www.cleen.fi/en/ccsp

CO₂ from industrial off-gases for algae cultivation

Sebastian Teir^{1*}, Srikanth Mutnuri², Matti Sonck³, Kristian Spilling⁴, Neelam Atri⁵, Anant Yadav⁶, Piyush Choudhary⁶

Objective

- In CCSP, new methods for sustainable industrial utilization of CO₂ are studied, the main focus being on CO₂ uptake by microalgae
- The ultimate objective is to create technological readiness for a pilot plant utilizing microalgae for CO₂ capture and biogas/-fuel

Cultivation using CHP plant flue gas

- Flue gas from Suomenoja CHP plant in Finland was used
- Three microalgal species and one cyanobacterium (bottle A4 in the figure below) were cultivated in the flue gas
- All *microalgal* species grew similarly in flue gas and pure CO₂
- Cyanobacteria are more sensitive to NOx and Sox
 → cyanobacteria growth was inhibited in flue gas

production

Work done so far

- Review of technical solutions for capturing CO₂ from CO₂containing off-gases for feeding an algal cultivation
- Experimental research on cultivation of algae using
 - 1. vent gases from a sour gas processing plant
 - 2. flue gases from a coal-fired combined heat and power (CHP) plant

Technical solutions for capturing CO₂

- The most promising methods for CO₂ capture seem to be those that absorb CO₂ directly into the cultivation media by using separate *bubbling* carbonation columns
 - Both for open ponds and closed photobioreactors
 - Lower energy requirements than direct gas injection
 - Enables the remainder of the flue gas to be led out through the existing flue gas stack
 - The low capacity of water to dissolve CO₂ can be improved

Cultivation using vent gas

- Seven microalgae and one mixture of selected microalgae were cultivated with CO₂ by employing a 20 L photobioreactor (PBR)
- Vent gas from Hazira sour gas processing plant in India was used for further testing:

Compound	Vent gas
Carbon dioxide (CO_2)	28-56 %
Oxygen (O ₂)	9-11 %
Water vapour (H ₂ O)	9-16 %
Nitrogen (N ₂)	39-41 %
Hydrocarbons	<1.0 %
Hydrogen sulfide (H ₂ S)	< 30 ppm

by addition of alkaline salts

- Both test subjects the mixture of selected algae and Chlorella sp – grew well in the vent gas
 - No indications of any toxic influence of the vent gas on the selected algae was found
- A microalgae yield of 18 g/m²/day was achieved using *Chlorella sp*, which on anaerobic digestion yielded about 0.4 L CH₄/g volatile solids fed

Next steps

Techno-economic evaluations, further experimental work, and a conceptual design for a pilot

Carbon Capture and Storage Program (CCSP)

• Carbon Capture and Storage Program (CCSP) is a Finnish

Co-author organisations

¹VTT Technical Research Centre of Finland Ltd
 ²Birla Institute of Technology & Science, BITS Pilani, KK Birla Goa Campus, India
 ³Fortum Oyj, Finland
 ⁴Finnish Environment Institute
 ⁵Banaras Hindu University, India
 ⁶Oil & Natural Gas Corporation Ltd (ONGC), India

R&D program, funded by Tekes & program partners

- Collaboration with India through ONGC
- 17 industry partners, 9 research partners
- Time span: 1.1.2011 31.10.2016
- Volume: 15 M€

CO2 from industrial off-gases for algae cultivation

Sebastian Teir¹, Srikanth Mutnuri², Matti Sonck³, Kristian Spilling⁴, Neelam Atri⁵, Anant Yadav⁶, Piyush Choudhary⁶

¹VTT Technical Research Centre of Finland Ltd
²Birla Institute of Technology & Science, BITS Pilani, KK Birla Goa Campus, India
³Fortum Oyj, Finland
⁴Finnish Environment Institute
⁵Banaras Hindu University, India
⁶Oil & Natural Gas Corporation Ltd (ONGC), India

In this work, technical solutions for capturing CO₂ from CO₂-containing off-gases from industry for feeding an algal cultivation were qualitatively evaluated. Also, cultivation of algae using both vent gases from a sour gas processing plant and flue gases from a coal-fired combined heat and power (CHP) plant was studied.

The most promising methods for CO_2 capture seem to be those that absorb CO_2 directly into the cultivation media by using separate bubbling carbonation columns, both for open ponds and closed photobioreactors. This lowers the energy requirements in comparison to flue gas injection and also enables the remainder of the flue gas to be led out through the existing flue gas stack. The low capacity of water to dissolve CO_2 can be improved by addition of alkaline salts.

The growth of two green algae, one diatom, and one cyanobacterium was examined in a laboratory-scale, batch-mode comparative cultivation experiment, using both pure CO_2 and flue gas from a coal-fired CHP plant. No significant statistical differences in the growth were observed between the experiments except for the cyanobacterium, which had a decreased growth during flue gas cultivation.

Microalgae suitable for cultivation using vent gases from a sour gas processing plant were screened by employing a 20 L photobioreactor. Based on these experiments, a certain mixture of microalgae exhibited rapid growth and better tolerance towards in terms of time taken to reach pH 7. A small-scale CO₂ capture and cultivation pilot was set up using a $0.3 \text{ m}^3 \text{ CO}_2$ absorption column for absorbing CO₂ from vent gas in connection to a 0.2 m^3 raceway pond. The produced algae was harvested and sent for anaerobic digestion studies. The experiments were successful, with a microalgae yield of 18 g/m²/day achieved, which on anaerobic digestion yielded about $0.4 \text{ m}^3 \text{ CH}_4$ /kg volatile solids fed.