

efeu

Efficient Energy Use

Energy flow estimation and forecasting for efficient energy system operation

ZOU Guangrong (guangrong.zou@vtt.fi), Kari Tammi, VTT Ltd Mikael Manngård, Jari Böling, Åbo Akademi Philipp Nguyen, Robert Tenno, Kai Zenger, Aalto University Juha Orivuori, Kalevi Tervo, ABB Oy Marine and Ports

Main Objectives

→ To develop energy flow simulation, estimation and forecasting methods for general energy systems, specifically focusing on ship energy systems.

Collaboration Structure

Example Results

Main Approaches

a) Waste heat recovery estimation and forecasting using Regressive Least Squares (RLS) method with different horizons

b) Waste heat recovery estimation and forecasting using Least Squares-Support Vector Machine (LS-SVM) method

Conclusions

- **Energy flow estimation and forecasting** can provide operators valuable insights into system operations with **future aspects** into consideration
- Both grey-box and black-box approaches can deliver good estimations within reasonable horizon.
- The practical performances of energy flow prediction depend on some key factors of specific approaches
- The methods are general in nature and easily applicable to other energy systems

Solution Architect for Global Bioeconomy & Cleantech Opportunities