

CO₂ utilization by production of PCC from CO₂ and steelmikg slags

Arshe Said Aalto University Finland

Background

CCSP, work package 5: Storage of CO₂
CO₂ fixation by minerals

• MgO / CaO_(s) + CO_{2(g)} \rightarrow MgCO₃ / CaCO₃

Background

Mineral carbonation (concept in research phase)

Advantages vs disadvantages

- (+)
- + Capture + Storage are in ONE
- + No leakage
- + No monitoring
- + Final product is marketable
- (-)
- Limited storage capacity
- Energy and material intensive (<u>some</u> processes)

Slag2PCC concept

Steelmaking slags + CO2 → PCC

40% -50 %CaO

Motivation

- According to the IEA Iron and steel industry is accounts about 7% of global CO₂ emissions,
- The steel industry produces, besides steel, also slags, a by-product, while it emits large quantities of CO₂
- 1t steel \rightarrow 2t CO₂

Lab-scale experimental set-up

- 500ml reactor
- 1 -10 g of slag

Lab- scale experimental set-up

- Results:
- Extraction stage:
 - Ammonium salt (NH_4CI , NH_4NO_3 and CH_3COONH_4)
 - can selectively dissolve calcium from the slag
- Carbonation stage:
 - After filtration, the calcium rich solution reacts with CO₂ to produce precipitated calcium carbonate (PCC)

Scale-up of the Slag2PCC

Scale-up @ ÅA

Slag2PCC test facility @ Åbo Akademi, Turku

Scale-up @ Aalto

200 L (pilot stage in 2014)

X 400

0.5 L (laboratory stage in 2005)

Scale-up @ Aalto

Slag2PCC pilot plant @ Aalto university

- Extraction:
 - 80% calicium extraction efficiency
 - Solvent recovered and recycled
 - to minimize the chemical consumption

- Carbonation:
 - We successfully produced different PCC merphologies e.g. calicite and aragonite

The final product: PCC

- PCC is used as a raw material in a wide variety of industries:
 - paper, plastic, pharmaceutical, etc.
- Pulp and paper industry is the largest consumer of PCC

PCC global market

• The global consumption of PCC increased from 10 Mt in 2004 to 14 Mt in 2011

Slag2PCC market

- Slag2PCC technology is technically and economically feasible
- PCC produced via Slag2PCC process can replace the conventional PCC and GCC
- Creating our global market niche

- Local media attention
- International media attention

WINNERS

Mika Järvinen with collaborator Arshe Said

Resonate Award recipient for pioneering a CO2 secuestration process that converts a low-value steel-manufacturing by-product into a valuable resource for industry.

Menu

🎔 Tweet 🗹 in 🕂 G+1 🕖

Researchers convert carbon dioxide into a valuable resource

09 November 2014

Researchers at Aalto University in Finland are using a pilot plant to convert CO2 and slag, a by-product of steel manufacturing, into a valuable mineral product. The product, precipitated calcium carbonate (PCC), is widely used as a filler for <u>plastics</u>, papers, rubbers and paints.

This novel plant is the latest stage of a project that will eventually see the commercialisation of a process that consumes CO2 in order to convert a low-value by-product into a highly valuable resource for industry. Indeed, the potential

Researchers convert carbon dioxide into a valuable resource

September 17, 2014

• International recognition

- The Caltech Resonate Award 2015
 - Slag2PCC research team at Aalto University has received the Resonate Award 2015 from Caltech's Resnick Sustainability Institute

Local recognition

<u>Success case</u> – Steelmaking slag together with CO2 turns into calcium carbonate

- International collaborations
 - Japan is a good example

History

• Past, present & Future

• Commercializing the technology

2000 L (demo scale, 2017)

200 L (pilot scale, now)

(laboratory scale, 2005)

0.5 L

Conclusions

• The collaboration between industry and research organization was very fruitful

→ The CCSP program was very successful

Acknowledgement

CLIC Innovation Oy

All CCSP Partners

Thanks!