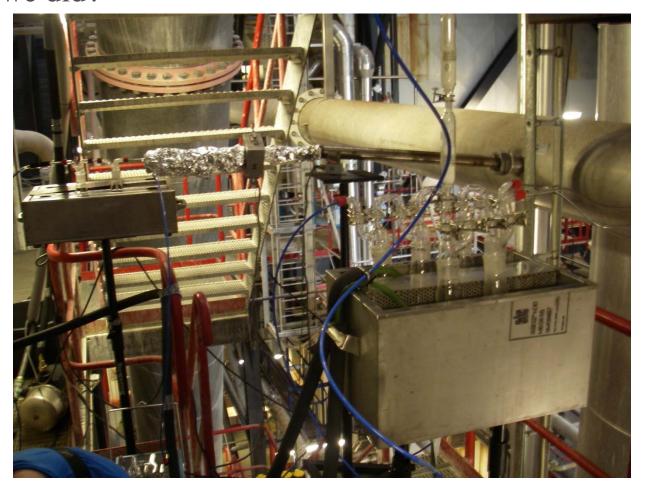
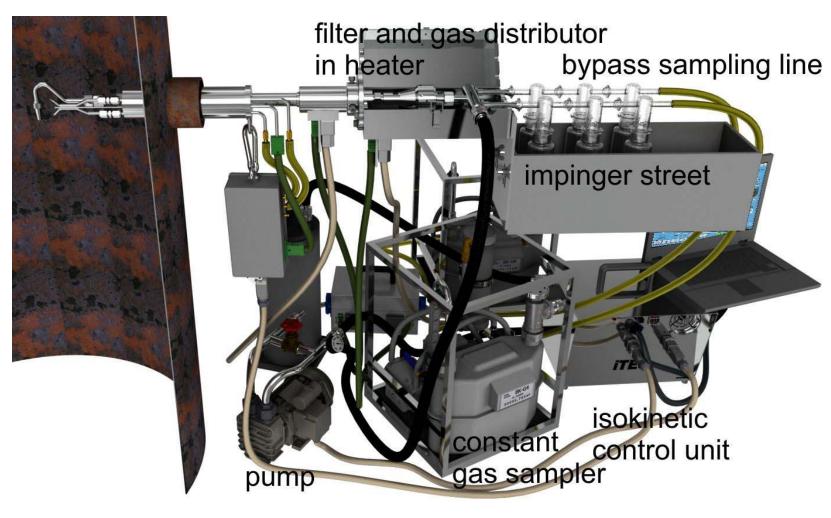


Carbon Capture and Storage Program


EMISSION MEASUREMENTS TO A NEW LEVEL

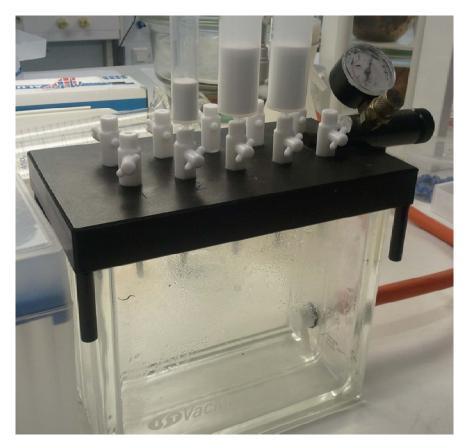
Eerik Järvinen, Ramboll Finland Oy



What we did?

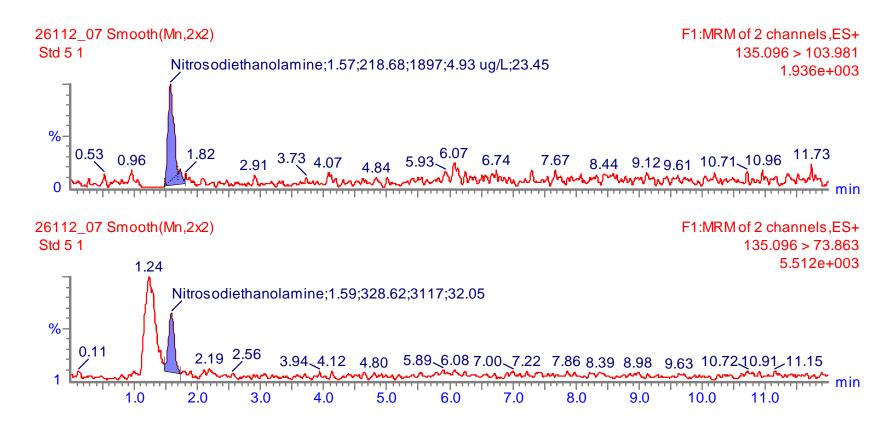
RAMBOLL

RAMBOLL



Obviously: mistakes

Invention of foam



Concentration method which actually does dilution x 1000

Analysis...

T039 Liite 1.01 / Appendix 1.01 Sivu / Page 10(27)

Laboratoriopalvelut Laboratory Services

Vaatimus/Requirement SFS-EN ISO/IEC 17025:2005

02.09.2016 Liitteen päiväys / Date of the Appendix

17.07.2019 Päätöksen viimeinen voimassaolopäivä / Date of expiry www.finas.fi Voimassaoleva pätevyysalue / Current scope of accreditation

PÄTEVYYSALUE SCOPE OF ACCREDITATION				
Testattava materiaali / tuote Material / product tested	Testityyppi, mittausalue Type of test, measured range	Testausmenetelmä Test method		
Vesi Water	ETU (etyleenitiourea) ETU (ethylenetiourea)	Sisäinen menetelmä RA4009, UPLC-MS/MS-tekniikka In-house method RA4009, UPLC-MS/MS-technique		
Vesi Water	MBT (Bentsotiatsoli-2-tioli) MBT (Benzothiazole-2-thiol)	Sisäinen menetelmä RA4034, LC-MS/MS-tekniikka In-house method RA4013, LC- MS/MS-technique		
Vesi Water	NDELA (N-Nitrosodietanoliamiini) NDELA (N- Nitrosodiethanolamine)	Sisäinen menetelmä RA4080, UPLC-MS/MS In-house method RA4080, UPLC-MS/MS		

T039 Liite 1.01 / Appendix 1.01 Sivu / Page 14(27)

Laboratoriopalvelut Laboratory Services

Vaatimus/Requirement SFS-EN ISO/IEC 17025:2005

02.09.2016 Liitteen päiväys / Date of the Appendix

17.07.2019 Päätöksen viimeinen voimassaolopäivä / Date of expiry www.finas.fi Voimassaoleva pätevyysalue / Current scope of accreditation

PÄTEVYYSALUE SCOPE OF ACCREDITATION					
Testattava materiaali / tuote Material / product tested	Testityyppi, mittausalue Type of test, measured range	Testausmenetelmä Test method			
Prosessinäytteet Process samples	Nitrosoamiinit Nitrosoamines	Sisäiset matriisikohtaiset menetelmät mm . RA4074, GC/HRMS, perustuu EPA 521 ja OSHA 27 In-house methods by sample to be tested e.g. RA4074, GC/HRMS, based on EPA 521 and OSHA 27			

Emissions to air, three reasons to measure, carbon capture process:

- 1. Health and environment
- 2. Monitoring of CO₂
- 3. Status of the process

So what is new?

Analogue baseline from history:

Waste incineration

DIRECTIVE 2000/76/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 December 2000 on the incineration of waste

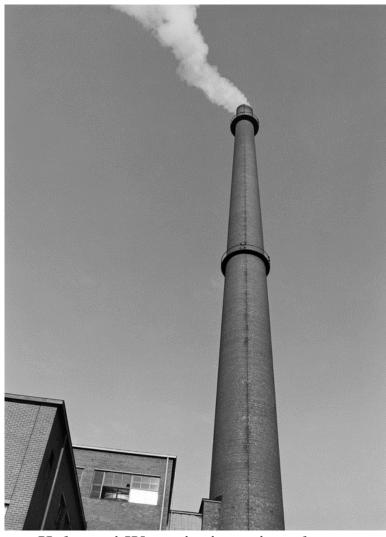
Emission limits set for:

Total dust

NOx

SO2

CO


TOC

HCI

HF

Metals + Hg

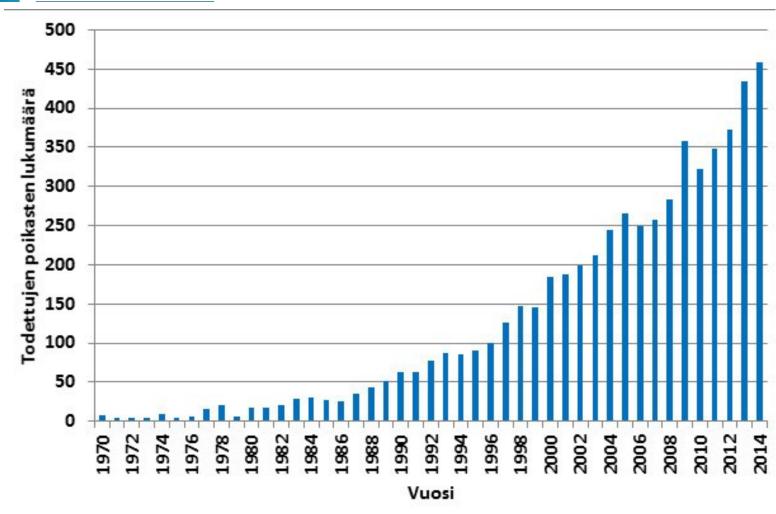
PCDD/F compounds (0,1 ng/m³n I-TEQ)

Kyläsaari Waste incineration plant 1960-1983

In practise, PCDD/F are not released any more...

20.9.2016 Hakkila, Vantaa, Finland

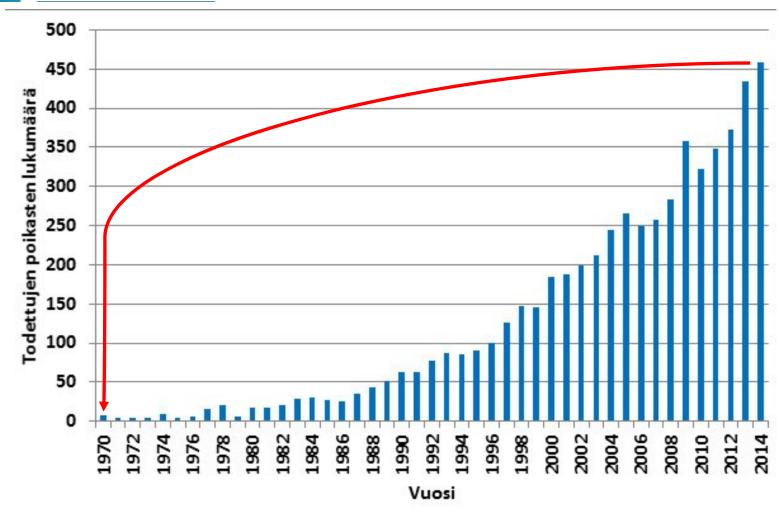
RAMBOLL



RAMBOLL

White-tailed eagle (Picture: WWF Finland)

Tekes



Source: WWF Finland

Source: WWF Finland

Total number of:

- PCDD congeners: 75

- PCDF isomers: 135

total 210 pcs

7,6 % of PCDD/F has selected to represent the overall concentration of compound group.

PCB's, PAH, oxy-PAH, phenols etc...

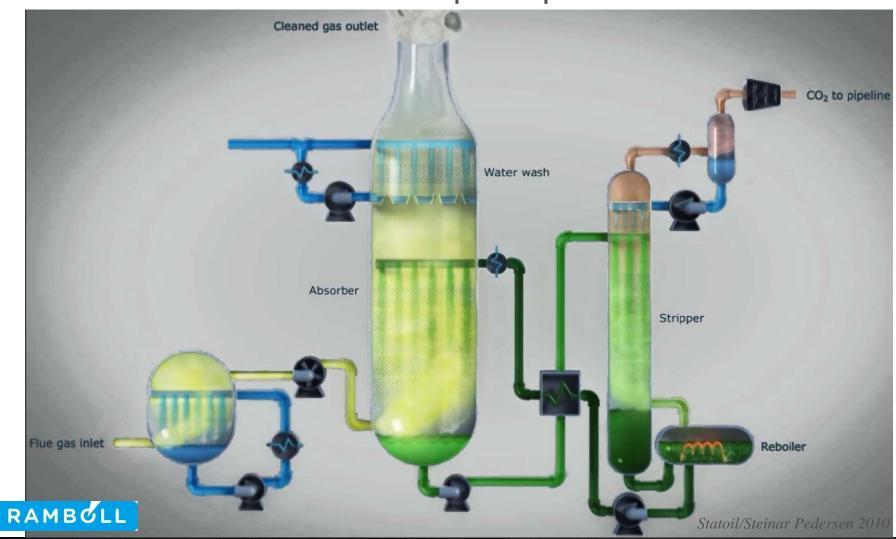
Equivalence factors for dibenzo-p-dioxins and dibenzofurans

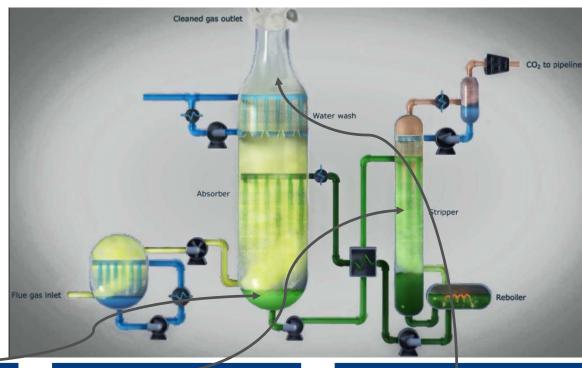
For the determination of the total concentration (TE) of dioxins and furans, the mass concentrations of the following dibenzo-p-dioxins and dibenzofurans shall be multiplied by the following equivalence factors before summing:

Toxic equivalence factor

2,3,7,8	— Tetrachlorodibenzodioxin (TCDD)	1
1,2,3,7,8	— Pentachlorodibenzodioxin (PeCDD)	0,5
1,2,3,4,7,8	— Hexachlorodibenzodioxin (HxCDD)	0,1
1,2,3,6,7,8	— Hexachlorodibenzodioxin (HxCDD)	0,1
1,2,3,7,8,9	— Hexachlorodibenzodioxin (HxCDD)	0,1
1,2,3,4,6,7,8	— Heptachlorodibenzodioxin (HpCDD)	0,01
	 Octachlorodibenzodioxin (OCDD) 	0,001
2,3,7,8	— Tetrachlorodibenzofuran (TCDF)	0,1
2,3,4,7,8	— Pentachlorodibenzofuran (PeCDF)	0,5
1,2,3,7,8	— Pentachlorodibenzofuran (PeCDF)	0,05
1,2,3,4,7,8	— Hexachlorodibenzofuran (HxCDF)	0,1
1,2,3,6,7,8	— Hexachlorodibenzofuran (HxCDF)	0,1
1,2,3,7,8,9	— Hexachlorodibenzofuran (HxCDF)	0,1
2,3,4,6,7,8	— Hexachlorodibenzofuran (HxCDF)	0,1
1,2,3,4,6,7,8	— Heptachlorodibenzofuran (HpCDF)	0,01
1,2,3,4,7,8,9	— Heptachlorodibenzofuran (HpCDF)	0,01
	— Octachlorodibenzofuran (OCDF)	0,001
LL	16 pcs. total	

Measurement of WI flue gas:


- Standards available globally
- Routine analysis in the lab with suitable mass spectometer



Post combustion carbon capture process

Formation of impurities

Solvent

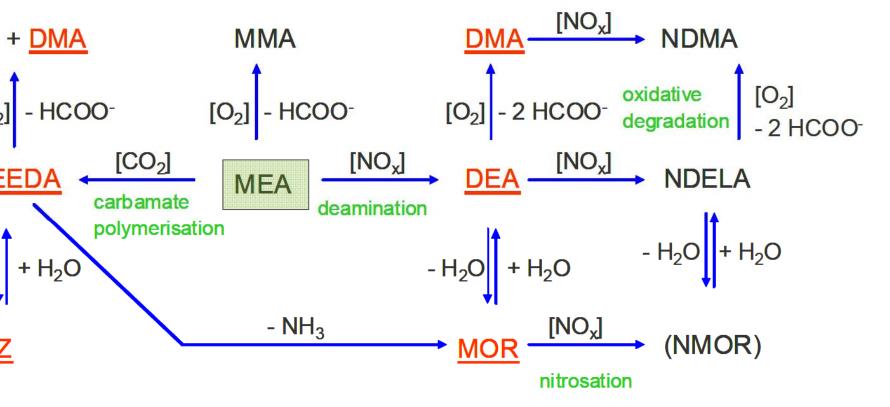
- Absorption liquid
- Impurities in raw material

RAMBOLL

Primary degradation

- "Small compounds"
- Aldehydes
- Ammonia

Secondary degradation


- N-Nitrosamines
- Nitramines
 - Solvent specific
 - "generic"

generic" N-nitrosamines, EPA-521"

Analyte	Chemical Abstract Services (CAS) Registry Number
N-Nitrosodimethylamine (NDMA)	62-75-9
N-Nitrosomethylethylamine (NMEA)	10595-95-6
N-Nitrosodiethylamine (NDEA)	55-18-5
N-Nitrosodi-n-propylamine (NDPA)	621-64-7
N-Nitrosodi-n-butylamine (NDBA)	924-16-3
N-Nitrosopyrollidine (NPYR)	930-55-2
N-Nitrosopiperidine (NPIP)	100-75-4

Compounds in red can directly form a stable nitrosamine

. Challenge

Number of nitrosamines is enormous

Nitrosamine composition depends on solvent
-> representative list is not available

Composition of solvents is non-disclosed
information

Solvent specific N-NO's are not necessarily
easily available

What should be analysed?

"Emissions from TCM shall not lead to calculated concentration of the sum of **nitrosoamines and nitramines** exceeds 0.3 ng/m³ for air concentrations..."

. Solution

otal nitrosoamine concentration (TONO)

What are the compounds and health effect?

Senereric N-NO's with additional compounds + solvent specific N-NO's

Total N-NO's

Jitramines?

Tekes

comparison

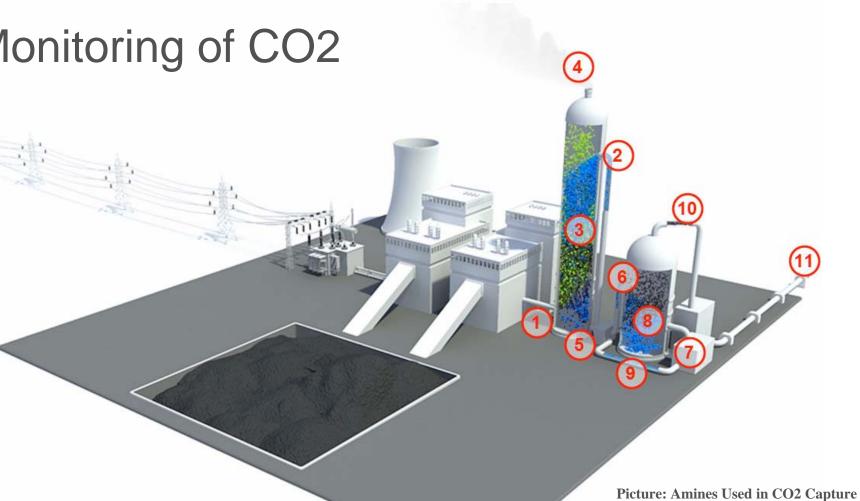
aditional

Compounds mainly formed (or released) at high temperature

Chemically stable

Samping and analysis: EN standards available

Samples can be sent to several accredited laboratories


Carbon capture

- Compounds formed even at low temperatures
- N-NO formation in sampling and storage is possible
- No validated standards available
- One accredited and commercial laboratory in Europe
- No existing practise to limit values

Result intepretation set by

Tekes

Traditional power plant:

Burned Carbon in Fuel – carbon in ash

 \Rightarrow CO2 emission

Carbon capture plant:

Burned Carbon in Fuel – carbon in ash – captured CO2

 \Rightarrow CO2 emission

Maximum overall uncertainty to CO2 emission is 2.5 %

```
emission = Flow rate (m/s) x Area (m^2) x Concentration (g/m^3)
```

rtainties in EN or ISO standard methods:

```
w rate (pitot): \approx 3 \% ea (1 point laser) \approx 1 \% (no shape error in the duct!) \approx 5 \%
```


Thank you for your attention and co-operation!

