex-event processing poised for growth. Computer, 42(4):17–20.

Luckham, D. and Schulte, R. (2008). Event processing glossary - version 1.1. Processing,

1.1(July):1–19.

Luckham, D. C. (2001). The Power of Events: An Introduction to Complex Event Pro-

cessing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA.

Luckham, D. C. and Frasca, B. (1998). Complex event processing in distributed systems.

Technical report, Program Analysis and Verification Group Computer Systems Lab,

Stanford University.

Magid, Y., Sharon, G., Arcushin, S., Ben-Harrush, I., and Rabinovich, E. (2010). Industry

experience with the IBM Active Middleware Technology (AMiT) complex event process-

ing engine. In Proceedings of the Fourth ACM International Conference on Distributed

Event-Based Systems, DEBS ’10, pages 140–149, New York, NY, USA. ACM.

Maréchaux, J.-L. (2006). Combining service-oriented architecture and event-driven archi-

tecture using an enterprise service bus. Technical report, IBM.

Marz, N. (2012a). About Storm - Free and open source. http://storm-project.net/

about/free-and-open-source.html.

Marz, N. (2012b). Storm - Guaranteeing message processing. https://github.com/

nathanmarz/storm/wiki/Guaranteeing-message-processing.

Marz, N. (2012c). Storm - Rationale. https://github.com/nathanmarz/storm/wiki/

Rationale.

Marz, N. (2012d). Storm - Tutorial. https://github.com/nathanmarz/storm/wiki/

Tutorial.

Marz, N. (2012e). storm-deploy - Home. https://github.com/nathanmarz/

storm-deploy/wiki.

http://storm-project.net/about/free-and-open-source.html
http://storm-project.net/about/free-and-open-source.html
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Rationale
https://github.com/nathanmarz/storm/wiki/Rationale
https://github.com/nathanmarz/storm/wiki/Tutorial
https://github.com/nathanmarz/storm/wiki/Tutorial
https://github.com/nathanmarz/storm-deploy/wiki
https://github.com/nathanmarz/storm-deploy/wiki

BIBLIOGRAPHY 72

Mendes, M. R. N., Bizarro, P., and Marques, P. (2008). A framework for performance

evaluation of complex event processing systems. In Proceedings of the second interna-

tional conference on Distributed event-based systems, DEBS ’08, pages 313–316, New

York, NY, USA. ACM.

Mendes, M. R. N., Bizarro, P., and Marques, P. (2009). A performance study of event

processing systems. In Performance Evaluation and Benchmarking, volume 5895 of

Lecture Notes in Computer Science, pages 221–236. Springer Berlin Heidelberg.

Menge, F. (2007). Enterprise service bus. Free and open source software conference.

Michael, M. M., Moreira, J. E., Shiloach, D., and Wisniewski, R. W. (2007). Scale-

up x scale-out: A case study using Nutch/Lucene. In 21th International Parallel and

Distributed Processing Symposium (IPDPS 2007), Proceedings, 26-30 March 2007, Long

Beach, California, USA, pages 1–8. IEEE.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.,

Olston, C., Rosenstein, J., and Varma, R. (2003). Query processing, resource man-

agement, and approximation in a data stream management system. In Proceedings

of the First Biennial Conference on Innovative Data Systems Research (CIDR), pages

245–256, Asilomar, California.

ØMQ community (2011). ØMQ manual - zmq socket. http://api.zeromq.org/2-2:

zmq-socket.

Mukherjee, A., Diwan, P., Bhattacharjee, P., Mukherjee, D., and Misra, P. (2010). Capital

market surveillance using stream processing. In Computer Technology and Development

(ICCTD), 2010 2nd International Conference on, pages 577–582.

OASIS (2006). OASIS web services security (WSS) TC. http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wss.

Owens, T. J. (2007). Survey of event processing. Air Force Research Lab, In-house tech-

nical memo.

Paschke, A., Kozlenkov, A., and Boley, H. (2010). A homogeneous reaction rule language

for complex event processing. CoRR, abs/1008.0823.

Perera, A. (2007). WSO2 ESB performance testing round 1. http://wso2.org/library/

1721.

Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A., and

Mankovskii, S. (2012). Solving big data challenges for enterprise application performance

management. Proc. VLDB Endow., 5(12):1724–1735.

Ruh, William A.; Maginnis, F. X. B. W. J. (2001). Enterprise Application Integration -

A Wiley Tech Brief. John Wiley & Sons.

http://api.zeromq.org/2-2:zmq-socket
http://api.zeromq.org/2-2:zmq-socket
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://wso2.org/library/1721
http://wso2.org/library/1721

BIBLIOGRAPHY 73

Sbz, S. Z., Zdonik, S., Stonebraker, M., Cherniack, M., Etintemel, U. C., Balazinska, M.,

and Balakrishnan, H. (2003). The Aurora and Medusa projects. IEEE Data Engineering

Bulletin, 26.

Schmidt, M.-T., Hutchison, B., Lambros, P., and Phippen, R. (2005). The enterprise

service bus: making service-oriented architecture real. IBM Syst. J., 44(4):781–797.

Sellis, T. K. (1988). Multiple-query optimization. ACM Trans. Database Syst., 13(1):23–

52.

Sharon, G. and Etzion, O. (2007). Event processing network – a conceptual model. In

Proceedings of VLDB, Second International Workshop on Event Driven Architecture

and Event Processing Systems, 2007.

Sharon, G. and Etzion, O. (2008). Event-processing network model and implementation.

IBM Syst. J., 47(2):321–334.

Smith, E. (2010). Comparing varius aspects of serialization libraries on the JVM platform.

http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking.

Stonebraker, M., Çetintemel, U., and Zdonik, S. (2005). The 8 requirements of real-time

stream processing. SIGMOD Rec., 34(4):42–47.

Wächter, J., Babeyko, A., Fleischer, J., Häner, R., Hammitzsch, M., Kloth, A., and Lend-

holt, M. (2012). Development of tsunami early warning systems and future challenges.

Natural Hazards and Earth System Science, 12(6):1923–1935.

Wheeler, J. (2011). Mediation - separating business logic from messaging.

http://www.mulesoft.org/documentation/display/MULE3CONCEPTS/Mediation+-+

Separating+Business+Logic+from+Messaging.

Windl, U., Dalton, D., and Martinec, M. (2009). The NTP FAQ and howto.

http://www.ntp.org/ntpfaq/NTP-s-algo.htm.

Wishnie, G. and Saiedian, H. (2009). A complex event routing infrastructure for dis-

tributed systems. In Proceedings of the 2009 33rd Annual IEEE International Com-

puter Software and Applications Conference - Volume 02, COMPSAC ’09, pages 92–95,

Washington, DC, USA. IEEE Computer Society.

WSO2 (2011). WSO2 governance registry - distribution. http://wso2.org/project/

registry/4.0.0/docs/index.html.

WSO2 (2012). About WSO2. http://wso2.com/about/.

Xing, Y., Zdonik, S., and Hwang, J.-H. (2005). Dynamic load distribution in the Bo-

realis stream processor. In Proceedings of the 21st International Conference on Data

Engineering, ICDE ’05, pages 791–802, Washington, DC, USA. IEEE Computer Society.

Zang, C., Fan, Y., and Liu, R. (2008). Architecture, implementation and application of

complex event processing in enterprise information systems based on RFID. Information

Systems Frontiers, 10(5):543–553.

http://code.google.com/p/thrift-protobuf-compare/wiki/Benchmarking
http://www.mulesoft.org/documentation/display/MULE3CONCEPTS/Mediation+-+Separating+Business+Logic+from+Messaging
http://www.mulesoft.org/documentation/display/MULE3CONCEPTS/Mediation+-+Separating+Business+Logic+from+Messaging
http://wso2.org/project/registry/4.0.0/docs/index.html
http://wso2.org/project/registry/4.0.0/docs/index.html
http://wso2.com/about/

	Abstract
	Abstract (in Finnish)
	Acknowledgements
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation for complex event processing
	CEP as a part of ESB
	Research questions and the scope of the thesis
	Definitions and naming conventions
	Structure of the thesis

	Technical background
	Enterprise application integration
	Service oriented architecture
	Web services
	Enterprise service bus

	Complex event processing
	Events in CEP
	Event processing networks
	Event processing agents
	Event producers and consumers
	Pattern detection
	Previous applications of CEP

	Scalability and high availability
	Scalability attributes for CEP
	Availability
	Two dimensions of hardware scaling

	Complex event processing implementations
	Aurora, Medusa and Borealis
	STREAM
	Shared state solutions

	Performance testing CEP

	Architecture for complex event processing
	Architecturally significant requirements
	Scalability
	High availability
	Configuration management
	Other non-functional requirements

	Eight rules for stream processing
	Modelling MMEA Bus as an event processing network
	Scalable architecture for MMEA Bus
	Event flow in the system
	Distributed CEP service
	Configuration and deployment management

	Implementation
	Distributed ESB
	Registries
	Communication between ESB instances
	Load balancing
	Adapters
	Selectors

	Complex event processing cluster
	Storm
	Components of Storm
	Esper basics
	Esper on Storm
	Input and output
	Fault tolerance in Storm
	Partitioning example
	Web based CEP configuration

	Results and evaluation
	Performance test practicalities
	The goals of performance tests
	Test environment
	Effects of JVM and JIT compilation
	Latency and clock skew
	Ensuring the quality of results

	Message brokers
	ZeroMQ
	WSO2 Enterpirse Service Bus
	Complex event processing service
	Test setup
	Minimal topologies
	Micro benchmarks
	Performance of the partitioning example

	System performance
	Discussion of performance test results
	Qualitative evaluation of MMEA Bus
	Comparison to the requirements
	The eight rules revisited

	Conclusions
	Bibliography

