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Abstract

The aim of this report is to study computation-
ally the one-dimensional turbulent cavitating flow
in the nozzle of a diesel injector. The cavitating
flow in the nozzle is often computed with the slug
flow model. In this model the outlet flow area is
assumed the same as the geometric cross sectional
area of the nozzle. The zero wall shear model is
the other model used to compute the flow in the
nozzle. The equations of this model are derived in
detail. Two Scilab scripts were written for the com-
putation. As a result, the slug flow model gives a
clearly too low flow velocity and a too large flow
area at the outlet. In cavitating turbulent flow the
zero wall shear model is recommended for comput-
ing the flow velocity and area at the outlet of the
nozzle.

Helsinki, October 26, 2016.
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Symbols

A area vector
A area
A, minimum flow area
A, geometric cross sectional area
A, flow area in section 2
C. coeflicient of contraction
Cq coefficient of discharge
Ca coefficient of discharge in turbulent non cavitating flow
CS control surface
CV control volume
Fp, body force in z-direction
Fg, surface force in z-direction
F, net force in z-direction
g gravitational acceleration
K Nurick’s cavitation number
K., critical Nurick’s cavitation number
m mass flow rate
Mih theoretical mass flow rate
D pressure
De pressure at the minimum flow area
Do vapor pressure
P pressure at section 1
Do pressure at section 2
u x-component of flow velocity
Ue x-component of flow velocity
at the minimum flow area
Ug according to geometric flow area calculated z-component
of flow velocity at the outlet of nozzle
Uth theoretical flow velocity in x-direction
Us x-component of flow velocity in section 2
V velocity
1% velocity vector
V. flow velocity at the minimum flow area
\d volume
¥ volume flow rate
z height
p density



1 Introduction

The emissions and efficiency of an internal combustion engine depend on the
combustion in the cylinder. In a diesel engine combustion is controlled by
means of fuel injection. During a short time the fuel is injected through small
nozzles using high pressure and velocity into the combustion chamber.

The fuel flow in the nozzle affects the spray and diffusion of fuel and
air in the cylinder. High pressure and velocity are needed to achieve good
atomization, adequate penetration of the spray and good mixing of fuel and
air.

Because a great pressure difference exists over the injector nozzle, the flow
cavitates in the nozzle almost all the time during the injection. Cavitation is
a very complicated phenomenon. In a simple cavitation model of an injector
nozzle it is assumed that vapor pressure exists at the smallest cross sectional
flow area.

Combustion is often simulated with a computational fluid dynamics code.
In that case the flow velocity from the outlet of the injector nozzle must be
known as a function of time. To compute the flow velocity, the flow area at
the outlet of the nozzle must be known, too.

The aim of this study was to solve both the flow velocity and area at the
outlet of a diesel nozzle. A one-dimensional model was used. The flow was
assumed to cavitate in the nozzle.
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Figure 1. Schematic of the flow in Nuricks’s model.

2 Models

In deriving the Nurick’s and the zero wall shear model the Fox-McDonald-
Pritchard |[Fox10| solution methodology was used. The methodology was
modified a little.

2.1 Nurick’s model

Nurick’s model is needed in deriving zero wall shear model. Nurick [Nur76|
has derived an equation for the coefficient of discharge in the diesel injector
nozzle. In this equation the discharge coefficient depends on the coefficient of
contraction and Nurick’s cavitation number. The coefficient of contraction is
calculated by dividing the minimum flow area by the geometric cross sectional
area. Nurick’s cavitation number is a function of the pressure before and after
the nozzle and the vapor pressure of the fuel.

2.1.1 Schematic

In Figure 1 the schematic of the flow in the Nurick’s model is given.

2.1.2 Governing equations

The Bernoulli equation is

P+ ; pV? + pgz = constant, (1)
where
P pressure
P density
V flow velocity
g gravitational acceleration



z height.

The mass flow rate is calculated with the expression
= p¥ = pV A, (2)
in which 7 means mass flow rate, ¥ volume flow rate and A cross sectional
area.
2.1.3 Assumptions

In deriving Nurick’s model the following assumptions were made:

1. The flow is turbulent.

2. The flow cavitates in the nozzle.

3. No losses exist.

4. Liquid is incompressible.

5. The flow is one-dimensional.

6. Steady state equations can be used.

7. When one looks from the inlet or outlet of the nozzle, vapor accumu-
lates ring-shaped on the wall of the nozzle.

8. At the smallest flow area (the section c in Figure 1) the pressure equals
to the vapor pressure.

At full load, the injection lasts in a vehicle diesel engine 1-2 ms and in
a medium speed diesel engine approximately 5 ms . The injection pressure
can vary 150 MPa or more during the injection period. So it is obvious that
the flow in the nozzle is time dependent. The nozzle is very short compared
to the injection pipes and the injection time is short, too. Thus, it can be
assumed that the properties of the liquid in the nozzle at a certain moment
don’t change. Schmitt [Sct66] has shown by experiments and calculation that
in diesel nozzles the liquid flow can be assumed quasi-static. So the steady
state equations are allowed to use in liquid nozzle flow (Assumption 6).



2.1.4 Solution

The liquid flows from a container through the nozzle into the cylinder. The
section 1 is chosen so that there the flow velocity u; ~ 0 (Figure 1, p. 7).
The pressure p; exists in the section 1.

Because the streamlines must be continuous, the streamlines at the inlet
are unable to turn abruptly to the direction of the nozzle walls. For this
reason the flow diverges from the walls and the flow area decreases in the
nozzle near the inlet. The smallest flow area A. locates in the the section c.
This section is also called vena contracta. In the section ¢, the pressure p, is
the lowest and the velocity u. the highest. When the pressure p. decreases
enough, cavitation begins in the vena contracta. Now, in the section c, the
vapor pressure exists (Assumption 8).

The ratio of the smallest flow area A, to the geometric cross sectional
area A, is defined as the coefficient of contraction C, or

From the previous expression and Equation (2) the mass flow rate be-
comes
m = pAcu. = pCeAgu, (4)

in which p means the density of the liquid. When the flow velocity in the
section c is solved from the previous equation, it comes

m
- pCcAg (5)

U

Next the Bernoulli equation (1) is used to the sections 1 and c¢. The
section 1 was chosen so that the flow velocity there is u; = 0. The pressure
difference between the sections 1 and ¢ caused by the height difference is
insignificant. In this way, from the Bernoulli equation and mass flow rate an
expression is derived for p; or

. 2
1 1 m
= c — — c - 6
1= pe+ 5 pU; p+2p<pCCAg> (6)

The mass flow rate is solved from the last equation and it is remembered
that p. = p, (Assumption 8), then it becomes

m = C'cfélg \/ 2p(p1 - pv) (7)



When the flow has no losses, the Bernoulli equation is between the sec-

tions 1 and 2 ]

PL=p2+ B U, (8)
where wu, means the theoretical flow velocity. This velocity is calculated
using the geometric cross sectional area.

Now the theoretical flow velocity is solved from the previous equation

Uth = i(pl — p2) (9)

The coefficient of discharge Cjy is defined to be the ratio of the real and
theoretical mass flow rates

(i AC B _Cofinm
d= = = ,

My PAgUth PUth

where 1, means theoretical mass flow rate.
By setting Expression (9) of the theoretical flow velocity into Equa-
tion (10) the coefficient of discharge becomes

o Cer/2p(p1 — Do) _g, [ (11)
p\/(2/p)(p1 — p2) P1— D2

In Nurick’s model the expression under the square root is called cavitation
number K i.e.

b1 — Do
P1— D2
Because the cavitation number has many definitions, K is called here the
Nurick’s cavitation number.

Finally the coefficient of discharge can be given as

Cy=CNK (13)

K= (12)

2.2 Slug flow model

At the nozzle outlet the velocity in cavitating flow is often computed as a
mean velocity. This is calculated using mass flow rate, density and geometric
cross sectional area of the nozzle. It is thought that the flow touches the walls
of the nozzle rather soon after the cavitation region (Figure 2). The flow has
developed uniform at the outlet. There are large gas bubbles, which move
with the flowing liquid. This kind of flow is called slug flow. The slug flow
model may describe non-cavitating turbulent and slightly cavitating flow in
the nozzle rather well [Sch97].

10
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Figure 2. Slug flow model.

2.3 Zero wall shear model

According to Schmidt [Sch97] the flow in the nozzle cavitates strongly almost
all the time during the injection (Figure 3). For this reason the vapor region
on the wall extends nearly to the whole length of the nozzle. When the
cavitation region ends, the flow velocity near the wall remains very low.
Therefore, it can be assumed that after the cavitation region there is only
insignificant shear force that affects the main flow. Since the main flow is
assumed frictionless, the velocity profile is uniform.

Schmidt [Sch97] has derived equations for the flow velocity and flow area
at the outlet of the nozzle, when the flow is cavitating in the nozzle. Equa-
tions of the outlet flow velocity and area are derived using the conservation
of mass and the momentum of a control volume chosen in the nozzle. The
following derivation is based on the Schmidt’s dissertation [Sch97].

2.3.1 Schematic

Figure 4 shows the schematic of the zero wall shear model.

2.3.2 Governing equations

The momentum equation for the control volume in the z-direction is [Fox10]

F,=Fs, + I'p, = 8/ up d¥' + / upV - dA, (14)
ot Jev Cs
where

11
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Figure 4. Schematic of zero wall shear model.
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F, net force in x-direction

Fg, surface force in z-direction
Fp, body force in z-direction

t time

CV control volume

U x-component of velocity

p density

V volume

CS control surface

1% velocity vector

A area vector.

When the flow is uniform at each inlet and outlet, the last term of the
previous equation can be written in sum form

0 Lo
Fz:FSw+FBw:a/CVUPdV‘FZUPV'A (15)
Cs

The equation for conservation of mass is [Fox10]
a/ dV+/ V.dA=0 (16)
ot Jov"” cs” B

2.3.3 Assumptions

In the zero wall shear model it is assumed that
1. Steady state equations can be used.
2. Flow cavitates much in the nozzle.

3. Vapor builds up seen from the axle of the nozzle ring-shaped on the
wall of the nozzle.

4. There is no shear force from the wall to the main flow. Thus the flow
is frictionless.

5. Velocity profile at vena contracta and at the outlet of the nozzle is
uniform due to frictionless flow.

6. Flow is one-dimensional.

7. The liquid is incompressible.

13



8. At vena contracta in the section ¢ (Figure 4, p. 12), no momentum
transfers through the vapor to the control volume. This assumption
follows from the fact that the density of vapor is small compared to the
density of the liquid.

9. The control volume is stationary.

10. Pressure at vena contracta in the section c is equal to the vapor pres-
sure.

2.3.4 Solution

The Reynolds transport theorem was used in deriving the zero wall shear
model equations. More information of this theorem is given in the refer-
ence [Fox10, pp. 92-160] and in many other fluid mechanics books.

The effective flow velocity at the outlet of the nozzle approximates the
flow velocity from the nozzle. The effective flow velocity is calculated using
the effective flow area. The equations of the effective flow velocity and area
were solved from the momentum equation and conservation of mass.

Momentum equation: At first, the momentum equation for the chosen
control volume was created. On the left surface of the control volume (Fig-
ure 4, p. 12) acts the pressure force p.A, and on the right pressure force
p2Ay. p. means the pressure in the section ¢ and py pressure in the section 2.
A, stands for the geometric cross sectional area of the nozzle. According to
Assumption 10, the pressure in the section c is equal to the vapor pressure p,,.
So the net surface force acting on the control volume is

FSx = pcAg - pQAg = Ag(pc - p2> = Ag(pv - p2) (17)

No body forces acting on the control volume in z-direction exist. Thus
the body force in z-direction is

Fz =0 (18)

Because the flow was assumed quasi static (Assumption 1)

0
— upd¥ =0 19
at Jov '’ (19)
At the vena contratcta in the section ¢, the velocity and area vectors show
to opposite directions. So, in this section, the scalar product of velocity and
area is negative. Here it is allowed to use the sum form in the last term

14



of Equation (14). On the right surface of the control volume, the velocity
and area vectors have the same direction. Their scalar product is therefore
positive. In this way it comes

/ upV - dA = —pulA, + / upV - dA (20)
Cs As

By substituting the terms (17), (18), (19) and (20) into Equation (14), it
is received

Ay(ps — p2) = —pu A, +/A upV - dA (21)
2
Applying the Bernoulli equation (1) to the sections 1 and ¢
Ly
pr=Dpo+ 5 puc, (22)

and solving the square of the flow velocity at the smallest cross sectional flow
area, it comes

u = j<p1 ) (23)

In addition, it is known (Expression (3)) that the smallest flow area is
A. = C A, (24)

in which C., is the coefficient of contraction.
By solving the momentum in the section 2 from Equation (21) and sub-
stituting the expressions of the velocity (23) and area (24), we receive

/A upV CdA = puZA. + Ay(py — p2)

2
- P; (pl - pv>OcAg + Ag(pv - p2)

= 2C.Ay(p1 — po) + Ag(po — p2) (25)

The velocity out of the nozzle and the outlet flow area are approximated
with an effective flow velocity us and an effective flow area A,. The effective
velocity and area must fulfill both the momentum and conservation of mass
equations. When the effective velocity and area are substituted into the
momentum Equation (25), it comes

pugAz = 200(291 - pv)Ag + (pv - p2)Ag (26)

15



Conservation of mass: Next, the conservation of mass equation was for-
mulated using the governing equation (16). The flow was assumed quasi
static (Assumption 1), so

5,
01 Joy PA¥ =0 (27)

In the section ¢, the velocity and area vectors show in opposite directions.
Thus the scalar product is negative. In the section ¢, the following mass flow
rate m goes through the left control surface:

pV - dA = —pu.A, = —1i (28)
CSe

At the outlet of the nozzle, the velocity and area vectors show to the
same direction. Hence, here the scalar product is positive. The mass flow
rate through the outlet of the nozzle is

/ pV - dA = puy Ay (29)
Jecs,

The conservation of mass equation of the control volume becomes

Effective flow velocity: When the mass flow rate 1 Equation (7) is sub-
stituted to previous Formula (30), it is received

—CeAg\/2p(p1 — pu) + puz Az =0 (31)

Solving the effective flow area from this equation, it comes

B CcAg 2/)(171 _pv>

pu2

(32)

2

By substituting the expression of the effective flow area into Equa-
tion (26), we get

CeAgr\/2p(p1 — pv)
pu% ? U3 = 2CcAg(pl —Dy) + Ag<pv - pg) (33)

Solving the effective flow velocity from this, the formula for u, is received

2C:(p1 — pv) + (po — p2)

C'c\/ 20([)1 - pv)

2C'cpl — P2 + (1 - 2Cc>pv
Cc Qp(pl - pv)

Ug =

16



Effective flow area: Next, the effective flow area was determined. When
the effective flow velocity Equation (34) is substituted into Equation (32),
for the effective flow area it comes

[CeAg\/20(p1 = po) | [Cer/2p(p1 — o) ]
pl2C,p1 — p2 + (1 — 2C,)p,)
2pC2(p1 — py)
p[2C,p1 — p2 + (1 —2C,)py] !
2002 (p1 — pu)

= A 35
2C’cpl — D2 + (1 - QCc)pv g ( )

2 =

Ratios: Now an equation was derived for the ratio of the effective flow
area and the geometric cross sectional area. The vapor pressure p, is much
lower than the pressure before and after the nozzle. That is why the vapor
pressure is assumed p, =~ 0. The dependence between the pressures p; and
po is needed. When the vapor pressure is approximated zero, the Nurick’s
cavitation number is solved from Expression (12)

b1

K = 36
p1— D2 (36)
Solving the pressure p, after the nozzle from this equation, it comes
K -1
P2 = K P1 (37)
The ratio of the cross sectional areas is solved from Equation (35)
Ag [Qccpl — P2+ (1 - 200)]711]
Because p, = 0, the area ratio is
A 202
22 el (39)

Ag B 2Ccpl — P2

The solution of the pressure py (37) is substituted into Equation (39)

é _ 203?1
A 2Cepr — [(K = 1)/ K]p,
202

20, — (K —1)/K

17



Finally, the ratio of the average velocity u, and the effective flow velocity
us was determined. In both cases, the same mass flow rate flows through the
nozzle

m = pAgu, = pAsusy (41)
From this it follows that 4
Ug 2

29 _ 72 42

u-t (12)

Thus the ratio of the average velocity and the effective flow velocity is equal
to the ratio of the effective flow area and the geometric cross sectional area
of the nozzle.

18



3 Computed results

The coefficients of discharge were calculated using Equations (12) and (13).
The vapor pressure was assumed to be zero. The area and velocity ratio were
solved with Equations (40) and (42). For computing the results two Scilab
scripts were written.

In calculations two nozzles were used. The first nozzle has slightly
rounded inlet edge and the second one rounded inlet edge. In non-cavitating
turbulent flow the discharge coefficient is constant. The values of contraction
and discharge coefficient for non-cavitating turbulent flow are rough approx-
imations. The coefficient of contraction depends strongly on the geometry of
the nozzle [Sch97, p. 54].

For a slightly rounded inlet edge nozzle the coefficient of contraction C.
is 0.666. The coefficient of discharge Cy in non-cavitating turbulent flow is
assumed to be Cy = 1.16C,. = (1.16)(0.666) ~ 0.773 |Kiil5]. The critical
Nurick’s cavitation number K., when the flow begins or ends to cavitate, is
solved from Equation 13

Ca\®  0.773)\?
Fer = <C) B <0.666> =19

Schmidt [Sch97] has used this nozzle to verify the zero wall shear model. The
values of the slightly rounded inlet edge nozzle are typical to an old diesel
nozzle.

The coefficient of contraction C. of the rounded inlet edge nozzle is ap-
proximated to be 0.796. The coefficient of discharge Cj; in non-cavitating
turbulent flow is Cy = 1.12C. = (1.12)(0.796) ~ 0.890 [Kiil5]. The critical

cavitation number K. of this nozzle is 1.25. The coeflicients of the rounded
inlet edge nozzle are representative of a modern diesel nozzle.

3.1 Coefficient of discharge

The coefficient of discharge of the two nozzles as a function of the Nurick’s
cavitation number is given in Figure 5. The short horizontal lines at the
ends of curves show the constant coefficient of discharge in turbulent non-
cavitating flow.

The rounded inlet edge nozzle begins to cavitate at a smaller Nurick’s
cavitation number than the slightly rounded edge nozzle.

19
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Figure 5. Coefficient of discharge Cy as a function of the Nurick’s cavitation
number K. sr slightly rounded inlet edge nozzle, r rounded inlet edge nozzle.

3.2 Area and velocity ratio

The ratio of the effective flow area and geometric flow area is shown in
Figure 6 as a function of the Nurick’s cavitation number. The ratio of the
average velocity and the effective velocity is equal to the area ratio as given
in Equation (42). When the coefficient of discharge reaches the value of the
turbulent non-cavitating flow, the curves end.

The slightly rounded inlet edge nozzle has a smaller area ratio A, /A, than
the rounded inlet edge nozzle. If the effective flow area is assumed accurate,
then the error of the less rounded edge nozzle is greater compared to the
more rounded edge nozzle.

In the real injection process it is estimated that the injection pressure p;
is 150 MPa and the pressure p, in the combustion chamber 15 MPa. Then
the Nurick’s cavitation number K is 1.11. In this case for the slightly
rounded inlet edge nozzle Ay/A, = 0.721 and for the rounded inlet edge
nozzle A;/A, = 0.849. When the geometric cross-sectional area is used in-
stead of the effective area, the error in the slightly rounded inlet edge nozzle
is 39 % and in the rounded inlet edge nozzle 18 %.

The slightly rounded inlet edge nozzle has cavitation in larger Nurick’s

20
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Figure 6. The ratio of effective flow area A, and geometric area A, as a
function of the Nurick’s cavitation number K. wus is effective flow velocity
and uy velocity computed using the geometric area. sr slightly rounded inlet
edge nozzle, r rounded inlet edge nozzle.

cavitation number region than the rounded inlet edge nozzle.
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Figure 7. The error of the exit momentum of the zero wall shear and slug
flow model compared to the results of a two-dimensional model. The error
is shown against the Nurick’s cavitation number K. [Sch97, p. 58|.

4 Discussion

Schmidt [Sch97, pp. 57-58| has compared the exit momentum of the zero
wall shear model, the slug flow model and a two-dimensional model. The two-
dimensional model was assumed the most accurate. The exit momentums of
the zero wall shear model and the slug flow model were verified to the exit
momentum of the two-dimensional model. Schmidt’s results are shown in
Figure 7.

Schmidt used in the verification slightly rounded inlet edge nozzle. Its
coefficient of contraction C, = 0.666 , discharge coefficient of turbulent non-
cavitating flow Cy, = 0.773 and the critical Nurick’s cavitation number K . =
1.35 are given in Section 3.

In Figure 7 at the Nurick’s cavitation number K = 1.34, the error of
the zero wall shear model begins to increase and the error of the slug flow
model begins to decrease. This may indicate that K = 1.34 is the real
Nurick’s critical cavitation number of the slightly rounded edge nozzle. The

22



estimated Nurick’s critical cavitation number 1.35 is almost the same.

The error of momentum of the zero wall shear model varies from 0 to
3.4 % in the cavitation region. In cavitating flow the error of the slug flow
model is 17.8-31.0 %. Schmidt [Sch97, pp. 55-59] has also validated the zero
wall shear model using the measured results from different references. It can
be concluded that in the cavitation region the zero wall shear model is much
more accurate than the slug flow model.

In the modern injection systems, the injection pressure can be very high.
It is possible that the flow between the needle and seat cavitates. The effect
of this cavitation on the flow in the nozzle was not considered in this study.

During cavitation the effective outlet flow area of the slightly rounded and
the rounded edge nozzle is smaller than the geometric cross sectional area of
the nozzle (Figure 6). According to this, the geometric cross sectional area
can’t be used as the outlet flow area in cavitating flow.

If the flow is non-cavitating turbulent, it is unknown, how to compute
the effective flow area and velocity at the outlet of the nozzle. The zero wall
shear model may be valid for a certain time in this kind of flow or ends, when
the effective flow area becomes equal to the geometric cross sectional area.
One other possibility is that the flow area at the outlet changes abruptly
from the zero wall shear model value to the geometric cross sectional area
between cavitating and non-cavitating turbulent flow.

The zero wall shear model can also be applied to the cavitating liquid
flow in other diesel like nozzles.
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Conclusions

. The equations of the Nurick’s and zero wall shear model were derived
in a detailed way.

. During the cavitating flow in the nozzle the zero wall shear model
was more accurate than the slug flow model. When cavitating flow in
the nozzle is computed one-dimensionally, the zero wall shear model is
recommended.

. The slightly rounded inlet edge nozzle cavitates within larger range of
the Nurick’s cavitation number than the rounded inlet edge nozzle.

. The compatibility between the zero wall shear model and non-
cavitating turbulent flow is unknown.

. Experiments are needed to validate the zero wall shear model and
search the compatibility with non-cavitating turbulent flow.

. The zero wall shear model can be utilized when improving combustion
process in a diesel engine.

. Basically turbulence and cavitation are three-dimensional. Therefore,
three dimensional computational fluid dynamics may give more knowl-
edge of the flow in the nozzle than one-dimensional model.
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