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Abstract 
Arc routing is concerned with the traversal of edges of a graph network. This thesis discusses the 
directed Chinese postman problem (DCPP), a type of arc routing problem on a directed graph. The 
Chinese postman problem is concerned with a mailman that starts at the post office, traverses eve-
ry street in his territory at least once and then returns to the post office. The objective being, while 
delivering mails, to walk as little as possible. Incidentally, the Chinese postman problem is the 
‘edge’ equivalent of the traveling salesman problem. Unlike the traveling salesman problem how-
ever, the chinese postman problem on undirected graphs has polynomial running time algorithm; 
which makes it an appealing choice for some application domains. In some ways, the DCPP relates 
to the problem of household waste collection due to the fact that, waste bins are located along 
street edges and a collection truck essentially needs to traverse streets to get to the bins. A pseudo-
polynomial algorithm and its implementation is presented for demonstrating the solution to the 
DCPP. 
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1 Introduction
In any modern town, the collection of household refuse is an important logistical
operation. For generations, people have used several methods to manage household
refuse. Today, in the developed world, waste collection trucks are used to collect and
transport refuse from households and industrial units to recycling centers, power
plants and landfills where: it is treated and recycled to yield raw materials for
consumer goods, burnt for energy production or buried in a landfill. For example in
Finland, in the year 2012 about 66% of the combustible waste was burned to give
energy making up about 10% of the overall energy production powering homes and
industries. The largest portion of the incinerated waste comes from forestry and
forest industries and the second largest portion comes from municipal waste and
other mixed waste [32].

Waste collection in cities is a complex and capital intensive process. That is
because of the sheer volume of waste containers, even with a medium size city, and
the frequency with which containers have to be emptied. This creates economic
burden on municipalities whose responsibility includes managing household waste.
According to Section 34 of the Waste Act by the Ministry of Environment of Finland,
municipalities must ensure:

– The availability of waste transport

– A su�cient number of regional reception points are available for hazardous
and non-hazardous waste

– A su�cient amount of diverse forms of waste management services are available
such as separate collection in compliance with order of priority

– The collection and transport of waste is organized and scaled to handle the
quantity and quality of waste generated as much as possible

– Su�cient information is distributed with suitable frequency on arrangements
for waste transport and the regional reception of waste

On the other hand, property owners and housing companies are bound to organize
waste collection points and containers for household waste and it is the duty of waste
producers to take the waste to these points. The various waste types are collected
separately into labeled containers by waste producers. This eventually simplifies the
treatment process and also part of the waste has a market value since it can be sold
later with little or no treatment.

Often times collection containers are of two type. These are the surface collection
containers and deep collection containers. The containers come in di�erent forms
and sizes. Surface collection container usually are 140 liters (Biowaste containers),
240 liters, and 600 liters. The containers are color coded to indicate the kind of
waste they contain.

Town houses and apartments have their own collection containers for paper, card
board, metal and glass. Whereas batteries, carton liquid packaging, and hazardous
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waste are collected at a regional collection points. Surface collection containers are
often emptied once a week. Deep collection containers, such as MolokTM and UppoTM

are placed partially below the ground with a lifting bag made of a strong textile
material inside the container. Deep collection containers are much bigger in size
than surface collection containers and as a result, they are often emptied once in
two weeks depending on the waste type and regulations [27]. The deep collection
containers come in three sizes 1300 litres for biowaste, glass and metal, 3000 litres
for paper and cardboard and dry waste containers take up to 5000 litres.

The transportation of waste from collection containers to the final destination
is organized by local municipal authorities through agreements with private waste
transportation companies. The waste transportation companies operate a fleet of
vehicles and are o�ered contracts through competitive bidding. As a result, the cost
of transportation is lowered to a minimum and since transportation services are
bought in bulk, municipalities have advantage over other competitors who might like
to push prices. It is also possible for contractual agreements to be signed between
property owners and transportation companies independent of the authorities. If
the municipality organizes the transportation, then it has the upper hand to set
prices for property owners. According to RambollTM in 2006, this system was
used in 33% of the municipalities and 50% of the population whereas independent
contractual agreements were made in about 47% of the municipalities and 40%of the
population [27].

Transportation is one of the main reasons why municipal waste collection is so
expensive. It is essential to optimize transportation for a viable waste management
program. In the last decade significant achievements have been made in the area
of transportation, logistics and operations researches. With the aid of GIS and the
global positioning and navigation systems, it has become possible to precisely plan
and execute transportation schemes. The key gains of an automated optimized
transportation system is discussed below.

1.1 Vehicle running cost
1. Reduced fuel consumption The fuel consumption of a vehicle depends not only

on the distance driven but also on the driving pattern of the vehicle, which
includes factors such as the speed, acceleration, gear changes, road condition,
road gradient, and load and vehicle condition. Fuel price takes up the larger
percentage of the cost.

2. Reduced air pollution The environmental issues that arise in household waste
collection are mainly from the combustion process of the diesel fuel. In addition,
environmental pollution can arise, on a minor level, from noise, vehicle oil spill,
wear of brakes and tires and other related factors.

3. Reduced maintenance cost maintenance costs such as tire, brakes, oil etc will
be reduced.



3

1.2 Working hours
Optimizing routes will help to achieve reduced work hours for drivers. This will in
turn help to save spending.

1. Reduced driver’s fatigue and health problem Driver fatigue and exhaustion
while at work is a major issue in transportation. According to a study by
the International Road Transport Union in 2006, fatigue and falling asleep
is the main cause of approximately 18.6% of single truck accidents [21]. The
European Union has enforced a strict regulation on driving hours of trucks
which was e�ective since 2007.
Such regulations, while protecting road safety, impose heavier burden on
trucking companies since they would have to employ more stu� to comply with
the legal time windows mentioned in the regulations. However, with the use of
a route optimizer, such cost can be significantly reduced.

2. Reduced overtime Getting the job done within a given regular time window
means reduced overtime payments.

1.3 Service quality
Route optimization will enable to achieve improved service quality. This will be
reflected in many ways:

1. Quicker and e�cient collection/pickup Automated and optimized routing en-
ables a much quicker and e�cient service which increases customer satisfaction
and reduces overall cost.

2. Improved prediction system Route optimization also enables a much reliable
prediction system. The prediction system can often be a separate module
where it is constantly fed with information from a real-time route optimization
system such that vehicles can be rerouted or rescheduled ahead of time with
much flexibility.

1.4 Problem definition
Waste bins are located along the streets of a well-defined road network. They are
emptied regularly by compactor trucks with finite capacity. Only one type of waste
is collected by the truck during a single route. There are multiple types of bins.
The collection is done during workdays. The trucks visit the waste disposal site
before returning to their depot if they are loaded by more than 50% of their capacity.
A work-hour for the trucks is typically 8hrs and if that is exceeded, an overtime
payment has to be made. A work-day is typically divided into two by a lunch break
that lasts for 30min and hence two tours can be made. In addition, drivers have
15min co�ee-break. The vehicles are of di�erent kind and capacity. Emptying the
waste bins and unloading at the waste disposal site should also be done within a
given time window. The waste collection process tends to follow a periodic cycle of
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typically two weeks in residential areas. The period could vary depending on the
population density and land use of the area. The amount of solid waste is highly
variable and the accumulation of waste depends on several factors such as the number
of inhabitants sharing a container, GDP per capita, lifestyle, time of the year, etc [25].
This indicates that the amount of waste is a random variable.

Therefore, the vehicle routing problem in waste collection has the following
constraints and characteristics.

• Time windows: it has to be done within fixed time bounds
• Limited capacity: vehicles can only carry a finite amount
• Periodicity: the emptying is cyclic, 1 time/week, 2 times/week or more
• Randomness: the amount of waste is random [25]

This leads to the conclusion that the waste collection route optimization is a
stochastic periodic capacitated vehicle routing problem with time windows. All these
factors add up to complicate the solution for the basic problem. Of course, in this
thesis we tackle a much stripped down version of the general problem. Dealing with
the general problem in its full glory is beyond the scope of this thesis.

1.5 Research questions
The goal of this thesis is to find a set of algorithms that can be used to solve the
problem of optimizing routes in household waste collection. In particular, it studies
the behavior of cyclic routes where a waste collecting truck drives across streets
and gets back to its starting position. The status quo is that there is only a batch
of waste points that are known to be emptied on a given day. There is no route
optimization solution being used and the entire routing matter is left to the driver
of the truck as I learned during interviews. Some of the relevant questions in this
research are:

• What is the behavior of the route optimization problem in household waste
collection? This includes, the study of the physical constraints that the problem
is subjected to.

• What are the most important elements that a�ects the overall cost of a
route/cycle? This is important to identify because not all constraints af-
fect the cost equally and therefore, when simplification of the solution is needed
we know which constraints to drop from our model, without a�ecting the overall
quality of the final solution.

• What alternative routing models can be used household waste collection? There
are several models in VRP and each with its own merit and demerit. It is
essentially the nature of the VRP problem, that there exists no general solution
that is good in all circumstances. And therefore, it is worthwhile studying
specific models that are tailored to tackle a certain group of problem, in this
case, household waste collection.

• How good is the final model compared to preexisting models? This is concerned
with analytical comparison on the performance of a model.
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2 Materials and methods
Vehicle routing is divided into two major categories. These are arc routing problems
(ARP) and node routing problems (NRP). In general, node routing problems are
referred to as VRP and arc routing problems as ARP. However, it is important to
distinctly identify the two, as there is a fundamental di�erence in how the problems
are defined, solved and applied.

2.1 Vehicle routing problem
Node routing is a type of vehicle routing problem concerned with finding a closed
route or a cycle connecting every vertex of a graph G = (V, E fi A). In node routing,
the purpose is to find a minimum cost route connecting every node (vertex1). This
relates to the classical traveling salesman problem. The vehicle routing problem
is one of the earliest of its kind. The first such paper was the truck dispatching
problem [7] which is concerned with the optimum routing of a fleet of gasoline delivery
trucks between bulk terminal and a large number of service stations.

2.2 Arc routing problem
Arc routing is another kind of vehicle routing problem that is concerned with finding
a tour that visits every edge exactly once. In arc routing, the purpose is to find a
minimum cost tour that consists of every edge and returns to the origin vertex. It
turns out that, it is not possible to find a tour with no repeating edges for all kinds of
graphs. It is only possible to do that on a special kind of graph called eulerian graph,
named after the famous Swiss Mathematician Leonard Euler who is considered by
many as the father of graph theory. The question Euler faced was whether there is a
marching band route starting on an island in a city called Königsberg, which would
traverse each of the cities seven bridges exactly once with no repetitions and end on
the island from which the route started. Euler proved that there is no such route
marking the beginning of graph theory as we know it today [24].

Figure 2 shows the graph representation of the city of Königsberg. The edges
represent the bridges and the vertexes represent the land. The island of Kneiphof is
represented by the vertex B. An eulerian tour on such graph is impossible because
the graph is not an even graph. An even graph is a graph that has vertexes with
even degrees. The degree of a vertex is the number of edges connected to it. In the
next chapters we will discuss more on eulerian graphs.

In waste collection, the vehicle routing problem can be studied, in principle, both
as a node routing problem and arc routing problem. However various researches
in the area of household waste collection, have indicated that the problem of route
optimization is an arc routing problem. The suitability of the two methods for such
problems depends on the scope of the problem. Arc routing is a reasonable choice in
densely populated areas, typically in cities. This is because in cities we may find

1We use the terms vertex and node interchangeably to mean the same thing through out this
paper.
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Figure 1: The bridges of Königsberg [12]
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Figure 2: Graph representation of the bridges of Königsberg

a number of waste bins along a single street and it would be a reasonable thing to
compute the streets instead of the individual waste bins/containers. In arc routing,
the nodes are the street intersections and the edges are the street segments. The
goal will be to find a tour where each edge is visited at least once. The edges that
don’t contain waste bins can be removed in preprocessing the graph.

On the other hand, node routing techniques can be applied in conditions where
waste bins are sparsely located. In such situations, the waste bins will be represented
as the nodes and the streets connecting the bins will be the edges.

2.3 Related works
The first paper about municipal garbage collection using vehicle routing techniques
appeared in 1974 by Beltrami and Bodin [2], in which they attempted to tackle the
problem of minimizing the total distance traveled over a planning period for customer
(waste bins) with a set of feasible visit options. This is called the periodic vehicle
routing problem (PVRP). This problem inspired a generation of researchers as a
result of which, many papers have been written on the issue ever since.

A recent article (2012) [3] presented an adaptive large neighborhood search
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algorithm to solve a waste collection vehicle routing problem with time windows,
where the objective is to find cost optimal routes for garbage trucks such that garbage
bins are emptied within a time window that takes into account the customer’s
available time and driver’s working hours.

Another article [23] (2014) presents a complex waste collection problem that
has fixed heterogeneous fleet of vehicles with di�erent volume and weight capacities,
fixed costs, unit distance running costs and hourly driver wage rates. It models the
problem as a mixed binary linear program for which the researchers developed a
local search heuristic with an optimality gap of 2% compared to the exact solution
on small instances.

From Finland [25] (2005) described a guided variable neighborhood thresholding
(GVNT) metaheuristic method for solving waste collection and transport problem in
eastern Finland.

An ant colony algorithm (2012) for arc routing problem in waste collection is
proposed in [18] to minimize the length of municipal solid waste collection routes.
The solution takes into account one-way streets and forbids turns with narrow angles.
The arc routing is transformed into node routing and a clustering-based multiple ant
colony system algorithm is used.

Real-time information is used [14] (2012) in the optimization of recyclable waste
collection, in particular glass waste, where garbage bins are fitted with fill-level sensors
that provide real-time data to control center. The article proposes a collection policy
based on three stages: first, calculation of routes after knowing the containers to
collect in a day; second, estimate the containers to be collected in the coming days,
and third, optimization of the routes based on the combination of the results in the
first and second stages i.e. look for possible containers from those that are going to
be emptied in the coming few days and add them to today’s routes.

A simulation driven approach, in Kaohsiung Taiwan [4] (2015), is presented to
support the optimization process. GIS is used for siting the drop-o� stations and uses
heuristic algorithm to solve the optimization problem. Also it compares the results
of the heuristic algorithm with a genetic algorithm in the same GIS environment.

Meanwhile, a general overview of arc routing problems is given in [24]. In this
collection of influential works by various researchers, di�erent approaches to solving
arc routing problems are presented. Some of these include, linear programming based
methods, transformations and exact node routing solutions where the arc routing
is transformed into node routing problem, matching theory to solve the Chinese
postman problem etc. Also [5] (2010) presents recent results on arc routing problems.

2.4 Measuring algorithm performance
An algorithm is any well-defined computational procedure that takes some value as
input and produces some value as output [6]. Computers perform tasks in steps. The
number of steps taken by a computer to get something done are important indicators
of an algorithm’s performance. Assuming that all the computers in the world have
equal computational power, i.e. memory and CPU, a function that takes in the input
size of a problem and produces the number of steps needed to produce the output is
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the running time of the algorithm. For instance, suppose we have a set of n numbers
S = {1, 2 · · · n}. The number of steps needed to sum n numbers in S is proportional
to n. Therefore, we say summing numbers in S is a linear time operation. This
means the algorithm is “summing numbers” and the running time is “linear”.

Some algorithms exhibit di�erent running times (functions) based on the nature
and size of the input. These kinds of algorithms have often upper and lower bounds.
An upper bound is a threshold for which an algorithm’s running time never exceeds
at any condition. And a lower bound is a threshold for which an algorithm will never
complete a task before. And there is something in between which is often called
average case. An upper bound and lower bound are referred to as worst case and
best case, respectively.

We are often interested in the worst case and average case running times of an
algorithm. The best case usually is mentioned for completeness.

2.4.1 Big-O Notation

Suppose some algorithm “A” takes f(n) = 2n2 + 3n + 4 steps to do some task as a
function of the input size n. We say the running time of “A” is O(n2) — read as
“Big-O of n-squared”. That is because the lower order term n, the coe�cients 2 and
3 and the constant 4 become irrelevant when the size of n is very large. We always
take only the higher order term. To define precisely, assume two functions f(n) and
g(n) are the running times of two algorithms on inputs of size n.

Definition 1 ( [8]) We say f = O(g) (meaning “f grows no faster than g”) if there
is a constant c > 0 such that f(n) Æ c ◊ g(n)

Loosely, f = O(g) means f Æ g. Some of the most common types of running
time functions are linear n, quadratic n2, cubic n3, logarithmic log(n), linearithmic
n log(n), exponential 2n etc. The growth rate of these running times as a function
of input size is shown in Figure 3. It indicates that exponential functions grow
faster than say, logarthmic functions. In algorithm, this means exponential functions
take longer to perform the same task than linear or logarthmic for large n. In fact,
exponential function algorithms have no use in practice. Factorial functions grow
even faster than exponential functions and hence are practicaly useless to get a
anything done.

As we can see from definition 1, the Big-O notation measures the worst case
(upper bound) running time of an algorithm. Similarly, the lower bound is defined
as f = �(g) (Big-Omega) meaning g = O(f). And in between we have f = �(g)
(Big-Theta) to mean that f = �(g) and f = O(g) [8].

Generally, for any algorithm to be useful, its running time should be polynomial i.e.
it has to be of the form n, n2, n3 etc. or less. In the next section, we see the behavior
of algorithms that don’t have polynomial running time.

2.4.2 Interactablity

A problem is regarded as tractable if and only if there is an algorithm for its solution
whose running time is bounded by a polynomial in the size of the input [17]. The
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Figure 3: Running time function versus input size

class of all search problems that can be solved in polynomial time is denoted as P .
Meanwhile, there are other class of search problems that have no known polynomial
time algorithm. These class of problems are called NP short for “nondeterministic
polynomial time” [8].

With this comes the notion of NP-completeness. A problem is called NP-complete,
if other NP class problems can be polynomially transformed to it [15]. Such problems
are of special kind, that if there exists a polynomial time solution to one, then there
is polynomial time algorithm to all. It is worth noticing here that if a problem is
NP-complete, it is highly unlikely there will ever be a polynomial time solution.
Therefore, it a good reason to stop searching for a general solution to it. Some well
known NP-complete2 problems are the traveling salesman problem, integer linear
programming, knapsack, capacitated arc-routing problem, rural chinese postman
problem etc. The chinese postman problem in undirected and directed graphs can
be solved in polynomial time as we will discuss in later sections.

2In complexity theory, NP-completeness is further classified into NP-easy and NP-hard. Through-
out this paper it will all mean the same thing, i.e. the problem is hard.
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2.5 Graph Theory
Graphs are mathematical structures that are used to model the pairwise relationship
between entities. Typically, graphs are used to store network information where
various algorithms operate on the data governed by the mathematical behaviour
of the graph. A graph structure is made up of vertexes or nodes and edges or arcs
that connects the nodes. The nodes usually represent entities such as points, cities,
computers, people etc., whereas the edges represent the relations between the entities.
For instance, distance between two cities, network wire between two computers etc.

A graph may be undirected where the relationship between the nodes has no
directional meaning, for instance, friendship between two people; in directed or
digraphs the relationship between the nodes has directional meaning, for instance,
one way street between two points in a city, such relations are shown with a pointing
arrow on a line, and is often called an arc. On the other hand, the term edge is often
used in undirected graphs.

2 3

41

(a) Undirected graph with nodes and
edges

2 3

41

(b) Directed graph with nodes and
arcs

Figure 4: Graph representation

Formally, a graph G is defined as a pair of (V, E) or (V, A) for undirected and
directed graphs respectively. Digraphs and undirected graphs often have equivalent
mathematical properties. In the following sections, we will see some of these properties
in some detail3.

2.5.1 Basic definitions

Here is a list of basic concepts and definitions [9] in graph theory.
– Order : the order of a graph G is the number of vertexes it contains and is

denoted as |G|. The order of the graph in Fig: 4a is 4.
– Size: the size of a graph G is the number of edges and is denoted as ÎGÎ. The

size of the graph in Fig: 4a is 5.
– Empty graph: is a graph with no vertexes or edges and is denoted as (ÿ, ÿ) or

simply as ÿ
3It is to be noted that Graph theory is a vast subject in math and computer science. The thesis

covers only a small subset set of topics that will be necessary to understand the later sections.
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– Incident vertex : a vertex v is incident with an edge e if v œ e.
– Adjacency: two vertexes x and y are adjacent if xy is an edge of G. Two edges

p and q such that p ”= q are adjacent if they have a common vertex. Adjacent
vertexes or edges are also called neighbors.

– Degree: Also known as the valency; d of a vertex is the number of edges
connected to v which is also equal to the number of neighbors of v. A graph
with all its vertexes having equal degrees is called a regular graph. Moreover,
the minimum degree of a graph G is defined as ”(G) = min{d(v) : v œ V }.
And the maximum degree of a graph is defined as �(G) = max{d(v) : v œ V }
which is the vertex with the maximum number of neighbors. A vertex with
degree zero is intuitively called as isolated vertex. The average degree of a
graph is the sum of all the degree of every vertex divided by the order of the
graph, i.e. |V | the number of vertexes in the graph.

d(G) = 1
|V |

ÿ

vœV

d(v) = 2|E|
|V | (1)

Equation 1 naturally leads us to what is famously known as the Handshaking
Lemma4. ÿ

vœV

d(v) = 2|E| (2)

Consequently, in every graph the number of vertexes of odd degree is even. This
is a useful realization as we will find out later when we do graph augmentation
to convert odd vertexes to make them even.

A vertex in a digraph has even degree if and only if the in-degree of the
vertex is equal to the out-degree.The number of arcs going into a vertex v is
the in-degree written d≠(v) and analogously, the out-degree is written as d+(v).
The imbalance or the di�erence between the in-degree and the out-degree of
v is denoted by ”(v) i.e. ”(v) = d+(v) ≠ d≠(v). If ”(v) = 0, then the vertex v
is said to be balanced. The set of unbalanced vertexes with positive ”(v) is
denoted as D+ and the set of vertexes with negative ”(v) is denoted as D≠ i.e.

D+ = {v : ”(v) > 0}
D≠ = {v : ”(v) < 0}

For example, in Figure 4b D+ = {3, 1} and D≠ = {2, 4}.
– Path: A path is a sequential graph or element of a graph with vertexes and edges

of the form, V = {x0, x1, . . . , x
k

} and E = {x0x1, x1x2, . . . , x
k≠1xk

} where x0
and x

k

are the end vertexes linked by P ; and x1 · · · x
k≠1 are the inner vertexes.

The length of a path is determined by the number of edges and a path of length
k is denoted as P k.

4It is called the Handshaking Lemma because, the total number of people, each person at a
party shakes hands with, will be twice the number of handshakes that occured.
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– Cycle: is a cyclic sequential chaining of vertexes in a graph. Suppose, a path
P = {x0 · · · x

k≠1} for k Ø 3, then a cycle can be formed by connecting the end
vertexes as: C := P + x

k≠1x0. The length of a cycle is the number of edges or
the number of its vertexes. Also, the minimum length of a cycle contained in a
graph G is called the girth of G denoted as g(G) and the maximum length of a
cycle in G is called the circumference.

2.5.2 Euler trails and cycles

A walk W = e1e2 · · · e
n

is a trail, if e
i

”= e
j

for all i ”= j. An Euler trail is one that
visits every edge once. A connected graph G is eulerian, if it has a closed trail
containing every edge of G. Such a trail is called an Euler tour or cycle.

Theorem 1 A connected graph G is eulerian if and only if every vertex has an even
degree.

An earlier algorithm by Hierholzer(1873) finds an eulerian tour in an eulerian graph.
It is probably the best available even today [24].

1. Start from an arbitary vertex v, gradually trace a cycle by following untraversed
edges, until this procedure cannot be continued; in a connected graph, this
happens only at v

2. If all edges have been traversed, stop.

3. Trace a second cycle starting from an unvisited edge incident to the cycle.
Merge the two cycles into one. Go to step 2.

2.5.3 Connectivity

A graph G = V fi E is said to be connected if for any two vertexes x, y œ V are
linked by a path P (x, y) in G. Connectivity is one of the very basic concepts in
graph theory. Generally, it is concerned with determining the minimum number of
elements that need to be removed to disconnect a connected graph. A maximal5
connected subgraph X of G is called a component of G. A graph G is disconnected
if and only if G = G1

ṫ
G2 where G1 and G2 are non-empty subgraphs of G.

A vertex v œ V (G) is called a cut-vertex if its removal makes a connected graph
G disconnected. An edge e œ E(G) is a bridge if and only if V = V1

ṫ
V2 such that

every path joining any v1 œ V1 to v2 œ V2 contains e. In other words, bridges in a
graph are those edges that don’t lie on any cycle in G. A rigorous verification of
these claims can be found in a standard graph theory book.

5maximal with respect to set inclusion
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x y

e

Figure 5: Vertex x and y are cut-vertexes and edge e is a bridge.

Also, if no two vertexes of G are separated by fewer than k other vertexes, then
G is called k-connected for k œ N. The greatest integer k such that G is k-connected
is the connectivity Ÿ(G). Likewise for edges, if |G| > 1 and G ≠ F is connected
for every set F ™ E of fewer than l edges, then G is called l-edge-connected. The
greatest integer l such that G is l-edge-connected is the edge-connectivity ⁄(G). For a
disconnected graph, ⁄(G) = 0. For every non-trivial (i.e. not isolated vertex) graph
G, the following is true: [9]

Ÿ(G) Æ ⁄(G) Æ ”(G)
The above inequality asserts that connectivity is always less than the minimum

degree of a graph. But this doesn’t mean that large minimum degree guarantees
high connectivity. It only indicates the existence of highly connected subgraph.

In a digraph D, there are three types of connectedness [24]. These are:
– D is strongly connected if for all x, y œ V (D) there exist paths P (x, y) and

P (y, x).

– D is unilaterally connected if for all x, y œ V (D) either P (x, y) or P (y, x) exists.

– D is weakly connected if its underlying graph G
D

is connected i.e. if replacing
all the directed edges with undirected edges results in a connected graph.

Clearly, a strongly connected digraph is unilaterally connected and unilaterally
connected digraph is weakly connected but not vice versa. However, a weakly
connected digraph is strongly connected if every arc belongs to a cycle.

Menger’s Theorem

Menger’s theorem states that for a graph G = (V, E) and A, B ™ V , the minimum
number of vertexes separating A from B in G is equal to the maximum number of
disjoint (independent) paths from A to B in G. It is to be noted that, the set of
vertexes in A is not adjacent with vertexes in B. This theorem is a fundamental
realization in graph theory which is a foundation for many other concepts [24]. Yet
again, the proof is left out for brevity but can be found in a standard graph theory
book.
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2.5.4 Matching

A bipartite graph is one whose vertex can be partitioned into two sets such that
those in the same set have no connecting edges [24].

Theorem 2 A graph G is bipartite if and only if G contains no cycles of odd length.

a

b d

c a

bd

c

Figure 6: Bipartite graph

In a graph G = (V, E), a matching M is a set of independent edges; i.e. no two
edges share the same vertex. A vertex is matched if it has an end in the matching M ;
vertexes not incident with any edge of M are unmatched or free. A perfect matching
is if all the vertexes in G are found in M [9].

Unmatched vertex

(a) An unmatched vertex (b) A perfect matching

Figure 7: Matching in undirected graphs

In a matching problem, the goal is often to find a matching containing as many
edges as possible. This is called maximum-size matching. And the special case is
to find a perfect matching or to verify that a perfect matching doesn’t exist for G.
In a weighted graph, where each edge has a weight, the goal is to find a matching
of maximum total weight. There are important variants where the goal is to find
a perfect matching of maximum or minimum total weight; among maximum size
matchings, to find one of maximum or minimum total weight. There are four versions
of matching:

– Unweighted bipartite

– Unweighted general

– Weighted bipartite a.k.a assignment problem

– Weighted general
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Unweighted bipartite graph matching

In a fixed bipartite graph G = (V, E) with bipartition {A, B}, how can we find a
matching in G with as many edges as possible? For any matching M , a path that
starts in partition A with unmatched vertex u and contains edges alternately from
E \ M and M , is called an alternating path [19]. In other words, an alternating path
is one in which its edges are alternately in and out of the matching.

Now, an alternating path P that ends in unmatched vertex v of partition B
is called an augmenting path i.e. an alternating path between two unmatched ver-
texes [19]. Naturally, this leads to the process of augmenting the matching i.e. given
an augmenting path, change its unmatched edges to matched and vice-versa thereby
increasing the size of the matching by one.

1

2

3

4

5

6

(a) Augmenting path

1

2

3

4

5

6

(b) After augmentation

Figure 8: Maximizing matching by augmentation

The practical application of alternating paths is that, if we start with any matching
and keep applying augmenting paths until no further such improvement is possible,
the matching obtained will always be an optimal one, which is a matching with
maximum number of edges [9]. Therefore, finding maximum matching amounts to
finding augmenting paths iteratively. The algorithm for doing so is listed below.
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Algorithm 1: Augmenting path algorithm for bipartite matching
Data: A bipartite graph G with partition {X, Y }
Result: A maximum cardinality matching M
Begin with an empty matching;
Direct all edges from X to Y ;
while there is unmatched vertex x in X do

search from x until reaching an unmatched vertex in Y or finish search;
if unmatched vertex found in Y then

augment;
reverse direction of all arcs on the augmenting path;

else
delete all visited vertexes;

end
end
Algorithm 1 applied on input graph Figure 9 gives result Figure 10.

A

FC

B E

D

X Y

Figure 9: Input - Bipartite graph

A

FC

B E

D

(a) Search from A,
find A, D and aug-
ment

A

FC

B E

D

(b) Search from B
find B, D, A, E
and augment

A

FC

B E

D

(c) Search from C,
find C, E, A, D, B,
F and augment

Figure 10: Iteratively augmenting to get maximum matching

The optimality of a matching can be checked based on the idea of vertex cover.
A set U ™ V is a vertex cover of E if every edge in the graph G is incident with
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a vertex in U . König’s theorem (1931) states that, the maximum cardinality of a
matching in G is equal to the minimum cardinality of a vertex cover. This implies
that the cardinality of an arbitrary matching M is always less than or equal to the
minimum cardinality of a vertex cover but a maximum (optimal) matching is equal
to the minimum cardinality of a vertex cover [9].

Weighted bipartite graphs

Algorithm 1 or some other equivalent algorithm are useful to solve matching in
unweighted graphs. But how do we solve maximum cardinality matching when the
edges are weighted? Such problem is very common in real life applications in many
areas. In particular, we are interested in minimum weight matching in bipartite
graphs.

Minimum weight matching is defined as: given a bipartite graph G = (V, E) with
bipartition (A, B) and weight function w : E æ R find a matching of minimum
weight where the weight of matching M is given by w(M) = q

eœM

w(e) [19]. An
algorithm that can solve the minimum weight matching problem will be valuable to
solve the optimization in the Chinese postman problem.

2.5.5 Graph data structures

So far, we have seen what a graph is and some of the basic concepts in graph theory.
Now, we will see some data structures for dealing with graphs in an e�cient way.
A complete description of graph algorithm and data structures can be found on [6]
or similar books. The material in this section is also based on [6]. There are two
standard ways of representing graphs in computers. That is the adjacency list and
adjacency matrix. In adjacency list, the vertexes are stored in a list structure where
every element of the list is a pointer to another list of neighbors (adjacent vertexes)
of the vertex at the current index.

Adjacency list is memory e�cient when representing sparse graphs. However,
it is not very e�cient to check if two arbitrary vertexes are adjacent; in this case,
adjacency matrix is better.

On the other hand, adjacency matrix stores graph data in a matrix form where
every cell holds a value to indicate if two vertexes are connected by edge or not.
Typically, in unweighted graph the cell value can be 0 or 1 if there is no edge
connecting the vertexes or otherwise, respectively. In weighted graphs, the cell value
can be the weight of the edge between the corresponding vertexes. The general rule
according to [6] is that adjacency list is used on sparse graphs i.e. those for which
|E| is much less than |V |2. For dense graphs where |E| is close to |V |2, adjacency
matrix is recommended.



18

41

3

5

7

2

6

Figure 11: Example graph

The adjacency list and adjacency matrix representation of the graph on Figure 11
is shown in Figure 12
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(a) Adjacency list
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(b) Adjacency matrix

Figure 12: Graph representation

2.6 Chinese postman problem
A postman begins at the post o�ce, traverses every street in his territory at least
once and then returns to the post o�ce. His objective, while delivering mails, is
to walk as little as possible. This problem was first stated by Kwan Mei-Ko, a
Chinese mathematician in 1962. It was later named the Chinese postman problem by
Edmonds J.

Formally, let G = (V, E fi A) be a strongly connected graph where V is a set of
vertexes, E is a set of undirected edges, and A is a set of directed arcs. Every edge
e = (v

i

, v
j

) œ E fi A has a cost c
ij

associated with it. A cost represents distance in
our problem domain; however, it can be any arbitrary weight. There are several
flavors of CPP depending on the nature of the edges or arcs [24]. These are:

The directed Chinese postman problem Unsurprisingly, the directed CPP is
when the graph is made of only arcs i.e. E = ?

The undirected Chinese postman problem The undirected CPP is when there
are no arcs but only edges i.e. A = ?



19

The mixed Chinese postman problem The mixed CPP is when the graph is
made of both arcs and edges i.e. A ”= ?, E ”= ?

The windy Chinese postman problem The windy Chinese postman problem is
where we’ve arcs with di�ering costs in either direction i.e. A ”= ? and c

ij

”= c
ji

The hierarchical Chinese postman problem The hierarchical Chinese postman
problem is when a subgraph of G has precedence over another subgraph of G.
For instance, if the postman has to service one part of city before the rest.

There are polynomial time algorithms for the Chinese postman problem on
directed graphs and undirected graphs. However, the mixed CPP has been shown
to be NP-complete [26]. Likewise, the windy and hierarchical CPP have both been
shown to be NP-Hard [24].

In this thesis, we are particularly interested in the directed CPP because the
directed graph model resembles the real world road network better than the undirected
and it’s still solvable in polynomial time, of course with some limitations which we
will discuss later.
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3 Results
So far, we have studied the basic properties of graphs which serves as the building
block to the solution of many combinatorial problems. In the following sections,
the algorithm for solving the directed chinese postman problem is presented, the
implementation details are discussed and test results are shown.

3.1 Solving the DCPP
A strongly connected digraph D(V, A) is Eulerian if and only if every vertex has
even degree. That means in digraphs the in-degree and out-degree of every vertex
v should be equal, or {”(v) = 0 : ’v œ V }. Thus, if a graph is Eulerian then an
Eulerian cycle can be found, which is an optimal solution to the DCPP. However,
when a graph is not Eulerian the solution to the DCPP is no longer straightforward.
This section describes an algorithm for the DCPP based on Thimbelby [33].

The basic idea revolves around augmenting the odd nodes to become even so that
eventually we will have an Eulerian graph for which we can find an Eulerian tour,
hence, the Chinese postman tour. Of course, augmenting odd nodes means to figure
out which edges to repeat while keeping the overall cost at minimum. Repeating
edges means walking without delivering mails. This problem can be tackled in various
ways.

One possible method is the transportation algorithm as shown in [24]. Let I be
the set of vertexes v

i

for which the number of incoming arcs exceeds the number of
outgoing arcs by s

i

and J be the set of vertexes v
j

for which the number of outgoing
arcs exceeds the number of incoming arcs by d

j

. The reader can interpret s and d as
supply and demand, respectively. Then, we can drive the transportation problem as
follows:

Minimize
ÿ

viœI

ÿ

vjœJ

c
ij

x
ij

subject to
ÿ

vjœJ

x
ij

= s
i

, (v
i

œ I)
ÿ

viœI

x
ij

= d
j

, (v
j

œ J)

x
ij

Ø 0

(3)

Of course, we are interested in the variable x
ij

, which is the number of repetitions
of the arc (v

i

, v
j

), i.e. the number of times the postman has to traverse the arc (v
i

, v
j

)
keeping the overall distance minimum. This is a classic linear programming approach.

Consider the following graph on Figure 13
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Figure 13: Input digraph

Observe that it’s a strongly connected, i.e. there is a path from each node to every
other node, and vertexes {1, 6, 2, 8} are odd vertexes since there is an imbalance
between the incoming and outgoing arcs. The handshaking lemma we saw previously,
tells us that, for undirected graphs there can only be an even number of odd vertexes.
For a digraph, the handshaking lemma is slightly modified; the sum of in-degree
vertexes is equal to the sum of out-degree vertexes. In this particular case, half of
the odd vertexes belong to the set I and half belong to J .

1 2 3

4 5 6

7 8 9

-

-

+

+

Figure 14: Odd vertexes classified as +ve and -ve nodes

Let’s put the -ve and +ve vertexes into I and J bipartition so we can apply
Equation 3 on it.
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Figure 15: Bipartite graph of the odd vertexes with shortest distance weights between
the vertexes

For convenience we use the variable names as x11 = v1v2, x12 = v1v8, x21 = v6v2,
x22 = v6v8.

Minimize (c11x11 + c12x12) + (c21x21 + c22x22)
= (10x11 + 13x12) + (4x21 + 7x22)

and the constraints
x11 + x12 = 1
x21 + x22 = 1
and
x11 + x21 = 1
x12 + x22 = 1
x

ij

Ø 0
(4)

Solving this system of linear equation yields x11 = 1, x12 = 0, x21 = 0, and
x22 = 1. Or alternatively, x11 = 0, x12 = 1, x21 = 1, and x22 = 0 is an optimal
solution. And the resulting augmented digraph is shown in Figure 16.



23

1 2 3

4 5 6

7 8 9

-

-

+

+

Figure 16: Eulerian graph of the input graph

Finally, the last step in obtaining a Chinese postman tour is to compute the
Eulerian tour of the augmented graph. It is to be noted that there are alternative
methods to do the augmentation process. One such method is the minimum weighted
bipartite matching a.k.a the assignment problem. Generally speaking, linear pro-
gramming methods are similar in essence. The minimum weighted bipartite matching
can be solved using the Hungarian algorithm [33], however, it is not be a simple
algorithm to implement.

The flowchart on Figure 17 shows the broader picture of the steps involved.



24

Input digraph

Enumerate 
Odd Vertices

Exit with Error

Are there odd 
vertices?

Augment graph 
to Eulerian

Generate 
Eulerian tour

No

Yes

Is the graph 
strongly 

connected?

Yes

No

Figure 17: Flowchart for steps involved in solving the CPP

3.2 Implementation
The implementation of the DCPP is based on a previous implementation by Thim-
belby [33]. The code is written in Node.js R• compatible javascript and demonstrates
the algorithm on small size weighted multidigraphs. Multidigraphs are digraphs with
possibly repeated arcs between vertexes.

The implementation uses adjacency-matrix for representing the graph data. It
has two main constructors, namely Adapter and CPP. The CPP object is the core of
the algorithm responsible for producing the expected output whereas the Adapter is
responsible for handling input data and transforms it into a form that is e�cient for
the CPP to deal with. The CPP object has an instance variable called arcs which
is a 2-dimensional array that stores the arcs between the nodes. It also has instance
variable delta which is a 1-dimensional array and corresponds with the variables s

i

and d
j

, in the previous sections, which are the imbalances at vertex v1 and v2. Every
time a new arc (v1, v2) is added, we increment arcs[v1][v2] and delta[v1] and
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decrement delta[v2].

3.2.1 Shortest paths

The CPP object also keeps a 2-dim array called path which maintains the shortest
path between every pair of vertexes. Essentially during initialization, path[v1][v2]

= v2. However, this value will get updated when low cost paths are discovered later
in the program.

All-pairs shortest path algorithm is used in this case. In particular, We use the
Floyd-Warshall algorithm, which is an e�cient all-pairs shortest path algorithm and
runs in �(V 3) [6]. Johnson’s algorithm on sparse graphs also runs faster but on
dense graphs the performance is the same to that of Floyd-Warshall’s algorithm.
Also it may be more complicated to implement.

Some key observations of the algorithm are:

• A shortest path doesn’t contain the same vertex more than once

• For a shortest path from i to j such that any intermediate vertexes on the path
are chosen from the set {1, 2, · · · , k}, there are two posibilities:

– k is not a vertex on the path, so the shortest such path has length dk≠1
ij

– k is a vertex on the path, so the shortest such path is dk≠1
ik

+ dk≠1
kj

• Define d
(k)
ij

to be the weight of the shortest path from vertex i to j for which
all intermediate vertexes are in the set 1, 2, · · · , k. Consequently, d

(k)
ij

can be
defined recursively as follows

d
(k)
ij

=

Y
_]

_[

w
ij

if k = 0
min

3
d

(k≠1)
ij

, d
(k≠1)
ik

+ d
(k≠1)
kj

4
if k Ø 0

where w
ij

is the weight of an arc in the adjacency matrix of the digraph D(V, A)
and has the following values:

w
ij

=

Y
___]

___[

0 if i = j

cost of arc (i, j) if i ”= j and (i, j) œ A

Œ if i ”= j and (i, j) /œ A

The Floyd-Warshall algorithm typically only computes the cost of the paths
between all pairs of vertexes. But we can take advantage of it to build the predecessor
matrix denoted as �. This will allow us to compute not only the cost but also the
paths. That is done by computing a sequence of matrices �(0), �(1),. . . �(n) at the
same time while computing D1,2...k.

Let’s define fi
(k)
ij

as the predecessor of vertex j on a shortest path from vertex i with
all intermediate vertexes in the set {1, 2, . . . , k}. There is a recursive formulation [6]
of fi

(k)
ij

where:
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fi
(0)
ij

=
Y
]

[
NIL if i = j or w

ij

= Œ
i if i ”= j or w

ij

< Œ
which is the case when k = 0 i.e. the shortest path from i to j has no intermediate
vertexes. For k Ø 1 we have,

fi
(k)
ij

=
Y
]

[
fi

(k≠1)
ij

if d
(k≠1)
ij

Æ d
(k≠1)
ik

+ d
(k≠1)
kj

fi
(k≠1)
kj

if d
(k≠1)
ij

> d
(k≠1)
ik

+ d
(k≠1)
kj

The Pseudocode for the Floyd-Warshall’s algorithm is shown on listing 2.

Algorithm 2: Floyd-Warshall All-pairs shortest path algorithm [6]
Input: W Adjacency matrix of D(V, A)
Output: D(n) least cost matrix
n = vertexes
D = W
� initialization
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

if d
ij

> d
ik

+ d
kj

then
d

ij

= d
ik

+ d
kj

fi
ij

= fi
kj

end
end

end
end
return D(n)

Furthermore, Algorithm 2 can be modified to check for negative cycles while
computing least cost paths. This can be achieved by adding an if statement in the
inner loop [33].

Y
]

[
stop! -ve cycle found if i = j and w

ij

< 0
proceed otherwise

3.2.2 Inspecting strongly connectedness

Strongly connectedness is a necessary condition to solve the DCPP and therefore
should be checked in the beginning stages of the computation. This can be achieved
by using the Floyd-Warshall’s algorithm predecessor matrix �(n). In the matrix, if any
of the w

(n)
ij

is NIL for i ”= j, then the graph is not strongly connected. Unsurprisingly,
when the graph is not strongly connected, we exit with error message.
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3.2.3 Searching for odd vertexes

We keep track of the delta, which is the di�erence between the number of incoming
and outgoing arcs, of each vertex during the insertion of arcs. The indices of the
delta array represents the vertexes. Thus, we iterate through the delta and copy the
negative and positive vertexes into two di�erent arrays neg and pos. Therefore, we
now have the odd vertexes in two classes i.e. neg and pos arrays and we have the
corresponding deficiencies in the delta 1-dim array.

3.2.4 Optimization

The algorithm used to solve the optimization problem is called cycle-cancelling. It is
a well-known combinatorial method to solve minimum cost flow problems [13]. There
are other methods to solve the optimization problem, namely linear programming,
matching [11] etc.; however, they are complicated to implement. In particular,
applying linear programming to solve Equation 3 should be done carefully. Because
the results, while being feasible, may not be integral [33]. This means that the output
x could be in R when it should be in Z.

Cycle cancelling is based on the negative cycle optimality condition. The negative
cycle optimality condition says that, for a feasible flow to be optimal, there should
be no negative cycle in the residual graph. It starts with a feasible solution i.e., one
that converts all odd vertexes to even but the augmentation is not optimal, and
iteratively improves by removing negative cycles from the residual graph for the
feasible solution. In minimum cost flow problems, the initial feasible max flow can
be computed using Edmonds-Karp algorithm [22].

In the implementation, a greedy algorithm from [33] is used. It works, by
iteratively combining odd vertexes in D≠, those with -ve imbalance, with those with
+ve imbalance in the set of D+.

The application of algorithm 3 on input Figure 18a might produce a result as in
Figure 18b which is not optimal but is feasible.

a

db

c
7

10

12

3

D- D+

f =1

f =1

capacity (c) = ∞

(a) Input to algorithm 3

a

db

c
7

10

12

3

D- D+

f =1

f =1

capacity (c) = ∞

f =1

f =1

f =0

f =0

(b) One of many (two in this case)
feasible solutions

Figure 18: Finding initial feasible solution

Unsurprisingly, the worst case running time of algorithm 3 is O(|V |2) in which
case every vertex on the graph has odd degree.

Once we have a feasible solution, it is the input to the cycle cancelling algorithm.
The general cycle-cancelling algorithm for minimum cost flow is shown in listing 4
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Algorithm 3: Greedy algorithm to find feasible solution [33]
Input: Set of -ve and +ve vertexes œ D(V, A)
Output: Feasible solution
n = no of vertexes in D≠

m = no of vertexes in D+

for i = 1 to n do
u = neg[i]
for j = 1 to m do

v = pos[j]
if -delta[u] < delta[v] then

x
uv

= ≠delta[u]
else

x
uv

= delta[v]
end
delta[u] = delta[u] + x

uv

delta[v] = delta[u] ≠ x
uv

end
end
return x

and can be adapted to our problem.

Algorithm 4: Cycle cancelling algorithm min cost flow problem [22]
Input: Directed network D(V, A)
Output: Minimum cost optimal solution
Establish a feasible flow x in in the network
Let A1 = {(i, j) œ A : f((i, j)) < c((i, j))}
Let A2 = {(i, j) œ A : f((j, i)) > 0}
Let D

x

= (V, A1 fi A2)be the residual network
while D

x

contains a negative cycle do
Identify a negative cycle W
d := min{r

ij

|(i, j) œ W}
/* augment d units of flow along W and update D

x

*/

x((i, j)) = x((i, j)) + d, ’(i, j) œ A : (i, j) œ A1 fl W
x((i, j)) = x((i, j)) ≠ d, ’(i, j) œ A : (j, i) œ A2 fl W

end
recover an optimal flow x from the final residual network D

x

In Algorithm 4, c is the capacity of the arc, which in our case can be assumed to
be Œ, f is the flow; in our case, f is equal to the ”

v

. The cost will be the same as
before which is the distance.

Now let’s define the residual network D
f

= (V, A
f

) associated with flow f .
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Suppose e = (u, v) œ A then:

• if f
uv

< c
uv

then (u, v) œ A
f

with cost Ê
uv

and residual capacity r
uv

= c
uv

≠f
uv

• if f
uv

> 0 then (v, u) œ A
f

with cost ≠Ê
uv

and residual capacity r
vu

= f
uv

u v u v
fuv

ruv=cuv-fuv

ruv=fuv

Figure 19: A flow network D (left) and its residual network D
f

(right)

Let’s apply the cycle-cancelling algorithm on the feasible solution in Figure 18b
we found earlier. The residual graph of the network is shown in Figure 20.

1. First search for a negative cycle. The Floyd-Warshall algorithm already does
that for us. The sum of costs on the negative cycle is ≠7 + 12 + 3 + ≠10 = ≠2.
Therefore, we have a negative cycle shown with dotted lines on Figure 20.

a

db

c
7

10

12

3

f =1

f =1

capacity (c) = ∞

f =1

f =1

f =0

f =0

-7

-10

rcu=1

rcu=1

Figure 20: The residual network of the feasible solution in Figure 18b

2. Now, we have to destroy the negative cycle. To do that, we need to find the
minimum residual capacity on the cycle. The residual capacity r

ac

= 1, r
db

=
1, r

ad

= Œ, andr
bc

= Œ. Therefore, d = min{1, 1, Œ, Œ} = 1

3. Next we do the following two steps:

f((i, j)) = f((i, j)) + d, ’(i, j) œ A : (i, j) œ A1 fl W

f((i, j)) = f((i, j)) ≠ d, ’(i, j) œ A : (j, i) œ A2 fl W

where W is the negative cycle. Thus, flow f along ac and bd becomes zero i.e.
1 ≠ d = 0 and flow along, bc and ad becomes 0 + d = 1.
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4. At this point, we have another feasible solution. Calculate the residual network
of the new solution and see if it has any negative cycles. If it has negative cycle
we repeat the steps above again and the iteration goes on. If it has no negative
cycle then that solution is optimal.

Assuming that all the data of the problem are integral, the algorithm terminates
within O(|E|CU) iterations [1] where C is maximum capacity and U is maximum
cost of the network. Taking into account the Floyd-Warshall algorithm for finding
the negative cycles the global cost of the algorithm amounts to O(|V |3|E|CU).
Alternatively, one can use the Bellman-Ford algorithm for finding negative-cycles
with a running time of O(|E||V |) [6]. In addition, during the execution of the
Floyd-Warshall algorithm, exponentially large numbers may occur which will likely
cause an overflow for larger graphs. To avoid this problem, the if statement for
checking negative cycles in the inner loop, can be put outside the nested loops and
iterate over the diagonals of the distance matrix; without a�ecting the worst-case
running time [16].

3.2.5 Route generation

At this point, the optimization problem is solved and it’s possible to construct the
Eulerian cycle which is the Chinese postman tour. The algorithm for the Eulerian
cycle uses a spanning tree, which we have as a by-product from the Floyd-Warshall
algorithm predecessor matrix. It works by iterating over all the vertexes i and
following the shortest path to another vertex j if there is one; and decrements the
visited edges from the global array as each path is followed. If there is no path i j,
take another arc outside the spanning tree. Otherwise, take the last arc from the
spanning tree to the start vertex [33].

3.2.6 Testing

The test data is a strongly connected, Gnuttella peer-to-peer file sharing network,
digraph from the Standford large network dataset collection [30]. The nodes represent
hosts in the network topology and edges represent connections between the hosts.
The purpose of the test is to probe the performance of the algorithm (Such a test
would have been better performed on a road network; however, at the time of writing,
a digraph road network was unavailable). The original dataset has 6301 nodes and
20777 edges in total; and 2068 nodes and 9313 edges in the strongly connected
component. The edges were iteratively removed to reduce the size of the graph and
a weight of unit value is assigned to each arc, since the original data has no weights.

Two external Java (JGraphT and Graphstream) libraries were used for visualiza-
tion, and pre-processing of the data.

The asymptotic running time in the previous section reveals that the running
time of the algorithm is pseudopolynomial, i.e. it is not quite polynomial and it
behaves more like exponential time algorithm. The test was conducted on a Macbook
Pro with a duo core processor of 2.4GHz and memory of 8GB on a single thread of
execution.
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(a) 25 nodes and 68 edges (b) 224 nodes and 740 edges

Figure 21: Test data — peer-to-peer file sharing (Weight(v
i

, v
j

) = 1 unit)

Table 1: Test results

Nodes Edges Tour length Cost Phi Time (sec)
5 8 16 16 8 0.006
9 13 18 63 17 0.006
25 68 135 135 67 0.053
224 740 2779 2779 2039 5.348
858 3273 10234 10234 6961 22185.414 (6.2 hrs)

Incidentally, the result of the algorithm for the graph on Figure 13 is shown
below.

1 2 3

4 5 6

7 8 9

3 2

217

6

2 3

64

1 2

Figure 22: Input graph (Same as Figure 13)

Resulting route = 1 æ 4 æ 5 æ 8 æ 9 æ 6 æ 5 æ 2 æ 3 æ
6 æ 5 æ 8 æ 7 æ 4 æ 1 æ 4 æ 5 æ 2 æ 1

Phi = 17 and Cost = 63
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4 Discussion
At this point, we have figured out an algorithm to solve an unconstrained directed
Chinese postman problem. This algorithm can be used in a mobile map, web map or
packaged as a plugin to be used with any GIS software suites. In fact, at the moment
there is an experimental CPP solver plugin [28] for an open source software QGIS.

In the context of GIS, suppose a scenario where a city has to estimate the travel
cost of grit or salt spreading during the winter season. Such problem is a direct
application of the Chinese postman problem. And an algorithm like the one we
developed is an important tool in tackling the problem. Waste collection, which is
the theme of this thesis, is also an important example of where the CPP can be
applied and used.

As we have noted in Section 2.3, most of the methods employed in solving the
garbage collection problem are indeed esoteric, non-optimal and very complicated to
implement. In comparison, the DCPP solution we have is easy to implement and
understand. Of course, it has its downsides as well. The DCPP cannot be used in
all instances of garbage collection route optimization. In particular, in cases where
garbage collection is done selectively,i.e. when there is no need to traverse the entire
road network, then the result of the algorithm clearly would be non-optimal. Thus,
it shouldn’t be seen as a silver bullet that can solve all waste collection routing
problems.

As a further matter, it is important to note that this is unconstrained solution.
The capacity of waste trucks is assumed non-finite, garbage can be collected at
anytime, there are no narrow angle turning restrictions, as long as the direction
of the arc is not violated, and there are no other trucks doing the same job in the
given network. As such, this is not a single solution package in and of itself but
certainly, part of the solution. In times, where we have strong constraints, we can
use other methods that are suited to each individual constraints. Yet when there are
no constraints or the constraints are loose, we can employ the DCPP algorithm to
do the job.

The general approach for using the DCPP algorithm in GIS context either for
routing waste collection trucks, estimating fuel costs during salt and grit spreading etc.
is as follows:

1. Determine the service area: The first thing that needs to be done is to
determine the underlying road network of the service area. This can be achieved
by clipping the network based on some given bounding box. In doing so, it is
necessary to make sure that the underlying network remains connected. The
process of clipping can be automated using clip software tools.

2. Identify intersection: Road intersections are what make up the vertexes in
the adjacency matrix of the graph. The longitude and latitude information
is not necessary for our algorithm since it is purely combinatorial and not
geometrical as that is natural to graphs. However, the latitude and longitude
coordinates can be used later, once the route computation is finished, to plot



33

the route on map. The intersections should be labeled, that can be done using
reverse geocoding.

3. Assign distance: The distance between the intersections should be assigned
and should be the same in both directions if the streets are bi-directional.
Multi-lane streets can be shown as parallel edges.

4. Run the algorithm: The result is a list of street names in the order required
by the DCPP.

Figure 23: Example service area — The points indicate street intersections. Garbage
bins are located along the streets between the intersections. The truck will have to
drive along all streets to empty the bins.
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Table 2: Street data in the service area given as a directed graph. This network
information can be input in csv format.

From Y X To Y X Distance(m)

Ludvigsgatan 5-7 24.943972 60.165764 Erottajankatu 19 24.943863 60.166307 62.38
Erottajankatu 19 24.943863 60.166307 Eteläesplanadi 24 24.943998 60.166716 49.13
Eteläesplanadi 24 24.943998 60.166716 Högbergsgatan 36 24.94574 60.167109 109.57
Högbergsgatan 36 24.94574 60.167109 Högbergsgatan 43 24.945884 60.166055 118.62
Högbergsgatan 43 24.945884 60.166055 Högbergsgatan 36 24.94574 60.167109 118.62
Högbergsgatan 43 24.945884 60.166055 Högbergsgatan 30 24.94588 60.165814 27.01
Högbergsgatan 30 24.94588 60.165814 Högbergsgatan 43 24.945884 60.166055 27.01
Ludvigsgatan 5-7 24.943972 60.165764 Högbergsgatan 30 24.94588 60.165814 106.09
Lilla Robertsgatan 11-13 24.944271 60.164178 Ludvigsgatan 5-7 24.943972 60.165764 178.59
Lilla Robertsgatan 7-9 24.946062 60.164202 Lilla Robertsgatan 11-13 24.944271 60.164178 101.35
Lilla Robertsgatan 11-13 24.944271 60.164178 Lilla Robertsgatan 7-9 24.946062 60.164202 101.35
Högbergsgatan 30 24.94588 60.165814 Lilla Robertsgatan 7-9 24.946062 60.164202 179.5
Lilla Robertsgatan 7-9 24.946062 60.164202 Högbergsgatan 30 24.94588 60.165814 179.5
Lilla Robertsgatan 7-9 24.946062 60.164202 Lilla Robertsgatan 1 24.947944 60.16426 104.25
Lilla Robertsgatan 1 24.947944 60.16426 Lilla Robertsgatan 7-9 24.946062 60.164202 104.25
Lilla Robertsgatan 1 24.947944 60.16426 Kaserngatan 44 24.947793 60.166127 208.82
Kaserngatan 44 24.947793 60.166127 Lilla Robertsgatan 1 24.947944 60.16426 208.82
Kaserngatan 44 24.947793 60.166127 Högbergsgatan 43 24.945884 60.166055 106.93
Högbergsgatan 43 24.945884 60.166055 Kaserngatan 44 24.947793 60.166127 106.93
Eteläesplanadi 14 24.947631 60.167152 Kaserngatan 44 24.947793 60.166127 115.41
Högbergsgatan 36 24.94574 60.167109 Eteläesplanadi 14 24.947631 60.167152 107.01

The addresses in the CSV data were obtained by using reverse geocoding on
google maps. The result of this algorithm is shown below starting and ending at
Ludvigsgatan 5-7 :

Result — shortest tour

Ludvigsgatan 5-7 æ Erottajankatu 19
Erottajankatu 19 æ Eteläesplanadi 24
Eteläesplanadi 24 æ Högbergsgatan 36
Högbergsgatan 36 æ Eteläesplanadi 14
Eteläesplanadi 14 æ Kaserngatan 44
Kaserngatan 44 æ Högbergsgatan 43
Högbergsgatan 43 æ Högbergsgatan 30
Högbergsgatan 30 æ Lilla Robertsgatan 7-9
Lilla Robertsgatan 7-9 æ Lilla Robertsgatan 11-13
Lilla Robertsgatan 11-13 æ Lilla Robertsgatan 7-9
Lilla Robertsgatan 7-9 æ Högbergsgatan 30
Högbergsgatan 30 æ Lilla Robertsgatan 7-9
Lilla Robertsgatan 7-9 æ Lilla Robertsgatan 11-13
Lilla Robertsgatan 11-13 æ Ludvigsgatan 5-7
Ludvigsgatan 5-7 æ Högbergsgatan 30
Högbergsgatan 30 æ Högbergsgatan 43
Högbergsgatan 43 æ Högbergsgatan 36
Högbergsgatan 36 æ Högbergsgatan 43
Högbergsgatan 43 æ Kaserngatan 44
Kaserngatan 44 æ Lilla Robertsgatan 1
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Lilla Robertsgatan 1 æ Kaserngatan 44
Kaserngatan 44 æ Högbergsgatan 43
Högbergsgatan 43 æ Högbergsgatan 30
Högbergsgatan 30 æ Lilla Robertsgatan 7-9
Lilla Robertsgatan 7-9 æ Lilla Robertsgatan 1
Lilla Robertsgatan 1 æ Lilla Robertsgatan 7-9
Lilla Robertsgatan 7-9 æ Lilla Robertsgatan 11-13
Lilla Robertsgatan 11-13 æ Ludvigsgatan 5-7
Phi is 871

Cost = 3283

As we can see in the output, the shortest possible tour for the service area takes
about 3.3km. Phi is the distance of the repeated streets. This is the optimal tour.
In other words, there is no other better way to walk along the streets in Figure 23
than the one given here.
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5 Conclusion
This thesis has attempted to describe all the necessary algorithmic machinery needed
to solve the directed Chinese postman problem. The DCPP is a very good model to
simulate real life route optimization in household waste collection, snow ploughing,
street cleaning [10] and other applications, where minimal arc traversing is the
objective, without being hopelessly intractable. Yet, it is also necessary to note that
there are many variables in real life that will elevate the di�culty of the problem of
routing for household waste collection.

In particular, in situations where it is not necessary to visit all edges but a small
subset of them, the DCPP is not very helpful. The Rural postman problem is a
variant of the Chinese postman problem where the objective is to visit only a small
subset of the arcs. Unfortunately, the RPP is NP-hard [29]. In addition, in the case
where the postman has capacity and time window constraints the problem is called
capacitated arc routing problem with time windows. Clearly, this is also an NP-hard
problem since it’s evolved from the RPP. While there are many heuristic and exact
methods [20,24,29,34] for these classes of problems, they are very complicated for
practical use.

Meanwhile, the algorithm presented in this thesis comparatively is simple to
understand and implement. This version of cycle-canceling doesn’t specify the order
for selecting negative cycles. A variant of this algorithm with a judicious choice
of cycles for canceling has a strongly polynomial time [13]. The network simplex
algorithm, which is believed to be one of the fastest for minimum cost flow problems,
is a type of cycle-canceling algorithm [1] and as a result it is one of the widely
used algorithm to solve minimum cost flow problems. Furthermore, scaling cycle-
canceling algorithm that works by identifying negative cycles with “su�ciently large”
residual capacity and augmenting flows along them, is also a strongly polynomial
algorithm [31].

From our observation of the DCPP so far, it can be used e�ectively in densely
populated networks where waste bins are located along every street. An open tour
DCPP can also be computed with the same technique for cases where the vehicle
enters the network at one point and exits at another. Capacity and time-window
constraints perhaps can be handled in a scheduler separately from the routing. The
results from the scheduler can be used as input to a network generator that gives
out the underlying road network. On top of the road network, we can compute the
DCPP algorithm like the one presented in this thesis. Such arrangement is being
investigated at the moment and is a potential future research subject.
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