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Abstract

The aim of this report is to study computation-
ally the one-dimensional turbulent cavitating �ow
in the nozzle of a diesel injector. The cavitating
�ow in the nozzle is often computed with the slug
�ow model. In this model the outlet �ow area is
assumed the same as the geometric cross sectional
area of the nozzle. The zero wall shear model is
the other model used to compute the �ow in the
nozzle. The equations of this model are derived in
detail. Two Scilab scripts were written for the com-
putation. As a result, the slug �ow model gives a
clearly too low �ow velocity and a too large �ow
area at the outlet. In cavitating turbulent �ow the
zero wall shear model is recommended for comput-
ing the �ow velocity and area at the outlet of the
nozzle.

Helsinki, October 26, 2016.
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Symbols

~A area vector
A area
Ac minimum �ow area
Ag geometric cross sectional area
A2 �ow area in section 2
Cc coe�cient of contraction
Cd coe�cient of discharge
Cdt coe�cient of discharge in turbulent non cavitating �ow
CS control surface
CV control volume
FBx body force in x-direction
FSx surface force in x-direction
Fx net force in x-direction
g gravitational acceleration
K Nurick's cavitation number
Kcr critical Nurick's cavitation number
ṁ mass �ow rate
ṁth theoretical mass �ow rate
p pressure
pc pressure at the minimum �ow area
pv vapor pressure
p1 pressure at section 1
p2 pressure at section 2
u x-component of �ow velocity
uc x-component of �ow velocity

at the minimum �ow area
ug according to geometric �ow area calculated x-component

of �ow velocity at the outlet of nozzle
uth theoretical �ow velocity in x-direction
u2 x-component of �ow velocity in section 2
V velocity
~V velocity vector
Vc �ow velocity at the minimum �ow area
V volume
V̇ volume �ow rate
z height

ρ density
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1 Introduction

The emissions and e�ciency of an internal combustion engine depend on the
combustion in the cylinder. In a diesel engine combustion is controlled by
means of fuel injection. During a short time the fuel is injected through small
nozzles using high pressure and velocity into the combustion chamber.

The fuel �ow in the nozzle a�ects the spray and di�usion of fuel and
air in the cylinder. High pressure and velocity are needed to achieve good
atomization, adequate penetration of the spray and good mixing of fuel and
air.

Because a great pressure di�erence exists over the injector nozzle, the �ow
cavitates in the nozzle almost all the time during the injection. Cavitation is
a very complicated phenomenon. In a simple cavitation model of an injector
nozzle it is assumed that vapor pressure exists at the smallest cross sectional
�ow area.

Combustion is often simulated with a computational �uid dynamics code.
In that case the �ow velocity from the outlet of the injector nozzle must be
known as a function of time. To compute the �ow velocity, the �ow area at
the outlet of the nozzle must be known, too.

The aim of this study was to solve both the �ow velocity and area at the
outlet of a diesel nozzle. A one-dimensional model was used. The �ow was
assumed to cavitate in the nozzle.

6
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Figure 1. Schematic of the �ow in Nuricks's model.

2 Models

In deriving the Nurick's and the zero wall shear model the Fox-McDonald-
Pritchard [Fox10] solution methodology was used. The methodology was
modi�ed a little.

2.1 Nurick's model

Nurick's model is needed in deriving zero wall shear model. Nurick [Nur76]
has derived an equation for the coe�cient of discharge in the diesel injector
nozzle. In this equation the discharge coe�cient depends on the coe�cient of
contraction and Nurick's cavitation number. The coe�cient of contraction is
calculated by dividing the minimum �ow area by the geometric cross sectional
area. Nurick's cavitation number is a function of the pressure before and after
the nozzle and the vapor pressure of the fuel.

2.1.1 Schematic

In Figure 1 the schematic of the �ow in the Nurick's model is given.

2.1.2 Governing equations

The Bernoulli equation is

p+
1

2
ρV 2 + ρgz = constant, (1)

where
p pressure
ρ density
V �ow velocity
g gravitational acceleration
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z height.

The mass �ow rate is calculated with the expression

ṁ = ρV̇ = ρV A, (2)

in which ṁ means mass �ow rate, V̇ volume �ow rate and A cross sectional
area.

2.1.3 Assumptions

In deriving Nurick's model the following assumptions were made:

1. The �ow is turbulent.

2. The �ow cavitates in the nozzle.

3. No losses exist.

4. Liquid is incompressible.

5. The �ow is one-dimensional.

6. Steady state equations can be used.

7. When one looks from the inlet or outlet of the nozzle, vapor accumu-
lates ring-shaped on the wall of the nozzle.

8. At the smallest �ow area (the section c in Figure 1) the pressure equals
to the vapor pressure.

At full load, the injection lasts in a vehicle diesel engine 1�2 ms and in
a medium speed diesel engine approximately 5 ms . The injection pressure
can vary 150 MPa or more during the injection period. So it is obvious that
the �ow in the nozzle is time dependent. The nozzle is very short compared
to the injection pipes and the injection time is short, too. Thus, it can be
assumed that the properties of the liquid in the nozzle at a certain moment
don't change. Schmitt [Sct66] has shown by experiments and calculation that
in diesel nozzles the liquid �ow can be assumed quasi-static. So the steady
state equations are allowed to use in liquid nozzle �ow (Assumption 6).

8



2.1.4 Solution

The liquid �ows from a container through the nozzle into the cylinder. The
section 1 is chosen so that there the �ow velocity u1 ≈ 0 (Figure 1, p. 7).
The pressure p1 exists in the section 1.

Because the streamlines must be continuous, the streamlines at the inlet
are unable to turn abruptly to the direction of the nozzle walls. For this
reason the �ow diverges from the walls and the �ow area decreases in the
nozzle near the inlet. The smallest �ow area Ac locates in the the section c.
This section is also called vena contracta. In the section c, the pressure pc is
the lowest and the velocity uc the highest. When the pressure pc decreases
enough, cavitation begins in the vena contracta. Now, in the section c, the
vapor pressure exists (Assumption 8).

The ratio of the smallest �ow area Ac to the geometric cross sectional
area Ag is de�ned as the coe�cient of contraction Cc or

Cc =
Ac

Ag

(3)

From the previous expression and Equation (2) the mass �ow rate be-
comes

ṁ = ρAcuc = ρCcAguc, (4)

in which ρ means the density of the liquid. When the �ow velocity in the
section c is solved from the previous equation, it comes

uc =
ṁ

ρCcAg

(5)

Next the Bernoulli equation (1) is used to the sections 1 and c. The
section 1 was chosen so that the �ow velocity there is u1 = 0. The pressure
di�erence between the sections 1 and c caused by the height di�erence is
insigni�cant. In this way, from the Bernoulli equation and mass �ow rate an
expression is derived for p1 or

p1 = pc +
1

2
ρu2c = pc +

1

2
ρ

(
ṁ

ρCcAg

)2

(6)

The mass �ow rate is solved from the last equation and it is remembered
that pc = pv (Assumption 8), then it becomes

ṁ = CcAg

√
2ρ(p1 − pv) (7)
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When the �ow has no losses, the Bernoulli equation is between the sec-
tions 1 and 2

p1 = p2 +
1

2
ρu2

th
(8)

where uth means the theoretical �ow velocity. This velocity is calculated
using the geometric cross sectional area.

Now the theoretical �ow velocity is solved from the previous equation

uth =

√
2

ρ
(p1 − p2) (9)

The coe�cient of discharge Cd is de�ned to be the ratio of the real and
theoretical mass �ow rates

Cd =
ṁ

ṁth

=
AgCc

√
2ρ(p1 − pv)
ρAguth

=
Cc

√
2ρ(p1 − pv)
ρuth

, (10)

where ṁth means theoretical mass �ow rate.
By setting Expression (9) of the theoretical �ow velocity into Equa-

tion (10) the coe�cient of discharge becomes

Cd =
Cc

√
2ρ(p1 − pv)

ρ
√
(2/ρ)(p1 − p2)

= Cc

√
p1 − pv
p1 − p2

(11)

In Nurick's model the expression under the square root is called cavitation
number K i.e.

K =
p1 − pv
p1 − p2

(12)

Because the cavitation number has many de�nitions, K is called here the
Nurick's cavitation number.

Finally the coe�cient of discharge can be given as

Cd = Cc

√
K (13)

2.2 Slug �ow model

At the nozzle outlet the velocity in cavitating �ow is often computed as a
mean velocity. This is calculated using mass �ow rate, density and geometric
cross sectional area of the nozzle. It is thought that the �ow touches the walls
of the nozzle rather soon after the cavitation region (Figure 2). The �ow has
developed uniform at the outlet. There are large gas bubbles, which move
with the �owing liquid. This kind of �ow is called slug �ow. The slug �ow
model may describe non-cavitating turbulent and slightly cavitating �ow in
the nozzle rather well [Sch97].

10



-

-

-

-

-

-

-

-

-

-

c
-

-

-

-

-

-

2

Ag
ug

�
�
�
Vapor

�� ��AA
A

Gas bubble

�� ������

Figure 2. Slug �ow model.

2.3 Zero wall shear model

According to Schmidt [Sch97] the �ow in the nozzle cavitates strongly almost
all the time during the injection (Figure 3). For this reason the vapor region
on the wall extends nearly to the whole length of the nozzle. When the
cavitation region ends, the �ow velocity near the wall remains very low.
Therefore, it can be assumed that after the cavitation region there is only
insigni�cant shear force that a�ects the main �ow. Since the main �ow is
assumed frictionless, the velocity pro�le is uniform.

Schmidt [Sch97] has derived equations for the �ow velocity and �ow area
at the outlet of the nozzle, when the �ow is cavitating in the nozzle. Equa-
tions of the outlet �ow velocity and area are derived using the conservation
of mass and the momentum of a control volume chosen in the nozzle. The
following derivation is based on the Schmidt's dissertation [Sch97].

2.3.1 Schematic

Figure 4 shows the schematic of the zero wall shear model.

2.3.2 Governing equations

The momentum equation for the control volume in the x-direction is [Fox10]

Fx = FSx + FBx =
∂

∂t

∫
CV

uρ dV +
∫
CS

uρ~V · d ~A, (14)

where
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Fx net force in x-direction
FSx surface force in x-direction
FBx body force in x-direction
t time
CV control volume
u x-component of velocity
ρ density
V volume
CS control surface
~V velocity vector
~A area vector.

When the �ow is uniform at each inlet and outlet, the last term of the
previous equation can be written in sum form

Fx = FSx + FBx =
∂

∂t

∫
CV

uρ dV +
∑
CS

uρ~V · ~A (15)

The equation for conservation of mass is [Fox10]

∂

∂t

∫
CV

ρ dV +
∫
CS

ρ~V · d ~A = 0 (16)

2.3.3 Assumptions

In the zero wall shear model it is assumed that

1. Steady state equations can be used.

2. Flow cavitates much in the nozzle.

3. Vapor builds up seen from the axle of the nozzle ring-shaped on the
wall of the nozzle.

4. There is no shear force from the wall to the main �ow. Thus the �ow
is frictionless.

5. Velocity pro�le at vena contracta and at the outlet of the nozzle is
uniform due to frictionless �ow.

6. Flow is one-dimensional.

7. The liquid is incompressible.
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8. At vena contracta in the section c (Figure 4, p. 12), no momentum
transfers through the vapor to the control volume. This assumption
follows from the fact that the density of vapor is small compared to the
density of the liquid.

9. The control volume is stationary.

10. Pressure at vena contracta in the section c is equal to the vapor pres-
sure.

2.3.4 Solution

The Reynolds transport theorem was used in deriving the zero wall shear
model equations. More information of this theorem is given in the refer-
ence [Fox10, pp. 92�160] and in many other �uid mechanics books.

The e�ective �ow velocity at the outlet of the nozzle approximates the
�ow velocity from the nozzle. The e�ective �ow velocity is calculated using
the e�ective �ow area. The equations of the e�ective �ow velocity and area
were solved from the momentum equation and conservation of mass.

Momentum equation: At �rst, the momentum equation for the chosen
control volume was created. On the left surface of the control volume (Fig-
ure 4, p. 12) acts the pressure force pcAg and on the right pressure force
p2Ag. pc means the pressure in the section c and p2 pressure in the section 2.
Ag stands for the geometric cross sectional area of the nozzle. According to
Assumption 10, the pressure in the section c is equal to the vapor pressure pv.
So the net surface force acting on the control volume is

FSx = pcAg − p2Ag = Ag(pc − p2) = Ag(pv − p2) (17)

No body forces acting on the control volume in x-direction exist. Thus
the body force in x-direction is

FBx = 0 (18)

Because the �ow was assumed quasi static (Assumption 1)

∂

∂t

∫
CV

uρ dV = 0 (19)

At the vena contratcta in the section c, the velocity and area vectors show
to opposite directions. So, in this section, the scalar product of velocity and
area is negative. Here it is allowed to use the sum form in the last term

14



of Equation (14). On the right surface of the control volume, the velocity
and area vectors have the same direction. Their scalar product is therefore
positive. In this way it comes∫

CS

uρ~V · d ~A = −ρu2cAc +
∫
A2

uρ~V · d ~A (20)

By substituting the terms (17), (18), (19) and (20) into Equation (14), it
is received

Ag(pv − p2) = −ρu2cAc +
∫
A2

uρ~V · d ~A (21)

Applying the Bernoulli equation (1) to the sections 1 and c

p1 = pv +
1

2
ρu2c , (22)

and solving the square of the �ow velocity at the smallest cross sectional �ow
area, it comes

u2c =
2

ρ
(p1 − pv) (23)

In addition, it is known (Expression (3)) that the smallest �ow area is

Ac = CcAg, (24)

in which Cc is the coe�cient of contraction.
By solving the momentum in the section 2 from Equation (21) and sub-

stituting the expressions of the velocity (23) and area (24), we receive∫
A2

uρ~V · d ~A = ρu2cAc + Ag(pv − p2)

= ρ
2

ρ
(p1 − pv)CcAg + Ag(pv − p2)

= 2CcAg(p1 − pv) + Ag(pv − p2) (25)

The velocity out of the nozzle and the outlet �ow area are approximated
with an e�ective �ow velocity u2 and an e�ective �ow area A2. The e�ective
velocity and area must ful�ll both the momentum and conservation of mass
equations. When the e�ective velocity and area are substituted into the
momentum Equation (25), it comes

ρu22A2 = 2Cc(p1 − pv)Ag + (pv − p2)Ag (26)

15



Conservation of mass: Next, the conservation of mass equation was for-
mulated using the governing equation (16). The �ow was assumed quasi
static (Assumption 1), so

∂

∂t

∫
CV

ρ dV = 0 (27)

In the section c, the velocity and area vectors show in opposite directions.
Thus the scalar product is negative. In the section c, the following mass �ow
rate ṁ goes through the left control surface:∫

CSc

ρ~V · d ~A = −ρucAc = −ṁ (28)

At the outlet of the nozzle, the velocity and area vectors show to the
same direction. Hence, here the scalar product is positive. The mass �ow
rate through the outlet of the nozzle is∫

CS2

ρ~V · d ~A = ρu2A2 (29)

The conservation of mass equation of the control volume becomes

−ṁ+ ρu2A2 = 0 (30)

E�ective �ow velocity: When the mass �ow rate ṁ Equation (7) is sub-
stituted to previous Formula (30), it is received

−CcAg

√
2ρ(p1 − pv) + ρu2A2 = 0 (31)

Solving the e�ective �ow area from this equation, it comes

A2 =
CcAg

√
2ρ(p1 − pv)
ρu2

(32)

By substituting the expression of the e�ective �ow area into Equa-
tion (26), we get

ρu22
CcAg

√
2ρ(p1 − pv)
ρu2

= 2CcAg(p1 − pv) + Ag(pv − pg) (33)

Solving the e�ective �ow velocity from this, the formula for u2 is received

u2 =
2Cc(p1 − pv) + (pv − p2)

Cc

√
2ρ(p1 − pv)

=
2Ccp1 − p2 + (1− 2Cc)pv

Cc

√
2ρ(p1 − pv)

(34)
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E�ective �ow area: Next, the e�ective �ow area was determined. When
the e�ective �ow velocity Equation (34) is substituted into Equation (32),
for the e�ective �ow area it comes

A2 =

[
CcAg

√
2ρ(p1 − pv)

] [
Cc

√
2ρ(p1 − pv)

]
ρ[2Cpp1 − p2 + (1− 2Cc)pv]

=
2ρC2

c (p1 − pv)
ρ[2Cpp1 − p2 + (1− 2Cc)pv]

Ag

=
2C2

c (p1 − pv)
2Ccp1 − p2 + (1− 2Cc)pv

Ag (35)

Ratios: Now an equation was derived for the ratio of the e�ective �ow
area and the geometric cross sectional area. The vapor pressure pv is much
lower than the pressure before and after the nozzle. That is why the vapor
pressure is assumed pv ≈ 0. The dependence between the pressures p1 and
p2 is needed. When the vapor pressure is approximated zero, the Nurick's
cavitation number is solved from Expression (12)

K =
p1

p1 − p2
(36)

Solving the pressure p2 after the nozzle from this equation, it comes

p2 =
K − 1

K
p1 (37)

The ratio of the cross sectional areas is solved from Equation (35)

A2

Ag

=
2C2

c (p1 − pv)
[2Ccp1 − p2 + (1− 2Cc)pv]

(38)

Because pv = 0, the area ratio is

A2

Ag

=
2C2

c p1
2Ccp1 − p2

(39)

The solution of the pressure p2 (37) is substituted into Equation (39)

A2

Ag

=
2C2

c p1
2Ccp1 − [(K − 1)/K]p1

=
2C2

c

2Cc − (K − 1)/K
(40)
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Finally, the ratio of the average velocity ug and the e�ective �ow velocity
u2 was determined. In both cases, the same mass �ow rate �ows through the
nozzle

ṁ = ρAgug = ρA2u2 (41)

From this it follows that
ug
u2

=
A2

Ag

(42)

Thus the ratio of the average velocity and the e�ective �ow velocity is equal
to the ratio of the e�ective �ow area and the geometric cross sectional area
of the nozzle.

18



3 Computed results

The coe�cients of discharge were calculated using Equations (12) and (13).
The vapor pressure was assumed to be zero. The area and velocity ratio were
solved with Equations (40) and (42). For computing the results two Scilab
scripts were written.

In calculations two nozzles were used. The �rst nozzle has slightly
rounded inlet edge and the second one rounded inlet edge. In non-cavitating
turbulent �ow the discharge coe�cient is constant. The values of contraction
and discharge coe�cient for non-cavitating turbulent �ow are rough approx-
imations. The coe�cient of contraction depends strongly on the geometry of
the nozzle [Sch97, p. 54].

For a slightly rounded inlet edge nozzle the coe�cient of contraction Cc

is 0.666. The coe�cient of discharge Cdt in non-cavitating turbulent �ow is
assumed to be Cdt = 1.16Cc = (1.16)(0.666) ≈ 0.773 [Kii15]. The critical
Nurick's cavitation number Kcr, when the �ow begins or ends to cavitate, is
solved from Equation 13

Kcr =
(
Cdt

Cc

)2

=
(
0.773

0.666

)2

= 1.35

Schmidt [Sch97] has used this nozzle to verify the zero wall shear model. The
values of the slightly rounded inlet edge nozzle are typical to an old diesel
nozzle.

The coe�cient of contraction Cc of the rounded inlet edge nozzle is ap-
proximated to be 0.796. The coe�cient of discharge Cdt in non-cavitating
turbulent �ow is Cdt = 1.12Cc = (1.12)(0.796) ≈ 0.890 [Kii15]. The critical
cavitation number Kcr of this nozzle is 1.25. The coe�cients of the rounded
inlet edge nozzle are representative of a modern diesel nozzle.

3.1 Coe�cient of discharge

The coe�cient of discharge of the two nozzles as a function of the Nurick's
cavitation number is given in Figure 5. The short horizontal lines at the
ends of curves show the constant coe�cient of discharge in turbulent non-
cavitating �ow.

The rounded inlet edge nozzle begins to cavitate at a smaller Nurick's
cavitation number than the slightly rounded edge nozzle.

19



Figure 5. Coe�cient of discharge Cd as a function of the Nurick's cavitation
number K. sr slightly rounded inlet edge nozzle, r rounded inlet edge nozzle.

3.2 Area and velocity ratio

The ratio of the e�ective �ow area and geometric �ow area is shown in
Figure 6 as a function of the Nurick's cavitation number. The ratio of the
average velocity and the e�ective velocity is equal to the area ratio as given
in Equation (42). When the coe�cient of discharge reaches the value of the
turbulent non-cavitating �ow, the curves end.

The slightly rounded inlet edge nozzle has a smaller area ratio A2/Ag than
the rounded inlet edge nozzle. If the e�ective �ow area is assumed accurate,
then the error of the less rounded edge nozzle is greater compared to the
more rounded edge nozzle.

In the real injection process it is estimated that the injection pressure p1
is 150 MPa and the pressure p2 in the combustion chamber 15 MPa. Then
the Nurick's cavitation number K is 1.11. In this case for the slightly
rounded inlet edge nozzle A2/Ag = 0.721 and for the rounded inlet edge
nozzle A2/Ag = 0.849. When the geometric cross-sectional area is used in-
stead of the e�ective area, the error in the slightly rounded inlet edge nozzle
is 39 % and in the rounded inlet edge nozzle 18 %.

The slightly rounded inlet edge nozzle has cavitation in larger Nurick's

20



Figure 6. The ratio of e�ective �ow area A2 and geometric area Ag as a
function of the Nurick's cavitation number K. u2 is e�ective �ow velocity
and ug velocity computed using the geometric area. sr slightly rounded inlet
edge nozzle, r rounded inlet edge nozzle.

cavitation number region than the rounded inlet edge nozzle.
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Figure 7. The error of the exit momentum of the zero wall shear and slug
�ow model compared to the results of a two-dimensional model. The error
is shown against the Nurick's cavitation number K. [Sch97, p. 58].

4 Discussion

Schmidt [Sch97, pp. 57�58] has compared the exit momentum of the zero
wall shear model, the slug �ow model and a two-dimensional model. The two-
dimensional model was assumed the most accurate. The exit momentums of
the zero wall shear model and the slug �ow model were veri�ed to the exit
momentum of the two-dimensional model. Schmidt's results are shown in
Figure 7.

Schmidt used in the veri�cation slightly rounded inlet edge nozzle. Its
coe�cient of contraction Cc = 0.666 , discharge coe�cient of turbulent non-
cavitating �ow Cdt = 0.773 and the critical Nurick's cavitation number Kcr =
1.35 are given in Section 3.

In Figure 7 at the Nurick's cavitation number K = 1.34, the error of
the zero wall shear model begins to increase and the error of the slug �ow
model begins to decrease. This may indicate that K = 1.34 is the real
Nurick's critical cavitation number of the slightly rounded edge nozzle. The
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estimated Nurick's critical cavitation number 1.35 is almost the same.
The error of momentum of the zero wall shear model varies from 0 to

3.4 % in the cavitation region. In cavitating �ow the error of the slug �ow
model is 17.8�31.0 %. Schmidt [Sch97, pp. 55�59] has also validated the zero
wall shear model using the measured results from di�erent references. It can
be concluded that in the cavitation region the zero wall shear model is much
more accurate than the slug �ow model.

In the modern injection systems, the injection pressure can be very high.
It is possible that the �ow between the needle and seat cavitates. The e�ect
of this cavitation on the �ow in the nozzle was not considered in this study.

During cavitation the e�ective outlet �ow area of the slightly rounded and
the rounded edge nozzle is smaller than the geometric cross sectional area of
the nozzle (Figure 6). According to this, the geometric cross sectional area
can't be used as the outlet �ow area in cavitating �ow.

If the �ow is non-cavitating turbulent, it is unknown, how to compute
the e�ective �ow area and velocity at the outlet of the nozzle. The zero wall
shear model may be valid for a certain time in this kind of �ow or ends, when
the e�ective �ow area becomes equal to the geometric cross sectional area.
One other possibility is that the �ow area at the outlet changes abruptly
from the zero wall shear model value to the geometric cross sectional area
between cavitating and non-cavitating turbulent �ow.

The zero wall shear model can also be applied to the cavitating liquid
�ow in other diesel like nozzles.
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5 Conclusions

1. The equations of the Nurick's and zero wall shear model were derived
in a detailed way.

2. During the cavitating �ow in the nozzle the zero wall shear model
was more accurate than the slug �ow model. When cavitating �ow in
the nozzle is computed one-dimensionally, the zero wall shear model is
recommended.

3. The slightly rounded inlet edge nozzle cavitates within larger range of
the Nurick's cavitation number than the rounded inlet edge nozzle.

4. The compatibility between the zero wall shear model and non-
cavitating turbulent �ow is unknown.

5. Experiments are needed to validate the zero wall shear model and
search the compatibility with non-cavitating turbulent �ow.

6. The zero wall shear model can be utilized when improving combustion
process in a diesel engine.

7. Basically turbulence and cavitation are three-dimensional. Therefore,
three dimensional computational �uid dynamics may give more knowl-
edge of the �ow in the nozzle than one-dimensional model.
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