

16.01.2017 Dr. Ilkka V. Kojo

WEEE as a secondary source for metals

Amount of WEEE increasing as rapidly as the clock speed in computers...

Growth potential for mining industry; Urban mining (WEEE)

Global Sales 2010

Mobile phones (a)

1600 million units / year

 $x250mgAg \approx 400t Ag$

x 24 mg Au \approx 38t Au

 $x 9 mg Pd \approx 14t Pd$

x 9 g Cu ≈ 14,000 t Cu

1300 million Li-Ion batteries

x 3.8 gCo ≈ 6100 t Co

PCs & Laptops (b)

350 Million units / year

 $x1000 \text{ mg} \text{ Ag} \approx 350 \text{ t Ag}$

x 220 mg Au ≈ 77t Au

x 80 mg Pd \approx 28 t Pd

x~500 g Cu ≈175,000t Cu

~180 million Li-ion batteries

x 65 g Co ≈11,700t Co

Urban Mine (a+b)

Mine production Share

3%

Ag: 22,200 t/a ►

Au: 2,500 t/a ► 5%

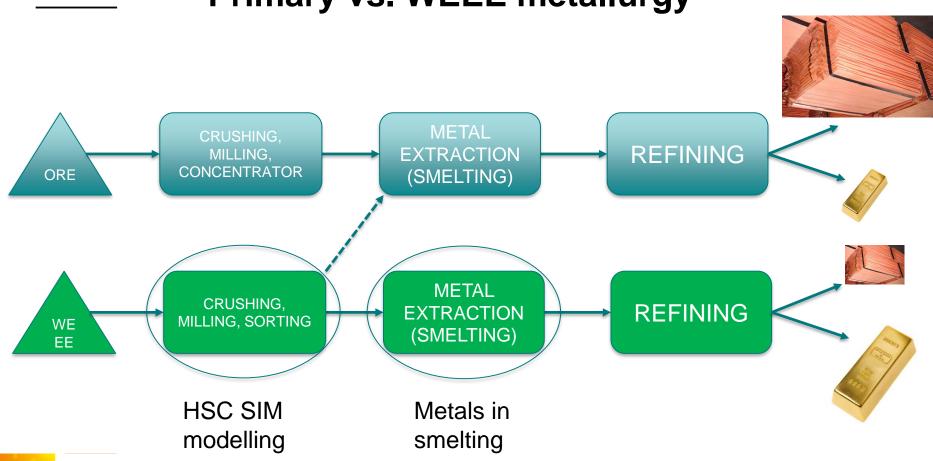
Pd: 200 t/a ► 21%

Cu: 16 Mt/a ► 1%

Co: 88,000 t/a ► 20%

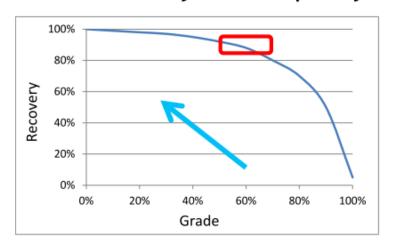
2016	Value,
Feb	million €
Ag	371
Au	4 547
Pd	677
Cu	868
Co	404
	6 867

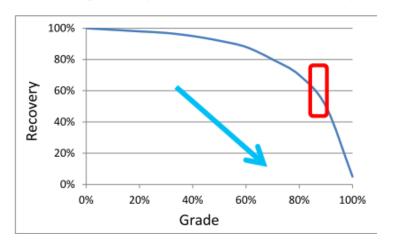
The beef is in gold!


But it is not possible to recover the beef without copper

Reuter & Van Schaik (WEEE Handbook, 2012)

Primary vs. WEEE metallurgy

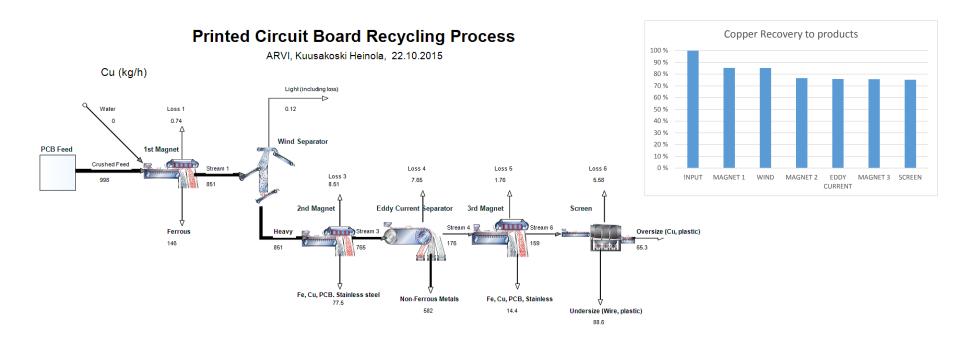




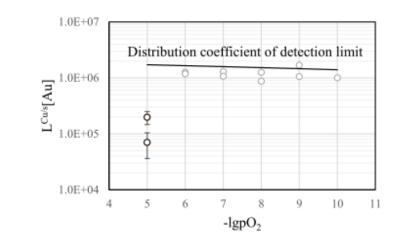
Challenge of sorting, quantity vs. quality

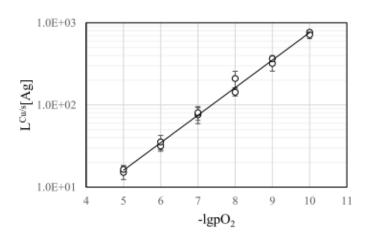
Maximize recovery 90 % recovery at 60 % purity

Maximize product quality 90 % purity at 60 % recovery

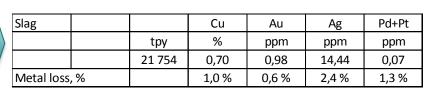


Talja, J., Metals Recycling Makes Business Sense, Metal Industry; a necessity for the circular economy A joint seminar between Swedish and Finnish steel and metal R&D professionals, 2016-09-29 Helsinki


HSC SIM MODEL OF WEEE TREATMENT



DISTRIBUTION OF GOLD AND SILVER BETWEEN COPPER AND SLAG IN WEEE SMELTING


WEEE SMELTING IN A TSL FURNACE,

EXAMPLE

Dust			Cu	Au	Ag	Pd+Pt
		tpy	%	ppm	ppm	ppm
		2 272	4,5	8,4	14,4	0,6
Potential t	reatment		0,7 %	0,5 %	0,3 %	1,2 %

WEEE Bler	nd	Cu	Au	Ag	Pd+Pt
	tpy	%	ppm	ppm	ppm
	47 059	31,9	79	280	2

Iron scrap	2 890	tpy	
Coal	621	tpy	

Copper metal		Cu	Au	Ag	Pd+Pt
	tpy	%	ppm	ppm	ppm
	14 959	98,7	245,8	836,1	7,7
Metals Recovery, %		98,3 %	98,9 %	97,3 %	97,6 %

Conclusions

- The HSC SIM model developed in the ARVI is unique and allows simulation of WEEE sorting in order to find best (economic) alternative to the process to recover the valuables
- The model has to be calibrated case by case
- Metallurgical treatment of sorted WEEE was also calculated based on the results of thermodynamical tests and inhouse knowhow of the behaviour of the metals in pyrometallurgical treatment
- Copper is the main target to recover as it acts as a collector for other valuable metals in the smelting process
- Some of the valuables are lost in the sorting process and thus it is still a potential target for further development.

Thank you!

Any questions?