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Preface 

This work was carried out in the Carbon Capture and Storage Program (CCSP) research 
program coordinated by CLIC Innovation Oy with funding and support from Fortum Oyj, 
Neste Oyj, Gasum Oy and the Finnish Funding Agency for Technology and Innovation, 
Tekes. This work was part of the subtask 2.6.4 “Evaluation of CCUS concepts for biogenic 
CO2 from biorefineries”. The selection of “CO2 to chemicals” routes was based on survey 
carried out in University of Oulu during spring 2015. Market study, based on the results from 
the public literature, includes estimates on price and global demand of chemicals as well as a 
short survey in competing production routes of these chemicals. Market study was carried 
out at VTT during summer 2015. Steering group was comprised of Risto Sormunen, Fortum, 
Hannu Kaikkonen and Steven Gust, Neste and Mari Tuomaala, Gasum. 
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1. Introduction 

Carbon capture and utilisation (CCU) is an emerging option for controlling CO2 emissions 
from industrial operations. According to Styring (2011), barriers to implementation include:  

 The unfavourable thermodynamics of  CO2 conversion leading to high cost of energy 
associated with utilization; 

 Limited availability of co-reactants and also in market demand for CO2-derived 
products; 

 A position paper from VCI and DECHEMA in Germany (VCI and DECHEMA 2009) 
suggested that chemical industry could convert at most around 1% of global CO2 

emissions in the fine and bulk chemicals sector and 10 % into synthetic fuels. Aresta 
(Aresta 2010) estimates that chemical  and fuel synthesis could account for 7 % of 
the CO2 emissions in the future; 

 Therefore, CCU should not be regarded as an alternative technology to CCS but as 
complementary technology; 

 The low values predicted for utilisation are related to market demand for current 
products and cost of production. These problems should be addressed by identifying 
new C-1 chemistries and catalytic processes, and by reducing the cost of processing 
through intensification, and new capture agents with higher efficiencies and smaller 
volumes. 

According Teir (Teir 2015) travel report from ICCDU-XIII International Conference CO2 
utilisation is gaining interest, with the possibility to use CO2 as a raw material for energy 
storage being the latest option, particularly due to Audi’s e-gas project, that uses electricity 
and CO2 to produce synthetic natural gas. Still, chemists at the conference were of the 
opinion that liquid chemicals are more interesting products due to their high volumetric 
energy density in comparison to gases and are therefore more especially suitable for energy 
storage solutions. At the conference, methanol was considered to be the most promising 
product from CO2 utilisation. 
 
During the ICDDU -XIII conference, Teir constructed a spreadsheet table giving an overview 
of various chemicals that can be produced from CO2 (attached in appendix). The table is 
intended for use in the CCSP project task 2.6.4 as part of a deliverable. Table 1 shows a 
summary from the spreadsheet file of the current market and potential future market for 
chemicals that are produced from CO2. It should be noted that term “future market” is not the 
same in the various studies referred in Table 1. The “CO2 chemicals or fuels” chosen for this 
report for further examination were methanol, formic acid, synthetic natural gas, cyclic 
carbonates (ethane carbonate and propene carbonate) and acyclic carbonates (dimethyl 
carbonate, DMC) shown also in Table 1. In addition to the above mentioned chemicals and 
fuels this report also discusses synthesis gas technologies as it is possible to use CO2 in the 
manufacture of syngas and also in C1-chemistry. In dry reforming technology, which is in 
research and development (R&D) stage, carbon dioxide reacts with methane in the presence 
of catalyst. Other alternatives capable of utilising CO2 in synthesis gas production, include 
bireforming and trireforming, which are also included in this report. 

Large part of current R&D work is focused on catalyst development for various reaction 
routes converting CO2 into chemicals. The main part of the current work is carried out in lab 
scale units with only a few exceptions. Life-cycle assessments show that in order to produce 
sustainable end-product, the energy input of the manufacturing process needs to come from 
renewable sources.  
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Table 1 Current and future market potential for chemicals and fuels that are produced from 
CO2 (Teir 2015). 

Product 
Currrent market 
(Mtpa) 

Current market 
(CO2 Mtpa) 

Future market 
(Mtpa) 

Future market 
(CO2 Mtpa) 

Methanol (CH3OH)  60 10    >300

Urea (H2NCONH2)  180 132 210  154

Carbamates (RR'NCO2)  6 1 11  4

Salicylic acid (Carboxylic acids)  0.06 0.02 0.1   

Formic acid (HCOOH)  1 0.9    >300

Organic carbonates ((RO)2CO, total market)    0.2    100

Acyclic carbonates (Dimethyl carbonate, DMC)  <  2 0.5 10  5

Cyclic carbonates (ethene‐, propene‐, styrene carbonate)    2   45   

Polymers, polycarbonates (total market)  5 1 10  3

Polyethylene carbonate (assuming PEC could replace PE)  45 0 50  25

Polypropylene carbonate (assuming PPC could replace PP)  80 0 90  45

Polyurethane  10 <10     

Inorganic carbonates (total market)  200   400  100

Calcium carbonate (CaCO3)  114 50 (calculated)     

Sodium carbonates (Na2CO3)  50 15 (25% mined)    <1

Magnesium carbonates (MgCO3)  3.5 mainly mined    >300

Data references colour coded accordingly: 
Mikkelsen 2010 
and IPCC 2005 

Styring 2011 

GCCSI(2011) 

Aresta (2014) 

Aresta (2015) 

 
In addition to the above-mentioned chemicals and fuels, there exist (at least in theory) 
numerous compounds that can be synthetized from CO2. Some of the most interesting ones 
are listed in Table 2. Detailed information on 123 different CO2 utilization reactions is 
available in the review article by Otto (2015). 
 
Table 2 Chemical compounds/groups from carbon dioxide depending on the co-reactants.  
 
Co-Reactant(s) Product 
Hydrogen Alcohols, ethers, hydrocarbons, aldehydes, 

carboxylic acids, carbon monoxide 
Alcohols Linear carbonates 
Ammonia Urea 
Epoxides or Dioles Cyclic carbonates 
Alkenes Unsaturated carboxylic acids 
Alkynes Lactones and pyrones 
Amines Linear urea derivatives 
Diamines Cyclic urea derivatives 
Amines or ammonia + alcohols Linear carbamates 
Amino alcohols Cyclic carbamates 
Organic compounds Carboxylic acids  
Organometallic compounds Carboxylic acids 
Dienes Lactones 
Allenes Pyrones 
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Due to the thermodynamically stable nature of CO2 molecule, substantial energy input, active 
catalysts, and optimum reaction conditions are necessary for successful and viable CO2 
conversion. The main part of the CO2 related R&D work has especially been focused on 
catalyst development for various reaction routes converting CO2 into valuable chemicals and 
fuels. 

The selection of CO2 based chemicals and fuels (Table 2) for further study was based on 
their market potential as well as their ability to consume carbon dioxide in the production step 
(Table 1). 

2. Description of chemical and fuel market and production routes in 
use or developed for CO2 utilization 

2.1 Methanol  

2.1.1 Methanol industry outlook 

Methanol is synthesised by hydrogenation of carbon oxides over catalysts composed of 
copper oxide and zinc oxide stabilised with alumina. These catalysts allow the production of 
methanol at over 99.9 % selectivity with higher alcohols as primary by-products. ICI process 
has been in use since 1960. Synthesis temperature and pressure is 250-280 0C and 6.0-8.0 
MPa. H2S concentration in synthesis gas must be below 1 ppm (typical for synthesis gas 
from natural gas steam reformers). Largest plants produce methanol over 500 metric tons 
per day (MTPD) (Hannula 2013). 

The main reactions in commercial synthesis are:  

CO + 2H2 = CH3OH ∆H298K, 5Mpa = -90.7 kJ/mol , ∆G298K = -29.1kJ/mol (1) 

CO2 + 3H2 = CH3OH + H2O ∆H298K, 5Mpa = -40.9 kJ/mol, ∆G298K = -0.5 kJ/mol (2) 

In addition to the equations (1) and (2) the reverse water-gas shift reaction (3) must be taken 
into account in the methanol synthesis. 

CO2 + H2 = CO + H2O ∆H298K, 5Mpa = -49.8 kJ/mol, ∆G298K = 28.6 kJ/mol (3) 

Both reactions (1 and 2) are exothermic and result reduction of volume. Main reaction goes 
through carbon monoxide and hydrogen. The maximum content of carbon dioxide in 
methanol synthesis gas is about 5 volume%. In practice the content of carbon dioxide in 
synthesis gas is normally about 1 volume%. 

As a chemical product, methanol is a key component of a variety products used daily. 
Methanol is produced in Asia, North and South America, Europe, Africa and the Middle East. 
Worldwide over 90 methanol plants have a combined production capacity of about 75 million 
metric tons, and each day more than 100 000 tons is used as a chemical feedstock or as a 
transportation fuel. Methanol is also a truly global commodity and each day there is more 
than 80 000 metric tons of methanol shipped from one continent to another. Methanol is used 
as a feedstock for the production of formaldehyde used to produce resins to bond woods 
used in building homes and furniture, or as component of urethanes and plastics used to 
make accessories for cars and in the production of acetic acid for making polyethylene 
terephtalate (PET). Acetic acid is also the basic component of terephtalic acid (PTA), which 
is used in making polyester fibre or clothing or carpets (Dibenedetto 2014). The demand of 
methanol for chemicals and fuels is visualized in Figure 1 (Chesko 2014). 
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The three processes that draw industrial attention in syngas production are steam reforming 
of methane (equation 4), partial oxidation of methane with oxygen or air (equation 5) and dry 
reforming of methane with carbon dioxide (equation 6): 

CH4 + H2O = CO + 3 H2 ∆H0
298K = 249.94 kJ/mol, ∆G298K = 150.5 kJ/mol (4) 

CH4 + 1/2 O2 = CO + 2 H2  ∆H0
298K = - 22.6 kJ/mol, ∆G298K = 86.7 kJ/mol (5) 

CH4 + CO2 = 2 CO + 2 H2 ∆H0
298K = 260.5 kJ/mol, ∆G298K = 170.5 kJ/mol (6) 

Reforming of methane through steam or partial oxidation of methane with oxygen or air are 
well-established technologies with the advantages and disadvantages. Steam reforming of 
methane produces a higher ratio of syngas (H2/CO=3) compared to that required for Fischer-
Tropsch or methanol synthesis (H2/CO=2). The process is energy intensive due to the 
endothermic nature and requires high investments of capital. Moreover steam reforming 
faces corrosion issues. Partial oxidation of methane is suitable for the production of heavier 
hydrocarbons and naphtha. The advantages of this process are high conversion rates, high 
selectivity and very short residence time. The exothermic nature of reaction has certain 
drawbacks that it induces hot spots on catalyst arising from poor heat removal rate and 
makes operation difficult to control. Cryogenic unit is necessary for the separation of oxygen 
from air (Usman 2015). 

Dry reforming of methane offers valuable environmental benefits: biogas utilization, removal 
of GHG by conversion of methane with carbon dioxide to valuable syngas. Dry reforming of 
methane yields a lower syngas ratio (H2/CO=1, equation 6 above), which is suitable for the 
synthesis of oxygenated chemicals and hydrocarbons from Fischer-Tropsch synthesis. 
Syngas from dry reforming has also been considered for storage of solar or nuclear energy 
through the chemical energy transmission system. Solar energy can convert feed gases 
(methane and carbon dioxide) to syngas that can be exported to places where energy 
sources are scarce. The energy stored in syngas is liberated by the backward reaction and 
utilized as an energy source (Usman 2015). 

The production of syngas from dry reforming is governed by reverse water gas shift reaction 
(RWGS, equation 3) resulting in a syngas ratio less than unity (H2/CO <1). 

CO2 + H2 = CO + H2O     (3) 

Dry reforming of methane suffers from carbon deposition problem induced by methane 
decomposition (equation 7) especially at temperatures higher than 550 0C and CO 
disproportionation reaction or Boudouard reaction (equation 8) especially at temperatures 
lower than 400 0C. 

CH4 = C + 2 H2 ∆H0
298K = 75.0 kJ/mol, ∆G298K = 50.5 kJ/mol  (7) 

2CO = C + CO2 ∆H0
298K = -172.0 kJ/mol, ∆G298K = -120.0 kJ/mol  (8) 

The tendency towards carbon deposition can be estimated by the ratio of O/C and H/C in the 
feed gas. The higher tendency towards carbon deposition will be observed in lower O/C and 
H/C ratio, which is the gas in dry reforming methane (CH4/CO2 =1) having O/C =1 and H/C = 
2. Reverse case was observed for steam reforming of methane (CH4/H2O =1) having O/C = 1 
and H/C =6 (Usman 2015). 

Similarly, partial oxidation of methane (CH4/0.5O2) showed a quite high ratio O/C = 1 and 
H/C =4. Considering the aforementioned ratios, it was clear that dry reforming of methane 
has a higher tendency to towards carbon deposition compared to steam reforming or partial 
oxidation of methane. Thermodynamic studies on dry reforming reaction revealed that 
spontaneous reaction cannot be achieved below 640 0C and the side reactions took place at 
a significant rate between 633 0C and 700 0C: Therefore a higher temperature (T>700 0C) 
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was employed to minimize the effect of side reactions, which lead to reactor blockages and 
reduction in activity (Usman 2015). Djinovic (2012) reported little higher temperatures than 
the previous report (> 750 0C).  

Bimetallic (Ni-Pt, Ni-Rh, Ni-Ce, Ni-Mo, Ni-Co) and monometallic (Ni) catalysts are preferred 
for dry reforming comparing to noble metals (Rh, Ru, Ir and Pt) due to their low cost. 
Investigation of support materials indicated that ceria- zirconia mixtures, ZrO2 with alkali 
metals (Mg2+, Ca2+, Y2+) addition, MgO, SBA-15, ZSM-5, CeO2, BaTiO3 and Ca0.8Sr0.2TiO3 
showed improved catalytic activities and decreased carbon deposition. The modifying effects 
of cerium (Ce), magnesium (Mg) and yttrium (Y) were significant for dry reforming of 
methane. MgO, CeO2 and La2O3 promoters for metal catalysts supported on mesoporous 
materials and had the highest catalyst stability among the studied promoters. More about 
catalyst studies is given in this review article (Usman 2015). Other catalytic review studies for 
dry reforming are reported by Ma (2009), Lavoie (2014) and Budinan (2012). 

In contrast to conventional syngas mixtures, George A. Olah developed a technology for 
methanol synthesis that generates syngas with a ratio CO/H2 = 1:2 called ”metgas” in a 
single step process combining methane (or natural gas), CO2, and steam in a 3:1:2 ratio. 
This process called bireforming (equation 9) is carried in a pressurized system at 
temperatures of 1073-1273 K and pressures of 0.5-4 MPa over a nickel–based catalyst (Olah 
2013): 

3CH4 + CO2 + 2H2O = 4CO + 8H2 = 4 CH3 OH  (9) 

A different approach, useful for the conversion and utilization of CO2 for syngas production is 
called trireforming which is a synergetic combination of CO2 reforming (equation 6), steam 
reforming (equation 4) and partial oxidation (equation 5) (Dibenedetto 2014). 

Triforming can produce synthesis gas with H2/CO molar ratio in the range of 1.5 - 2.0 and 
could eliminate carbon formation, which is a serious problem in the CO2 reforming (dry 
reforming) of methane. 

The syngas produced could then with above methods be converted to hydrogen, methanol (a 
precursor for polymers), dimethyl carbonate (an automotive fuel additive and intermediate to 
polycarbonates), dimethyl ether (a fuel additive and aerosol propellant) or hydrocarbons, 
hence providing a long term or temporary sink for carbon (Song 2001a, 2001b, 2004). 

2.3 Synthetic natural gas (SNG) 

2.3.1 Synthetic natural gas from biomass or coal 

Production of synthetic natural gas (SNG) is well established, but not much industrially 
applied. Besides the generation of electricity and liquid fuels, also the conversion of solid 
feedstock (coal, biomass) to synthetic or substitute natural gas (SNG) has been investigated 
in the past. SNG is a versatile energy carrier that is interchangeable to natural gas. The 
advantages of SNG are the high conversion efficiency, the already existing gas distribution 
infrastructure such as pipelines and the well-established and efficient end use technologies, 
e.g. CNG cars, heating, CHP power stations. 

Coal and biomass have to be converted to SNG by thermochemical process via gasification 
and subsequent methanation, reaching an overall efficiency from biomass to SNG up to 65 
%. The production of SNG via thermochemical process requires several conversion steps 
(Figure 10). 
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Ube Industries Ltd announced April 9, 2012 that it has reached agreement with Henan 
Zhonyuan Dahua Group Co., Ltd and High Chem Co., Ltd to establish a joint venture in 
China for the manufacturing dimethyl carbonate. The annual production capacity of plant 
(2013) is 100 000 tonnes/a. http://www.ube-ind.co.jp/english/news/2012/20120409_01.htm 

Catalyzed transesterification reaction between ethylene carbonate and methanol offers an 
alternative for “greening” DMC production (equation 21). In this Asahi Kasei process, the 
preferred catalyst is based on an anion-exchange resin operating under catalytic distillation 
conditions between 333 -353 K. This reactor design shifts the thermodynamic equilibrium 
towards complete conversion of ethylene carbonate, such that both yield and selectivity for 
DMC and monoethylene glycol are 99.5 %. The process is capable of supplying 
monoethylene glycol to the market, and DMC for captive use to produce DPC, C15H10O 
(Aresta 2010, Bonenfant 2008). 

2CH3OH + (CH2O)2CO = (CH3O)2CO + HO(CH2)2OH   (21) 

DMC is used in plastics and in pharmaceutical and agricultural chemicals and also as a non-
toxic solvent in paints. There is growing demand in China for DMC used as a non-polluting 
additive for gasoline and notably diesel oil. In addition, demand for DMC used as an 
electrolyte solvent for lithium-ion rechargeable batteries is expected to grow rapidly, with 
global demand for eco-cars such as hybrid and electric vehicles increasing to significant 
levels http://www.ube-ind.co.jp/english/news/2012/2012040. Global dimethyl carbonate end 
users are polycarbonate 51 %, solvent 24 % (incl. lithium batteries) and others 25 %. 
Industrial grade purity is > 99.0 w-%, Pharmaceutical grade purity is >99.5 w-% and Li-
battery grade is >99.9 w-%. China is the biggest user and producer of DMC 
www.ChemSystems.com. The FOB price in China varies from 700 to 1100 €/metric ton 
depending on the DME grade. 

DMC is one of the organic chemicals, which production has grown a lot during last twenty 
years. The production has grown from 45 000 t/a in 1990 to 62 000 t/a 1997 and to 370 000 
t/a 2007 (Bertau 2015). More recent production numbers was not found.  

Despite the uncertainty with respect to very large scale applications (such as fuel 
additive/blending agent), there is significant growth demand for dimethyl carbonate into its 
various established/semi-established applications such as solvent use (especially as an 
electrolyte solvent), and plastic production industries (www.ChemSystems.com) 

2.6.2 CO2 routes for dimethyl carbonate 

DMC from direct synthesis from CO2 and methanol is still in the R&D stage (equation 22). 
For the direct use of CO2 to produce DMC, it has been reported that CO2 could react with 
methanol at critical temperature and critical pressure of CO2. The biggest problem is the 
limitation of reaction equilibrium, which blocks the reaction proceeding. Therefore, the 
development of dehydration systems for shifting the chemical equilibrium to the DMC side is 
required. For this purpose, the complete removal of water under practical reaction conditions 
is essential for achieving a high yield of DMC. Under mild conditions, a basic catalyst (ZrO2-
MgO), a promoter (methyl iodide) and butylene oxide as a chemical trap were found to be an 
efficient catalytic system to shift the chemical equilibrium (ETA 2011). This direct reaction 
route results in high atom-efficiency to avoid the use of toxic reagents such as phosgene. 
However, industrial utilization of CO2 in the direct DMC synthesis is still a significant 
challenge because CO2 lies in a deep potential energy well of about – 400 kJ/mol that 
requires a huge amount of energy activation. 

CO2 + 2CH3OH = (CH3O)2CO +H2O ∆H298k = −27.9 kJ/mol, ∆G°298K = 26.2 kJ/mol (22) 
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DMC can be synthesized from CO2 via urea. This process, proposed as a new alternative, 
integrates the synthesis of urea and DMC, where CO2 is used as a chemical feedstock. The 
process starts with the reaction between CO2 and ammonia in the urea synthesizer, which is 
operated at 165-190 0C and 13.5-20.5 MPa (equation 22). The product stream is pumped to 
the purification section to remove water, excess CO2 and ammonia from urea. The methanol 
is added for the alkoholysis reaction to produce DMC (equations 24 and 25) by using ionic 
liquid Et3NHCl-ZnCl or emimBr-ZnCl2 (Kim 2010). It has been reported that the process 
involves a two-step reaction with methyl carbamate as the reaction intermediate according to 
reactions above. 

2NH3 +CO2 = NH2CONH2 + H2O   (23) 

NH2CONH2 + CH3OH = CH3OCONH2 +NH3  (24) 

CH3OCONH2 + CH3OH = (CH3O)2CO + NH3  (25) 

One of the most promising route to effectively utilize CO2 in DMC production is through 
cycloaddition of CO2 to epoxides to form cyclic carbonates, which gives 100 % atom 
efficiency. Propylene carbonate is synthesized from propylene oxide and CO2 at 130 0C and 
2.0 MPa (equation 18). Subsequently, DMC is obtained through the transesterification of 
propylene carbonate and methanol (equation 26). Various types of catalysts can be used 
such as quaternary ammonium ion exchange resins with hydroxide counter ions. Also, 
verkade super bases can be effective at low catalyst loadings for the rapid transesterification 
of propylene carbonate with methanol under mild conditions and with high product selectivity 
(Williams 2009). For this this propylene glycol which is valuable chemical is obtained as a by-
product. 

C3H6O + CO2 = CH3(C2H3O2)CO    (18) 

 CH3(C2H3O2)CO +2CH3OH = (CH3O)2CO + C3H8O2  (26) 

Similar to the synthesis of propylene carbonate, ethylene carbonate is also produced from 
cycloaddition of CO2 to ethylene oxide. The reaction conditions are relatively mild, i.e. 30 0C 
and 2.5 MPa in immobilized ionic liquid on amorphous silica (equation 17). Subsequent 
transesterification of ethylene carbonate with methanol produces DMC and ethylene glycol 
(equation 27). It has been reported that the conversion of ethylene carbonate to DMC is 81.2 
% at 250 0C and 9.0 MPa. Various types of catalysts can be used, such as poly-4-vinyl 
pyridine as a novel base catalyst and DABCO-derived (1,4-diazobicyclo(2.2.2)octane) basic 
ionic liquids (Jagtap 2008). 

C2H4O +CO2 = (CH2O)2CO   (17) 

(CH2O)2CO + 2CH3OH = (CH3O)2CO + (CH2OH)2  (27) 
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3. Conclusions 

Carbon capture and utilisation (CCU) is an emerging option for utilizing CO2 emissions from 
industrial operations. Main challenges to the chemical use of CO2 are caused by the fairly 
inert nature of carbon dioxide, which leads to unfavourable kinetics and thermodynamics of 
CO2 conversion. The thermodynamic limitations could be alleviated by adopting novel 
technological approaches. The use of catalytic membrane reactors, for example, may help to 
counteract the thermodynamic barrier and increase the yield and selectivity of the process. 

The main part of the research (especially catalyst development work) for various reaction 
routes converting CO2 into chemicals is currently carried out with lab-scale equipment. At the 
moment methanol seems the most promising product from CO2 utilization point of view. 
 
Using CO2 as feedstock for chemicals production needs to be coupled with the use of 
renewable energy in order to ensure sustainable end-products. In order to keep climate 
warming under the 2 0C threshold, the greenhouse gas emissions must be in 2050 40 to 70 
percent lower than emissions in 2010 (IPCC 2014). Power and transportation sectors are two 
largest sources of global CO2 emissions. 
 
The need for fuels is increasing with growing energy demand. However, fossil fuel resources 
are diminishing and fuel prices have experienced strong fluctuation in recent years. 
Therefore, it would be desirable to develop alternative fuels from renewable sources as well 
as new production processes for them. 
 
In the power sector near-term solutions include photovoltaics, wind power, nuclear power 
and carbon capture and storage technologies (CCS). There is also need to use chemicals 
and fuels in energy storage to smooth the fluctuations in the renewable electricity production. 
Liquid chemicals or fuels are interesting products due to their higher volumetric energy 
density in comparison to gases, which might make them more suitable for various energy 
storage applications. 
 
Transportation sector causes nearly one quarter of global-energy CO2 emissions. The 
transportation sector emissions can be reduced by improvements in efficiency and change in 
vehicle fuel. Technology for the production of synthetic fuels from fossil feedstocks via 
synthesis gas has existed for almost a century. In the future synthetic fuels should be 
produced from biomass to limit overall CO2 emissions. In this solution it is possible to use 
hydrogen from renewable electricity sources as a partial co-feed with biomass synthesis 
feed, which will lead to increased output of synthetic fuel in comparison to a plant operating 
with biomass alone. Biomass based gasification process can be also a source of pure carbon 
dioxide flow, which is needed in production of CO2 based chemicals and fuels. Another 
solution in a longer term for the decarbonisation of synthetic fuels would be to manufacture 
them directly from carbon dioxide and renewable electricity. In the case of CO2 to methanol 
production, for example, it is not easy to predict how technical development of process 
proceeds and when or if this route could be competitive with biomass gasification route. On 
the other hand, biomass resources are limited for transportation sector use. Bio-based 
methanol is both versatile fuel and interesting raw material for various chemicals and 
polymers. In any case the increasing share of renewable electricity in the energy supply mix 
is a positive backdrop for CO2 chemicals and fuels that might lead to their breakthrough into 
markets, but this development is not yet visible in short term 
 
The development and implementation of novel technologies is not only constrained by 
scientific and technical progress, but also by a number of political, social and economic 
factors. It is also necessary to promote the breakthrough of CO2 based chemicals and fuels 
with the aid of political regulations and supports. Although many CCU technologies are still in 
the research phase, with the current estimated costs therefore high, strategic research can 
make these options more feasible. 
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Appendix 1 CO2 to chemicals (Excel table from Teir et al. 2015) 



Product CCU process(es) How produced now?

Currrent market 

(Mtpa)

Current market 

(CO2 Mtpa)

Future 

market 

(Mtpa)

Future 

market (CO2 

Mtpa) Reaction equations

Catalyst 

material Process conditions (T, p)

Byproducts (incl. 

amounts)

Thermodynamic 

properties (ΔH,ΔG) = 

[kJ/mol] Post‐processing

Methanol (CH3OH)

Current method (CO2 as 

additive) 

From synthesis gas: 

3CO + 9H2 + CO2 → 

4CH3OH + H2O 60 10 >300 3CO + 9H2 + CO2 → 4CH3OH + H2O Cu/Zn oxides 225‐280 C, 50‐80 bar Water

Methanol (CH3OH)

Direct conversion into 

"Renewable" methanol " " " " CO2 + 3H2 → CH3OH + H2O Cu/Zn/Zr oxides

225‐280 C (a bit higher 

than in commercial 

route), 50‐80 bar Water ‐58.5; 46.3 (at 250 C)

Methanol (CH3OH) Enzymatic production " " " "

Photocatalyst, 

eg. A@TiO2 1 bar, 37 C

Urea (H2NCONH2) Urea production

Haber‐Bosch, 

consumes CO2, large 

energy requirement 180 132 210 154

2NH3 + CO2 → H2NCOONH4 → 

H2NCONH2 + H2O no catalyst

1: 150‐250 bar, 150‐200 

C H2O  ‐159.8; ‐21.1 (at 25 C) Dehydration (reaction 2)

Urea (H2NCONH2) Urea yield boosting " " "

Surplus ammonia from the process is 

used with pure CO2 to produce more 

urea " " "

Carbamates (RR'NCO2)

Carbamate from in situ 

generated carbamate ion 

+ halide 6 1 11 4

homogeneous 

metal catalyst 

(Sn, Ni) 100 C, super critical CO2 hydride

Carbamates (RR'NCO2)

Carbamate from in situ 

generated carbamate ion 

+ alcohol " " " "

organotin 

catalyst 200 C, high pressure CO2 water

Formamides R2NH + CO2 + H2 → HCONR2 + H2O

Salicylic acid  Carboxylation

Kolbe‐Schmitt‐

synthesis 0.06 0.02 0.1 125 C, 5‐7 bar ΔH=90.1

Purification, acidification 

(reaction 2)

Carbon monoxide
reverse water shift 

reaction CO2 + H2  = CO + H2O Cu, Fe ~600 C, 1 bar water 36.4; 6.8 (at 600 C)

Carbon monoxide
Reverse Bouduard 

reaction CO2 + C ↔ 2CO No ~700 C 171.2; ‐0.2 (at 700 C)

Synthesis gas (CO, H2) Splitting of CO2 ‐‐> CO

steam ref (NG) or 

gasification (coal) CO2 ‐‐> CO, + H2 ‐‐> Syngas

Synthesis gas (CO, H2) Dry reforming

steam ref (NG) or 

gasification (coal) CO2 + CH4 = 2H2 + 2CO

Ni, Co, noble 

metals ~800 C, 1 bar 259.6, ‐45.1 (at 800 C)

Synthetic natural gas (CH4) 3H2 + CO = CH4 + H2O

Catalytic 

hydrogenation of CO2 CO2 + 4H2 ‐‐> CH4 + 2H2O Ni, Ru, Rh 300‐450 C water ‐180.9; ‐40.6 (at 400 C)

Formic acid (HCOOH) Direct CO2 hydrogenation

CH3OH + CO → 

HCO2CH3, 

HCO2CH3 + H2O → 

HCO2H + CH3OH 1 0.9 >300 Ru complexes

<100 C, Supercritical 

CO2, P>150 bar ‐29.7; 44.4 (at 80 C)

Formic acid (HCOOH)

Electro‐reduction of CO2 

to produce formic acid 

(HCOOH) and O2 " " "

Formic acid used as a 

hydrogen carrier

Acetic acid (CH3COOH) CO2 + CH4= CH3COOH metal complexes ‐11.9; 60.1 (at 80 C)



Product CCU process(es)

Product value 

(€/t) Maturity

Power/steam/heat 

requirements

LCA (t CO2eq emitted 

per t CO2 used) Other raw material requirements Yield

Sensitivity to 

sulphur

Feasibility 

technical Commercial viability

Methanol (CH3OH)

Current method (CO2 as 

additive)  320

Commercial. 

See for 

instance 

upcoming 

SABIC plant From refinery? Hydrogen 95 %

Methanol (CH3OH)

Direct conversion into 

"Renewable" methanol 320

Comm. demo 

in Iceland

Electrolysis of water to 

produce H2 1.7 Hydrogen

viable  in locations

where the fuel price: electricity 

price ratio is large (e.g. Iceland).

Methanol (CH3OH) Enzymatic production R&D Enzymes, NADH

Urea (H2NCONH2) Urea production Commercial Ammonia

Urea (H2NCONH2) Urea yield boosting " " " 2.3 5‐10% extra ammonia

Carbamates (RR'NCO2)

Carbamate from in situ 

generated carbamate ion 

+ halide Organic halide 90 %

Carbamates (RR'NCO2)

Carbamate from in situ 

generated carbamate ion 

+ alcohol Acetal, alcolhol 84 %

Formamides

Salicylic acid  Carboxylation Commercial Phenols 90 %

Carbon monoxide
reverse water shift 

reaction

Carbon monoxide
Reverse Bouduard 

reaction

Synthesis gas (CO, H2) Splitting of CO2 ‐‐> CO H2

BASF: "Not interesting, product 

value same as electricity"

Synthesis gas (CO, H2) Dry reforming R & D

Catalyst 

deactivation 

problem due 

to carbon 

formation

Synthetic natural gas (CH4) 3H2 + CO = CH4 + H2O

Audi e‐gas 

plant H2

Formic acid (HCOOH) Direct CO2 hydrogenation 650‐1100 R&D

Formic acid (HCOOH)

Electro‐reduction of CO2 

to produce formic acid 

(HCOOH) and O2 320 USD

R&D, Korea 

talks about 

demo plans

electricity at

8MWh/t CO2 4.0

Not likely to be viable in its 

current embodiment.

Acetic acid (CH3COOH)



Product CCU process(es) How produced now?

Currrent market 

(Mtpa)

Current market 

(CO2 Mtpa)

Future 

market 

(Mtpa)

Future 

market (CO2 

Mtpa) Reaction equations

Catalyst 

material Process conditions (T, p)

Byproducts (incl. 

amounts)

Thermodynamic 

properties (ΔH,ΔG) = 

[kJ/mol] Post‐processing

Organic carbonates ((RO)2CO, total 

market) 0.2 100

CO2‐‐> ROC(O)OR: alcoholysis of urea 

(CO2 carrier) or direct carboxylation 

of alcohols: 2ROH + CO2 ‐‐> (RO)2CO 

+ H2O Al,Nb,Ce… Water Water removal, distillation

Acyclic carbonates (Dimethyl 

carbonate, DMC)

From methanol using 

phosgenes (COCl2 + 2 

CH3OH → 

CH3OCO2CH3 + 2 HCl) 

or catalytic tech. <  2 0.5 10 5 CH3OH + CO2 → (CH3O)2CO + H2O

Ti, Sn 

complexes, 

organostannane 150 C, 60 bar water
Cyclic carbonates (ethene carbonate 

(EC), propene carbonate (PC), styrene 

carbonate (SC))

Direct carboxylation of 

alcohols

Carboxylation of 

epoxides 0.07‐2 45

Many! Zu(OA2), 

DMF, DAA, CeO2 30‐100 bar, 100‐130 C EC ‐38.1; ‐0.2 (at 100 C)

Polymers, polycarbonates (total market) using monomers 5 1 10 3

Polyethylene carbonate

Combine traditional 

feedstocks with CO2 " 45 0 50 25 zinc complexes yes

Polypropylene carbonate

Combine traditional 

feedstocks with CO2 " 80 0 90 45

zinc complexes 

(Zn(Oac)2) yes water removal

Polyurethane

Copolymers from 

Aziridines and CO2 10 <10 30‐220 bar, 100 C

Inorganic carbonates (total market) 200 400 100

Calcium carbonate (CaCO3) Slag2PCC 

1. CaCO3 → CaO + 

CO2, 2: CaO + H2O → 

Ca(OH)2, 3: Ca(OH)2 

+ CO2 → CaCO3 + 

H2O 114 50.1

1: 2NH4Cl + CaO∙SiO2 + H2O → Ca2+ + 

2Cl‐ + 2NH4OH + SiO2, 2: Ca2+ + 2Cl‐ + 

2NH4OH + CO2 → CaCO3 + 2NH4Cl   No

20‐50 C, normal flue gas 

pressure

Sodium carbonates (Na2CO3) 50 15 (25% mined) <1

Magnesium carbonates (MgCO3) 3.5 mainly mined >300 Mg3Si2O5(OH)4 + 2CO2→ 



Product CCU process(es)

Product value 

(€/t) Maturity

Power/steam/heat 

requirements

LCA (t CO2eq emitted 

per t CO2 used) Other raw material requirements Yield

Sensitivity to 

sulphur

Feasibility 

technical Commercial viability

Organic carbonates ((RO)2CO, total 

market) Water formation an issue

Acyclic carbonates (Dimethyl 

carbonate, DMC)

Cyclic carbonates (ethene carbonate 

(EC), propene carbonate (PC), styrene 

carbonate (SC))

Direct carboxylation of 

alcohols 1300‐2000 epoxide, olefins, etc

Polymers, polycarbonates (total market)

Polyethylene carbonate

Combine traditional 

feedstocks with CO2

Novomer pilot 

plant 5.5 epoxide

Polypropylene carbonate

Combine traditional 

feedstocks with CO2

Novomer pilot 

plant 5.5 epoxide, propylene glycol

Polyurethane

Copolymers from 

Aziridines and CO2

R&D (very 

little work) aziridines 32‐62%

Inorganic carbonates (total market)

Calcium carbonate (CaCO3) Slag2PCC  100‐200

Laboratory 

pilot at Aalto ‐0.3

Up to 80% extraction of Ca, 

depending heavily on the 

slag

Sodium carbonates (Na2CO3)

Magnesium carbonates (MgCO3)

Colour codes (references):

Mikkelsen 2010 and IPCC 2005

Styring 2011

GCCSI(2011)

Aresta(2010)

Aresta (2014)

Aresta (2015)


