
Notes	on	Data	Integration	in	FLEXe
This document was authored by Markus Stocker in January 2016 and reflects some
of his thoughts on potential practices for data integration in FLEXe.

Modelling for flexible energy systems relies on heterogeneous data and information
resources. These are typically distributed and curated by different institutions. The
data and information are accessed via heterogeneous interfaces, ranging from text
files to Web services, and are presented in heterogeneous formats. Integrating such
resources is thus crucial in order to provide modelling, and systems more
generally, with data that can be easily accessed, understood, and processed.
Integration aims at reducing entry barries to data utilization by abstracting from
the heterogeneity of interfaces, data structures, and schemas. The goal is important
because considerable time is spent alone on preparing data required for modelling.

We begin with a general and brief discussion about data integration. Following
this, we will introduce to the data sources relevant to these notes. They are also
relevant to FLEXe. Finally, we will discuss the presented data integration
approaches in a use case that utilizes the data sources.

Data	Integration
In this section we discuss data integration. There exist, of course, various
approaches to data integration. We discuss basic, syntactic and semantic data
integration. Basic is ad	hoc and can quickly serve a purpose while semantic
integration is more sophisticated, better engineered, but also more complex.

Basic

The most basic approach is arguably to get the data from services and then access
the data from a computing environment, such as Matlab, in whatever format they
are delivered by the service. Matlab supports reading files in a range of formats.
For instance, the shaperead Matlab function allows reading ArcGIS shapefiles. The
same is true for other environments, e.g. R, or programming languages, e.g.
Python or Java.

In the basic approach, data integration is thus performed in the computing
environment. The script determines which data is relevant, extracts the relevant
data from the corresponding source files, and integrates the relevant data into data
structures supported by the computing environment. At this point, data can be
manipulated to meet a particular purpose.

The approach is ad	hoc and designed to quickly serve the particular purpose. There
are considerable downsides of this approach. Specifically, users continue to be
exposed to the heterogeneity of data access interfaces and technologies as well as
data formats. Each script needs to implement program logic required to abstract
such heterogeneity and translate source data into data structures supported by the
computing environment. Furthermore, the program logic required to access source
data and to extract relevant data from a source depends on the particular file

1

data and to extract relevant data from a source depends on the particular file

format. The more heterogeneous data sources are used in scripts that serve
different purposes the more costly this approach becomes. Furthermore, the
approach is prone to errors as it requires users to write more code.

Syntactic

Syntactic integration abstracts from the heterogeneity of data format (encoding) and
schemas of multiple data sources, as well as technologies needed to access data.
For instance, given a source with data formatted as CSV text files with schema
determined by column labels on the first row and another source with data
formatted as XML text files according to OGC Web Feature Service schema, the
goal with syntactic integration is to provide an overarching schema for the data
and format the data according to a shared encoding.

It is advisable to manage integrated data using a database, in particular a
relational database management system. Doing so comes with the benefit of a
unified declarative query interface. This significantly reduces the amount of code
required to retrieve data relevant for a particular purpose. Indeed, simple questions
can be formulated without implementing any program code.

The classical approach is that of Extract-Transform-Load (ETL), whereby a
component standing between the data sources and the database extracts data from
data sources, transforms the extracted data to meet the chosen format and schema,
and loads the transformed data into the database. Applications can thus query the
database using a high-level declarative query language, such as SQL, and retrieve
data relevant to the particular task to be implemented. An important limitation of
this approach is synchronization: the ETL process needs to be executed in order to
synchronize integrated data with changed source data.

This limitation can be addressed by using mappers between the integrated schema
and each data source, rather than an ETL component. With this approach, queries
on the integrated schema are translated to specialized queries for relevant data
sources. Users are thus exposed to the state of each data source, rather than the
state of an intermediate component. Synchronization is not required.

Semantic

Syntactic integration does not address semantic interoperability of data. Perhaps the
primary goal in semantic integration is to enrich data with machine interpretable
semantic annotations that describe the meaning of data. Furthermore, semantic
integration attempts to resolve conflicts in the semantics of concepts shared
between data sources. A classical problem is that the same labels used in the
schema of two or more data sources may mean different things. Semantic
integration attempts to resolve such conflicts.

Ontologies are a tool for semantic integration. Beyond specifying how the data is
structured, i.e. its syntax, ontologies support the specification of the meaning of
terms, their semantics. The de	facto standard set of technologies in this area are
those of the Semantic Web, in particular the Resource Description Framework
(RDF), the Web Ontology Language (OWL), and the SPARQL query language.

2

Semantic integration is arguably more challenging than both the basic and syntactic
integrations discussed here. In fact, today semantic integration is probably practiced
by only the most advanced systems. The task is complex, as it requires teams to
agree on definitions of terms and their formalization in a language. Furthermore,
the technologies are complex and require specifically trained people. Systems that
practice semantic integration are thus still relatively rare exceptions. It is probably
so that semantic integration is beyond the means of FLEXe. Nevertheless, we
discuss the approach in these notes for the sake of completeness and to highlight
what could potentially be done in future work.

Data	Sources
In this section we describe the data sources relevant to these notes, in particular
the following use case. These data sources are also relevant to FLEXe. We describe
in particular two sources: FMI Open Data and building information of the
Population Register Center. Further data sources may be included.

The fundamental principles are arguably independent from the number of
integrated data sources. Much of what is said here for these two data sources is
applicable to other sources. The main exception to this are the integrated schema
in the syntactic and semantic approaches. Obviously, with additional data sources
the the integrated schema may change.

FMI	Open	Data

This section presents some notes about FMI Open Data.

The service description can be found here

https://en.ilmatieteenlaitos.fi/open-data

The service is excellent for people with a basic background in programming. There
exist libraries to retrieve data, in particular for JavaScript but clients exist also for
other languages, e.g. R.

Without a library or a tool (see FMIdownloader below), users are required to
(programmatically) interact with the service by formulating HTTP requests. Much of
the returned data is encoded in XML. It is thus advisable to programmatically post-
process the returned XML to extract the required data. Data may be encoded in
formats other than XML, such as NetCDF or HDF.

The programmatic interaction with the service obviously comes with the greatest
flexibility and best exposure to the data available for retrieval. FMI provides a
fairly good documentation online how the service needs to be used. Additional
skills in XML data processing are, however, left to the user.

For users without these skills, there is at least the following tool, called
FMIdownloader, which supports basic retrieval of daily and real-time (historical)
observation data. The tool makes retrieval of such data straightforward, but it
should be remembered that it is limited in the type of data it can retrieve.

3

https://github.com/fmidev/metolib
https://github.com/rOpenGov/fmi

FMI	Weather	Data	Downloader

There exists a free (and open source) Windows tool that supports downloading FMI
open (weather) data to Excel files.

The tool has some advantages:

It makes data download easy, and thus it makes the FMI Open Data interface
accessible to a wider audience. Also users with programming skills can
potentially find the tool useful, e.g. to quickly draw some sample data.
It gives a list of available locations and tells from what time point there is
available data. This is basic but useful information.

However, there are some important limitations:

The tool only supports download of historical daily observation and real-time
data. It does not support other types of data download, e.g. model (forecast)
data or radar data.
The tool is also limited in the type of parameters for which data is
downloaded.
The user needs to manually configure the download request. This is fine to
quickly get a small data sample but to draw larger amounts of data (e.g. for
various locations) automation is preferable.

The year from which data is available is location dependent and is hinted by the
tool after location selection. Longterm time series (multiple years) can be
downloaded in one request. The time intervals for which data is available can vary
between daily observations and real time observations. Missing data should be
expected. It is possible to enter a time interval for which no data is available (the
tool will return an error).

Daily	Observations

The tool supports download of daily (24-h average) observation data for a (point)
location (e.g. Kuopio Savilahti) and a time interval, and the following parameters:

Precipitation amount, 24-hour accumulated (rrday) [mm]
Air temperature, 24-hour avg (tday) [degC]
Snow depth, 1-min instant (snow) [cm]
Minimum temperature, 24-hour min (tmin) [degC]
Maximum temperature, 24-hour max (tmax) [degC]

The years from which daily observation data are available vary considerably among
the locations. For instance, for Helsinki Kaisaniemi the year is 1844 while for
Porvoo Kilpilahti satama it is 2014.

Real	Time	Observations

Real time observations are 10-min averages. The following parameters are returned:

Air temperature, 1-min avg (t2m) [degC]
Wind speed, 10-min avg (ws_10min) [m/s]

4

Gust speed, 10-min max (wg_10min) [m/s]
Wind direction, 10-min avg (wd_10min) [deg]
Relative humidity, 1-min avg (rh) [%]
Dew-point temperature, 1-min avg (td) [degC]
Precipitation amount, 1-hour accumulated (r_1h) [mm]
Precipitation intensity, 10-min avg (ri_10min) [mm/h]
Snow depth, 1-min instant (snow_aws) [cm]
Pressure (msl), 1-min avg (p_sea) [hPa]
Horizontal visibility, 1-min avg (vis) [m]
Cloud amount, 1-min instant (n_man) [1/8]
Present weather (auto), 1-min rank (wawa)

In contrast to daily observations, real time observation data typically starts on
January 1, 2010, with some locations starting only more recently. There seems to
be no real time observation data prior to 2010 for any location.

Download

The tool can be found at the following Web page

http://tumetsu.github.io/FMI-weather-downloader/

Follow the instructions. Most importantly, you will need an FMI `apikey' which has
to be created via https://ilmatieteenlaitos.fi/rekisteroityminen-avoimen-datan-
kayttajaksi.

Building	Information

Building information from the Population Register Center comes as an Excel file
and an additional textual description (PDF document) of the data. The PDF includes
useful metadata and information about the data. Specifically, it includes an
explanation for the attribute labels used in the Excel dataset as well as an
explanation for the codes. For instance, we can learn that for the attribute main
facade	material the code 1 means concrete. The PDF also gives some information
about the datatype of each attribute. I am not going to detail more about the
available information, not least because it is originally in Finnish and a translation
effort is beyond the scope of this document.

The dataset is an interesting case because the metadata is, essentially, not
processable by machines (at least not without a major text parsing effort). Without
manual intervention, it is thus impossible to join the codes used in the Excel file
data with their labels specified in the PDF. For instance, if I like to search for
buildings with wood as main facade material, I need to lookup the code in the PDF
(5) and then filter the data for this code. This manual lookup is both error-prone
as well as cumbersome.

An important task for the building information dataset is thus to first and foremost
integrate data and metadata so that (1) data and metadata can be joined

5

integrate data and metadata so that (1) data and metadata can be joined

programmatically and (2) metadata can be processed automatically. This integration
can be done in the basic, syntactic, and semantic approach. Once this internal
integration is completed, we can proceed with integrating building information with
other data and information, weather data in particular.

Ideally, of course, the Population Register Center would provide the metadata in
machine processable format. This would not just enable automated processing of
metadata but it would also guarantee that metadata used in applications is
synchronized with the source. Currently, the manual step required to translate
metadata increases chances that data processed automatically is not synchronized
with metadata, and thus errors in processing occur which may go unnoticed. In
fact, the metadata description in the PDF may change and such changes can go
unnoticed by developers. This side note may be useful and important feedback to
the Population Register Center. Clearly, if they aim at making their data more
useful to consumers, providing the metadata in a machine processable format is
arguably a key requirement.

Case	Study
Integration between weather data and building information is relevant for flexible
energy systems and modelling because weather at a particular location and the
characteristics of buildings at that location can impact on energy use. This case
study uses the data sources presented above and explores basic, syntactic, and
semantic integration of data serviced by the individual sources. Given its populary
as a computing environment, the case study is developed primarily using Matlab.

The	Basic	Approach

The ad	hoc approach is to use the FMIdownloader tool to retrieve required data
from the FMI Open Data service for a particular purpose. The data will be
conveniently translated to CSV and thus straightforward to read into computing
environments such as Matlab. For instance, let's assume we need daily observations
for Kuopio Savilahti for the year 2015. We obtain a CSV file with 365 rows of data
and a header row with the labels rrday, tday, snow, tmin, tmax. This file can
be imported into a Matlab data structure, which can then be manipulated
according to the purpose specified by the corresponding Matlab script.

However, already this import is not entirely trivial. First, the CSV file is actually
not comma-separated, but semicolon-separated. The Matlab function csvread fails.
Furthermore, the file returned by FMIdownloader has mixed data types, datetime
strings, numbers, and text. The Matlab matrix data structure works well for
numbers but does not support other data types.

An example one-liner to import the data is

[num	char	raw]	=	xlsread('weather_data.csv');

The three data structures num, char, and raw include the subsets that are
numeric, text, or the complete dataset as a cell array. This is relatively

6

numeric, text, or the complete dataset as a cell array. This is relatively

convenient, as all data is imported and can now be manipulated. However,
surprisingly, the function seems to drop the time information in the datetime
string. This seems to be the default behaviour and is the case only if the time is
00:00. Time other than 00:00 are retained. We can now convert the datetime
strings to Matlab datenum. This can be achieved as follows

date	=	datenum(char(2:366,1),	'dd.mm.yyyy');

and join the resulting vector with the num matrix. The date format string is
required here, as the default expects the time component. Fortunately, the
implementation is flexible on leading zeros, and will treat the date string
1.1.2015 correctly, even though it does strictly speaking not meet the format
dd.mm.yyyy.

At this stage, we have a Matlab numeric matrix that can be further processed. As
the example shows, alone the import of data into the computing environment is
not entirely without pitfalls. The required instructions are dependent on the source
data encoding, details about the format of data types, as well as the peculiarities
of implementations of used functions.

While this ad	hoc approach does not require upfront data integration the obvious
downside of the approach is that each script against the data sources needs to
again deal with the same issues. Surely, one can save intermediate results to disk.
However, if the source data changes the approach needs additional synchronization.
The ad	hoc approach may thus be suitable to quickly address a particular task but
looses appeal the more users and applications require integrated data for various
purposes.

Accessing FMI data from Matlab using the Open Data interface is perhaps
somewhat less trivial, due the Web Service request and XML data processing.
However, the FMI Open Data interface provides access to more diverse data than
the FMIdownloader tool and the data is real-time, directly from the source (while
the FMIdownloader results into an intermediate persistence of data). The following
instructions retrieve the sample data directly from the FMI Open Data Web Service.

apikey	=	'';	%	Specify	your	key	here
base	=	'http://data.fmi.fi/fmi-apikey/';
path	=	'/wfs';
request	=	'getFeature';
storedQueryId	=	'fmi::observations::weather::daily::timevaluepair';
parameters	=	'tday';
place	=	'kuopio';
starttime	=	'2015-01-01T00:00:00Z';
endtime	=	'2015-12-31T00:00:00Z';
query	=	strcat('?request=',	request,	'&storedquery_id=',	\\	
		storedQueryId,	'¶meters=',	parameters,	'&place=',	place,	\\
		'&starttime=',	starttime,	'&endtime=',	endtime);
url	=	strcat(base,	apikey,	path,	query);
doc	=	xmlread(url);

7

tvp	=	doc.getElementsByTagName('wml2:MeasurementTVP');

data	=	zeros(365,2);

for	i=0:tvp.getLength-1
		item	=	tvp.item(i);
		child	=	item.getFirstChild;

		while	~isempty(child)
				if	child.getNodeType	==	child.ELEMENT_NODE
						text	=	char(child.getFirstChild.getData);
						switch	char(child.getTagName)
								case	'wml2:time'	;	\\	
										data(i+1,1)	=	datenum(text,'yyyy-mm-ddTHH:MM:SS');
								case	'wml2:value'	;	\\
										data(i+1,2)	=	str2double(text);
						end
				end
				child	=	child.getNextSibling;
		end
end

Note that the blackslashes are used here to break the line in order to fit it on A4
documents. Remove the \\ and breakline in code to execute.

This however only retrieves and processes the temperature parameter tday. In
order to get other parameters, the parameters variable can be modified by listing
the desired parameters (see FMI Open Data documentation). However, doing so
requires adapting the for-loop that processes the XML document.

Clearly, alone the access and processing of data from the FMI Open Data Web
Service in order to import data into Matlab data structures requires a considerable
amount of program logic. To ease some of the burden, the required programming
logic can be encapsulated in a wrapper (e.g. a function) to avoid replicating the
code in client scripts. However, developing a function that can be parametrized
and retains the full flexibility may not be entirely trivial. Furthermore, each data
source will likely have its own wrapper. In order to integrate data from multiple
sources, client applications are required to utilize corresponding wrappers. The
actual integration remains task of the client application. Perhaps the greatest
advantage of the basic approach is that there is no upfront integration work
required: it is left to individual client applications.

Given that building information is available as Excel file, loading the data into
Matlab in the basic approach is similar to how it is done for FMI weather data
retrieved using the FMIdownloader, using xlsread. So far so good. As we
determined earlier, a first task for the building information is to get the data and
metadata integrated. As we noted, the metadata is available as PDF. This raises
now the question how to integrate the PDF metadata in Matlab. Two basic

8

now the question how to integrate the PDF metadata in Matlab. Two basic

approaches come to mind: (1) the metadata is added to the documentation in
Matlab script(s) or (2) it is translated to a suitable Matlab data structure.

Let's take facade material as an example. We want our scripts to use a variable for
facade material. The variable takes a number 1,	2,	...,	7.

mainFacadeMaterial	=	1;

Having the number is of course not very useful as users will have to either learn
the mapping between numbers and labels by heart or look it up in the PDF. In
order to make script parametrization easier we just add the metadata to the
documentation in our Matlab script:

%	1=concrete
%	2=brick
%	3=metal
%	4=stone
%	5=wood
%	6=glass
%	7=other
mainFacadeMaterial	=	1

This is slightly better, as users will not have to lookup the key-value pairs in a
separate file. However, documentation gets generally quickly outdated and, unless
taken good care of, it is thus likely that at some point our documentation will be
wrong with respect to the processed data.

An alternative, and arguably more elegant approach, is to organize the metadata in
a suitable data structure. One possibility is Matlab Map Containers. The following
is an example:

keys	=	[1,	2,	3,	4,	5,	6,	7];
values	=	{'concrete',	'brick',	'metal',	...
		'stone',	'wood',	'glass',	'other'};
code2MaterialMap	=	containers.Map(keys,values)

keys	=	{'concrete',	'brick',	'metal',	...
		'stone',	'wood',	'glass',	'other'};
values	=	[1,	2,	3,	4,	5,	6,	7];
material2CodeMap	=	containers.Map(keys,values)

We now have two data structures that we can interrogate for the material of a
given code

code2MaterialMap(1)	%	=	concrete

or the code for a given material

material2CodeMap('concrete')	%	=	1

9

These data structures can also be persisted to disk using Matlab and thus serve as
processable metadata objects in scripts that can now simply load these objects.
Applications can use these metadata data structures and join metadata and data to
resolve the codes.

As there is no intermediate integrative system standing between the data sources
and individual applications, in the basic approach integration of two or more
resources is left to applications. In fact, also the integration between building
information data and metadata is left to individual applications. Of particular
interest between weather data and building information is also the integration over
space. Lacking an intermediate integrative system, spatial integration is also left to
individual applications.

The	Syntactic	Approach

We discuss the Extract-Transform-Load (ETL) based syntactic integration of data.
Specifically, we first specify a common schema for the required data obtained from
the distributed data sources. The relational model for databases is used for the
schema. After schema specification, we implement the schema in a database and
load required data. With this, we obtain a database that can be queried using SQL
as a high-level declarative query language to retrieve data required by individual
client applications.

Database	Installation

As a first step, we need to setup a relational database management system. We use
MySQL. Specifically, we install and configure for remote access a MySQL instance
on the enviapps.uef.fi server. MySQL can be installed on other operating
systems, including Windows. The installation and configuration is relatively trivial.
For remote access, we will need to change the bind-address in my.cnf to the
IP address of the server and create a new user with localhost and remote access
rights as follows

CREATE	USER	'myuser'@'localhost'	IDENTIFIED	BY	'mypass';
CREATE	USER	'myuser'@'%'	IDENTIFIED	BY	'mypass';
GRANT	ALL	ON	*.*	TO	'myuser'@'localhost';
GRANT	ALL	ON	*.*	TO	'myuser'@'%';

Let's also create a database test_db with table test_table and populate the
table with some data

CREATE	DATABASE	test_db;
USE	test_db;
CREATE	TABLE	test_table(id	int(6));
INSERT	INTO	test_table	VALUES(1);
INSERT	INTO	test_table	VALUES(2);

10

Matlab	Database	Interaction

In order to use MySQL from Matlab, you will also need the JDBC connector. Load
the JAR file and set the user and password variables in Matlab as follows

%	Fix	the	path	'...'
javaaddpath('...\mysql-connector-java-5.1.38-bin.jar')
user	=	'myuser';
password	=	'mypass';

The following instruction allows you to connect to the database test_db on
remote host enviapps.uef.fi

conn	=	database('test_db',user,password,'com.mysql.jdbc.Driver',\\
							'jdbc:mysql://enviapps.uef.fi:3306/test_db');

Test if the connection is active, query the table test_table, print the retrieved
data, and close the connection

isconnection(conn);
curs	=	exec(conn,'select	*	from	test_table');
res	=	fetch(curs);
res.Data	%	Prints	the	results
close(curs);
close(conn);

Now that we have covered the basics of interaction between Matlab and a remote
instance of MySQL, we can turn to our data integration.

Extract-Transform-Load	(ETL)

First we need to specify the relational schema that integrates data extracted from
our data sources. Depending on the data, this can be more or less challenging. In
our case, we start creating a database for the use case and a table for wheater
data

CREATE	DATABASE	use_case;
USE	use_case;
CREATE	TABLE	weather_data(
		date	TIMESTAMP,
		rrday	DOUBLE,
		tday	DOUBLE,
		snow	DOUBLE,
		tmin	DOUBLE,
		tmax	DOUBLE);

We can now use Matlab to ETL weather data into the table, either using the
FMIdownloader tool as an intermediate step or directly from the FMI Open Data

11

https://dev.mysql.com/downloads/connector/j/

FMIdownloader tool as an intermediate step or directly from the FMI Open Data

Web Service (as described above). For brevity, the following example uses CSV
data downloaded using the FMIdownloader tool.

[num	char	raw]	=	xlsread('weather_data.csv');

conn	=	database('use_case',user,password,'com.mysql.jdbc.Driver',\\
		'jdbc:mysql://enviapps.uef.fi:3306/use_case');

for	i=2:length(raw)
		date	=	raw(i,1);

		if	(isnan(raw{i,2}))
				rrday	=	'NULL';
		else
				rrday	=	num2str(raw{i,2});
		end

		if	(isnan(raw{i,3}))
				tday	=	'NULL';
		else
				tday	=	num2str(raw{i,3});
		end

		if	(isnan(raw{i,4}))
				snow	=	'NULL';
		else
				snow	=	num2str(raw{i,4});
		end

		if	(isnan(raw{i,5}))
				tmin	=	'NULL';
		else
				tmin	=	num2str(raw{i,5});
		end

		if	(isnan(raw{i,6}))
				tmax	=	'NULL';
		else
				tmax	=	num2str(raw{i,6});
		end

		fetch(exec(conn,strcat('INSERT	INTO	\\
				weather_data(date,rrday,tday,snow,tmin,tmax)	\\
				VALUES(STR_TO_DATE("',	date,	'",	"%d.%m.%Y"),',	\\
				rrday,	',',	tday,	',',	snow,	',',	tmin,	',',	tmax,	')')));
end

close(conn);

12

This code will populate the weather_data table with data extracted from the
weather_data.csv file.

The ETL process for our building information data and metadata is in principle
similar to that of our weather data. There is, however, one aspect worth
highlighting. For building information data and metadata the process requires a
more complex schema. Specifically, we need to create individual tables for the
code tables provided in the PDF metadata file. For the main facade material code
table we thus create the following database table

CREATE	TABLE	main_facade_materials(
		id	INT,
		label	VARCHAR(32));

and then populate the table with the corresponding metadata provided in the PDF
as follows

INSERT	INTO	main_facade_materials	VALUES(1,'concrete');
...
INSERT	INTO	main_facade_materials	VALUES(7,'other');

We thus obtain the following populated table

mysql>	SELECT	*	FROM	main_facade_materials;
+------+----------+
|	id			|	label				|
+------+----------+
1	concrete
2	brick
3	metal
4	stone
5	wood
6	glass
7	other
+------+----------+
7	rows	in	set	(0.00	sec)

Naturally, we need to ETL also the remaining data and metadata. For the purpose
here, we only discuss a small subset of the building information dataset.
Specifically, we ETL the building information for coordinates, type of heating, and
the fuel. The necessary steps are already discussed above in details. Hence, we skip
the details and only briefly discuss the kind of joined SQL queries we can now
execute over the integrated schema of the database.

Working	with	Syntactically	Integrated	Data

Now that we have data from our sources syntactically integrated in our database,
we can use the database to extract and process data for our purposes. The database
clearly abstracts from the heterogeneity of the original data sources. It is now

13

clearly abstracts from the heterogeneity of the original data sources. It is now

possible to interact with the data using a single technology, that is SQL.
Furthermore, the data is consistent with a well defined set of datatypes. Also, SQL
allows us to flexibly declare the data retrieval task and natively supports basic data
processing, such as aggregation and joins. Rather than implementing those basic
processing tasks in Matlab, we can now formulate them in SQL queries.

With the following query, we can retrieve all data in the weather_data table.
Note that with tables containing a lot of data you need to be careful with such
"fetch all" queries.

curs	=	exec(conn,'select	*	from	weather_data');
res	=	fetch(curs);
data	=	res.Data;
close(curs);

data{1,1}	%	=	2015-01-01	00:00:00.0
cell2mat(data(1,2:6))	%	=	0.6000	2.7000	20.0000	0.9000	3.5000

As we have the full power of SQL at our fingertips, we can formulate also more
interesting queries, such as

SELECT	date	FROM	weather_data	WHERE	tday	<	-15

with results

'2015-01-05	00:00:00.0'
'2015-01-06	00:00:00.0'
'2015-01-11	00:00:00.0'
'2015-01-12	00:00:00.0'
'2015-01-20	00:00:00.0'
'2015-01-21	00:00:00.0'
'2015-01-22	00:00:00.0'
'2015-01-23	00:00:00.0'

or

	SELECT	AVG(snow)	FROM	weather_data	WHERE	tday	<	-15

with result 35.6250. As we can see, the code required to retrieve data for a
particular purpose is reduced compared to the basic approach described above.
Simple processing logic can be formulated directly in the request. But more
importantly, syntactic integration abstracts from the heterogeneity of data access
interface and technology as well as data encoding and formats, typically
encountered when we require data from multiple distributed sources.

With syntactic integration, we have data and metadata of our building information
dataset in a database. Rather than manually joining the codes for types of heating
and fuel of buildings, we can formulate retrieval tasks that delegate such joins to

14

and fuel of buildings, we can formulate retrieval tasks that delegate such joins to

the database management system. The following query is an example:

SELECT	COUNT(*)
FROM	building	b,	type_of_heating	h,	fuel	f	
WHERE	b.type_of_heating_id=h.id
AND	b.fuel_id=f.id	
AND	h.label='central	water	heating'
AND	f.label='district	heating';

The query returns the number of buildings with heating type central	water	heating
and fuel district	heating. The answer is 1462. We can also formulate the request of
this number to be as percentage of the total number of buildings in a single query

SELECT	COUNT(*)/T.total*100	AS	percent	
FROM	building	b,	type_of_heating	h,	fuel	f,	
(SELECT	count(*)	AS	total	FROM	building)	AS	T	
WHERE	b.type_of_heating_id=h.id
AND	b.fuel_id=f.id	
AND	f.label='district	heating'
AND	h.label='central	water	heating';

with result 3.6303. Notably, we do not have to resolve the codes for fuel and
heating type manually in order to interact with the building data. Furthermore,
thanks to the integrated technology and uniform query interface, we can formulate
retrieval tasks using a declarative query language that frees us from having to
implement program code to answer such questions.

So far we have only touched on the integration of building information data	and
metadata. Given that we also have weather data, it is of course interesting to
integrate building information and weather data.

First, let's explore some of the spatial querying features provided in modern
database management systems. The following query returns the buildings with fuel
wood that are located in a particular region of interest (delimited by a polygon)
that overlaps with the municipality of Iisalmi. The result of the query is 7
buildings.

SELECT	COUNT(*)	
FROM	building	b,	fuel	f	
WHERE	b.fuel_id=f.id
AND	f.label	=	'wood'
AND	MBRContains(GeomFromText('Polygon(
(
		7044000	511000,	
		7044000	512000,	
		7043000	512000,	
		7043000	511000,	
		7044000	511000
))'),	location);

15

Now let's integrate the building information with the weather data and ask if
buildings that utilize wood as fuel in our region of interest have been exposed to
temperatures lower than -20 degrees Celsius. The following query returns their
location

SET	@poly	=	'Polygon(
(
		7044000	511000,	
		7044000	512000,	
		7043000	512000,	
		7043000	511000,	
		7044000	511000
))';

SELECT	astext(b.location)	as	location	
FROM	building	b,	fuel	f,	weather_data	w	
WHERE	b.fuel_id=f.id
AND	f.label	=	'wood'
AND	w.tday	<	-20
AND	MBRContains(GeomFromText(@poly),	b.location)	
AND	MBRContains(GeomFromText(@poly),	w.location);

with result

+-----------------------+
|	location														|
+-----------------------+
|	POINT(7043390	511850)	|
|	POINT(7043377	511713)	|
|	POINT(7043640	511560)	|
|	POINT(7043240	511920)	|
|	POINT(7043110	511340)	|
|	POINT(7043131	511241)	|
|	POINT(7043977	511074)	|
+-----------------------+
7	rows	in	set	(0.00	sec)

The examples should underscore how database management systems provide a
flexible interface to formulate complex data retrieval tasks on integrated data
originally obtained from heterogeneous sources. Such retrieval tasks can include
spatial features. The database acts as an integrative system, intermediate to the
heterogeneous sources and the applications and systems built on top of the
database. Naturally, it depends on the goals whether or not it is worth investing
the required time and resources to build such an integrative system. However, the
more applications and systems are developed on top of heterogeneous data sources
the more it may arguably make sense to build a suitable integrative system.

16

The	Semantic	Approach

With the syntactic approach we achieved to abstract from heterogeneous data
access, format, encoding. However, the data are not expressive. Often we only
know a value and perhaps its type. For instance, in the example above we know
that 2015-01-05	00:00:00.0 is of type TIMESTAMP. For the query requesting
the average snow level during days with temperature below -15 we obtain the
value 35.6250. The system is not explicit about anything else about this value.

Specifically, what is 35.6250? Implicitly, we know it is the average snow level
matching the query. Implicitly, we can also assume that the value is in cm. The
problem is that we human agents can draw these conclusions. Software cannot,
unless programmers include it explicitly in program code or data self-describes its
semantics. Otherwise data semantics are unavailable to computers systems.

With the semantic approach data semantics are available and machine
interpretable. For instance, the value 35.6250 can be described as a
QuantityValue having 35.6250 as its numeric value and cm as its unit.

Quantities and units are ubiquitous concepts. It is thus plausible that people have
designed ontologies for these concepts. In fact, there exist several. One example is
the suite of Quantities, Units, Dimensions and Data Types Ontologies (QUDT).
QUDT includes a concept QuantityValue with relations unit and
numericValue to a Unit and a double numeric value, respectively. There are
further relations of interest, but this basic pattern is sufficient to make the point
here. Rather than to merely be given the value 35.6250 as in the syntactic
integration approach, the semantic approach annotates the value with machine
processable semantic annotations, as follows

QuantityValue(qv)
numericValue(qv,	"35.6250"^^xsd:double)
unit(qv,	u)
Unit(u)

These statements go beyond a mere numeric value, the result of our query in the
syntactic approach. They also make explicit the type of the numeric value
(xsd:double) and specify that the numeric value is the representation of a
particular kind of value, namely a QuantityValue. Interesting is also the explit
relation between the quantity value (qv) and the unit (u). Note that the identifier
u is explicitly typed: systems know it is of kind Unit.

It becomes even more interesting if we replace u with an actual unit, specifically
cm. Not surprisingly, QUDT also includes identifiers for frequently used units, in
particular also for cm. The identifier for this unit is http://www.qudt.org/
qudt/owl/1.0.0/unit/Instances.html#Centimeter or, accordingly with
prefix, unit:Centimeter. We can thus update our semantic annotations as
follows

17

http://www.qudt.org/

QuantityValue(qv)
numericValue(qv,	"35.6250"^^xsd:double)
unit(qv,	unit:Centimeter)

Note that we dropped the statement Unit(unit:Centimeter). This is on
purpose because it is redundant. QUDT already specifies this for us. We simply
inherit this additional statement from QUDT. QUDT states further interesting
relations about the unit unit:Centimeter. Among other things, it states that its
abbrevation and symbol is cm and that it is of quantityKind Length. These
statements are also inherited from QUDT: We obtain them for free, thanks to
ontology engineering efforts made by the community.

Implementing	the	Semantic	Approach

The technologies required to implement the semantic approach are drastically
different from the technologies discussed above for the syntactic approach. In
principle, one can of course map semantic statements to a relational database
management system. Indeed, some systems do precisely this. However, most
systems depart from the relational data model and adopt RDF (graph) databases,
such as Stardog. The languages used for the representation of data and schemas, as
well as query languages used to retrieve data, are different, too. Furthermore,
support for RDF, OWL, and SPARQL in computing environment such as Matlab and
R is arguably experimental and at early stages.

As a generic recipe, one first needs to create an ontology ("schema") for the data
integrated from heterogeneous data sources. The ontology should provide an
integrated description for the relevant terms (concepts and relations). The terms
should at least be given identifiers, which in RDF are URIs (e.g. the one for the
centimeter unit). Terms should also be organized into hierarchies. Good ontologies
additionally make the semantics of terms explicit. For instance, the term "Mother"
can be described as "Female having at least one Child". Existing terms are thus
utilized to define new terms.

Following the ETL approach, we then need to extract required data from our
sources and transform the data so that it meets our ontology and languages for the
representation of the transformed data (RDF and OWL). With this, we can import
the data into an RDF database and use a so-called SPARQL endpoint to serve RDF
data for retrieval. In principle this is very similar to what we did for the syntactic
approach.

Extract-Transform-Load	(ETL)

The example here is limited to our weather data and for the sake of brevity we
merely transform the date and air temperature. We utilize the OWL-Time ontology
to represent the date and QUDT to represent air temperature quantity values. As an
example, consider the following values for date and temperature:

01.01.2015	00:00
2.7

18

http://www.qudt.org/qudt/owl/1.0.0/unit/Instances.html#Centimeter
http://www.qudt.org/qudt/owl/1.0.0/unit/Instances.html#Centimeter
http://www.stardog.com
https://www.w3.org/TR/owl-time/

OWL-Time distinguishes instants and intervals. A day is arguably an interval but
for the sake of simplicity it is considered to be an instant in this example. The
data above for date and temperature is transformed to the following statements

time:Instant(i)
time:inXSDDateTime(i,	"2015-01-01T00:00"^^xsd:dateTime)
qudt:QuantityValue(qv)
qudt:numericValue(qv,	"2.7"^^xsd:double)
qudt:unit(qv,	unit:DegreeCelsius)

In addition to semantically describing the two values, we also need to describe the
pair. The pair (01.01.2015	00:00,	2.7) can be understood as a record (row or
observation) of a dataset. Just as quantities and units, datasets are also ubiquitous
and there exist ontologies for the concept of dataset and dataset observation, too.
One example is the RDF Data Cube Vocabulary (QB). Following QB, the pair is a
dataset observation, element of a dataset. The required statements can be
summarized as follows

qb:DataSet(d)
qb:Observation(o)
qb:dataSet(o,	d)
:date(o,	i)
:airTemperature(o,	qv)

We define a dataset d and observation o that relates to d. Moreover, we have two
properties for date and airTemperature which relate the observation to the
instant and quantity value, respectively.

The transformation here should of course be done programmatically. Due to mere
experimental support for RDF in computing environments such as Matlab or R, it is
arguably better to use a programming language for which there exist more
advanced libraries. Java is a popular example.

Having the transformed data in RDF we can now import it into any database that
supports RDF. For the purpose here, we use Apache Jena Fuseki but any other RDF
database will do. Fuseki allows us to load RDF data into an in-memory database
and acts as a SPARQL endpoint. After loading, we can query the semantically
integrated data. The following SPARQL query retrieves the original weather data

PREFIX	qb:	<http://purl.org/linked-data/cube#>
PREFIX	rdf:	<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX	time:	<http://www.w3.org/2006/time#>
PREFIX	qudt:	<http://qudt.org/schema/qudt#>
PREFIX	unit:	<http://qudt.org/vocab/unit#>
PREFIX	:	<http://envi.uef.fi/flexe#>

SELECT	?date	?airTemperature	?unit
WHERE	{
		[

19

https://www.w3.org/TR/vocab-data-cube/
https://jena.apache.org/documentation/serving_data/

				rdf:type	qb:Observation	;
				:date	[time:inXSDDateTime	?date]	;
				:airTemperature	[
						qudt:numericValue	?airTemperature	;	
						qudt:unit	?unit	
]	;
]
}
ORDER	BY	ASC(?date)

which results in the table (first two rows are shown)

2015-01-01T00:00:00.000+02:00				2.7				unit:DegreeCelsius
2015-01-02T00:00:00.000+02:00				0.8				unit:DegreeCelsius

This may not look spectacular, given that our relational database system produced
a similar result to a comparable query. Recall however that, in addition to having
the unit of quantity values explicitly represented (here unit:DegreeCelsius),
semantic data integration really has more explicit semantic information about the
data. For instance, with the following query

SELECT	DISTINCT	?dateType	?airTemperatureType
WHERE	{
		[
				rdf:type	qb:Observation	;
				:date	[rdf:type	?dateType]	;
				:airTemperature	[rdf:type	?airTemperatureType]	;
]
}

we can obtain the types (class) of the individuals describing the values of date
and airTemperature component properties of our dataset observations. These are
not merely datatypes for values, such as double, of a limited set of datatypes
provided by a language. These types, or more accurately classes, are designed to
meet the descriptive requirements of a particular domain: they form specialized
vocabularies. Furthemore, their semantics can be described formally. As such,
vocabulary semantics are machine processable and interpretable. Thanks to explicit
semantics, machines can better assess whether or not exchanged data mean the
same thing, and can thus be integrated, or if further steps are required to first
resolve semantic conflicts.

20

