

Business from technology

Application of storage systems for Smart Grid purposes

EERA Smart Grids R&D Workshop Milan 28.6.2012

Kari Mäki VTT

Contents and approach

- Use of energy storages in Smart Grid context
 - Storage characteristics
 - Potential applications and use cases
 - Grid ancillary services
 - Modelling and simulation of storage systems
- Grid point of view approach applied
 - Benefits and requirements
 - Modelling interface at grid connection point ensuring correct operation towards grid, not necessary to model physical phenomena beyound
- Results based on national SGEM (Smart Grids and Energy Markets) research program and European IoE (Internet of Energy) project

Applications in distribution network

- Drivers
 - Amount of intermittent RES generation
 - Storage enabling more efficient integration
 - Need for better service reliability
 - Avoiding service interruptions
 - Improving customer power quality
 - Amount of electric vehicles
 - Potential for smart charging and vehicle to grid (V2G) integration
 - Customer-level applications
 - Economical use of dynamic tariffs
 - Optimization of microgeneration
 - Local back-up power

 \rightarrow "Significant extension of demand side management - from controllable load to controllable combination of load and generation"

- Potential energy storage applications in distribution network
 - Network power quality improvement
 - Power generation smoothing especially RES
 - Grid load smoothing / peak shaving
 - Temporary islanded operation of public grid or customer appliances
 - Customer-level energy optimization
 - Customer-level quality improvement

6

- Different storage types different characteristics
 - Suitable application areas can be defined
 - Hybrid systems can be beneficial

- Energy system needs according to operation time scale
 - Power quality improvement from microseconds to seconds. Suitable for local applications where sensitive loads are present.
 - Power balance smoothing from seconds to hours. Suitable especially for integration of renewable energies like wind power and PV. Also for load peak shaving.
 - Diurnal variation smoothing scale of hours. This usually means variation between day and night.
 - Seasonal smoothing from days to months. Especially between seasons. Difficult to achieve currently. Primarily heat storage applications?
 - Grid ancillary services from minutes to days or even to months. Grid state related services agreed between network operator and storage owner.

Applications in distribution network

Energy system needs according to operation time scale

• Time response requirements as defined in IoE project.

9

Applications in distribution network

Different storage types – different application areas

10

Grid ancillary services

- Most of the technical solutions mentioned could be offered to local grid operator as ancillary services
 - Local voltage control
 - Local power quality management
 - Local islanded operation
 - Local peak shaving
- Providing ancillary services requires efficient co-operation
 - Communication and control of storage device
 - Integration to network operator's SCADA and other systems
 - Measurements, agreements etc.

Grid ancillary services

- Aggregator service is a potential solution
 - Aggregator combines multiple small units
 - Suitable especially for EVs
 - Combination of controllable loads, microgeneration, storages, etc.
 - Aggregate impact of small units can be significant

12

Grid ancillary services

- EVs as ancillary service providers
 - Significant mass of storage units distributed in the network
 - Huge potential for local network management
 - Efficient load control possibility
- Drawbacks / open issues
 - Battery lifetime with charge/discharge cycles
 - Normal EV usage needs

Control logics for RES integration

- Possibilities:
 - Smoothing power output
 - Overriding grid capacity restrictions storing excess energy
 - Reactive power compensation for voltage control purposes
 - Support for fulfilling fault ride through (FRT) requirements
- Requirements:
 - Ability to monitor connection point state
 - Ability to react to alternating power output (fast yet stable...)

14

Control logics for RES integration

- Development of charge/discharge control logics for RES use
 - Including output power rate of change monitoring for responding to quick changes
 - Separate pick-up and drop-off limits to avoid repeating controls

Control logics for RES integration

Development of charge/discharge control logics for RES use

Control logics for RES integration

Use of storage for smoothing PV output (IoE project)

17

Modeling for power system studies

- Grid-focused point of view: modeling behavior towards grid rather than modeling physical phenomena itself
- Generalities
 - Controllable DC voltage source
 - (Exceptions: SMES coil current, flywheel mechanical inertia, ...)
 - Controllable impedances for modeling dynamic behavior
 - State of charge (SOC) with integral calculation or similar
 - Temperature etc. must be included in the equations

 \rightarrow Electrical circuit is normally trivial, but <u>the key</u> is in modeling dynamic behavior with impedances and voltage reference

Modeling for power system studies

- Modeling example: Sodium Sulfur (NaS) battery
- Equivalent circuit:
 - Rlc lifecycle resistance
 - Rc charge resistance
 - Rd discharge resistance

SOC calculation:

$$SOC = 1 - \frac{Ah_{rated} - \int I_{DC} dt}{Ah_{rated}}$$

19

Modeling for power system studies

- Modeling example: Sodium Sulfur (NaS) battery
 - Characteristics for charge and discharge resistances
 - Temperature impact included

20

Modeling for power system studies

- Modeling example: Sodium Sulfur (NaS) battery
 - Characteristics for lifecycle resistance and voltage reference

DOD = 1 - SOC

Modeling for power system studies

- Modeling example: Sodium Sulfur (NaS) battery
 - Example simulations

22

Case study

- PV output smoothing in Nordic conditions
- Daily variation can be reduced
- Other methods needed for seasonal level

23

To conclude...

- Efficient storage units are needed in Smart Grids
- Different requirements according to the application
 - From power quality to seasonal variation
 - Different storage technologies to match different requirements
- EVs represent high potential
 - On customer-level as local applications
 - On network level as aggregated services

Thank You!

Kari Mäki Senior Scientist, Dr.Tech. Energy systems VTT Technical Research Centre of Finland Tel. +358 40 142 9785 kari.maki@vtt.fi

VTT creates business from technology