Energy-efficient CO₂ Capture with Chemical-Looping Combustion

Anders Lyngfelt

CCSP – Fínal results semínar, October 13, 2016 Helsínkí

TODAY:

- The need for BioCCS/BECCS
- Why CLC ?
- Status of CLC development
- Why Nordic Countries ?
- Are the costs reasonable ?

Carbon budget for max 1.5°C and 2°C : 300 and 900 Gton CO₂

Emissions today >35 Gton/yr :

<10-30 years left of todays emissions!!

Climate goal "well below" 2°C - 20 years ?

To meet the 2°C target it is not sufficient to stop emissions of CO_2 , most likely we need <u>negative</u> emissions by the end of the century.

To meet the 1.5°C target, budget is very soon filled.

BECCS (Bioenergy Carbon Capture & Storage)

ATMOSPHERE

Carbon Capture and Storage (CCS) status Three main technologies¹, all having

- □ large energy penalties, around 10%-units
- □ significant need for gas-separation equipment
- □ cost normally estimated to 50 €/tonne CO_2 or more
- First commercial large post-oxidation in operation
 2 years (Boundary Dam, Canada)

¹post-, pre- and oxycombustion

Anders Lyngfelt, Chalmers University of Technology

- Potential for real breakthrough in costs of CO₂ capture
- But, does it work in practice?

Chalmers' 10 kW gas-CLC, 2003

Chalmers 300 W gas-CLC, 2004

Dimensions:

Air Reactor: 25x35 mm, 25x25 mm Fuel Reactor: 25x25 mm

Chalmers' 10 kW chemical-looping combustor for solid fuels. First operation 2006 Published 2008

Fuel

너

Fuel

Reactor

- 28" - 31"

chute

-12

-19 -20

21

22 23

TC 3

32 32′

35

Cyclone 2

Lyngfelt, A., Chemical-looping combustion of solid fuels, *Greenhouse Gas Issues*, No. 87, September 2007, 9-10.

Where are we?

CLC operation worldwide

- 34 small pilots : 0.3 kW 3 MW
- >9000 h with >70 oxygen carriers, >150 publications
 - 3600 h at Chalmers with >50 oxygen carriers

CLC with <u>solid</u> fuels

- Low cost oxygen carriers can be used
- Incomplete gas conversion/char conversion
 - Some oxy-polishing needed, oxygen demand: 5-25%
 - Up to 98% CO₂ capture attained (little char leakage to air reactor)
 - Up to 90% fuel conversion (i.e. 10% char elutriated)
- 3000 h operation in 17 units
 - 400 h at Chalmers 10 kW and 100 kW

Fuel reactor, cyclones, ducts and post-oxidation chamber: 2500 m²

Cost: 1500 €/m²

Added cost of fuel reactor:

4 M€

0.4 M€/year 2 Mton CO₂/year

= 0.2 €/ton CO₂

Added cost	Type of cost	estimation, €/tonne CO ₂	range, €/tonne CO ₂	Efficiency penalty, %
relative	CO ₂ compression	10	10	3
to CFB ¹	Oxy-polishing	6.5	4-9	0.5
	Boiler cost	1	0.1-2.3	-
	Oxygen carrier	2	1.3-4	-
	Steam and hot CO_2 fluidization	0.8	0.8	0.8
	Fuel grinding	0.2	0.2	0.1
	Lower air ratio	-0.5	-0.5	-0.5
	Total	<u>20</u>	<u>15.9-25.8</u>	3.9

Scale-up, first step without CO₂ capture, to assess technology

- Main costs: Downstream treatment and oxygen production not needed
- CO₂ capture could be added afterwards

Scale up, reduce/eliminate cost of boiler and surrounding system:

• Add fuel reactor to existing CFB boiler / Build dual purpose boiler (CFB/CLC)

Type of cost	estimation, €/tonne CO ₂	range, €/tonne CO2	Efficiency penalty, %
CO ₂ -compression	10	10	3
Oxy polishing	6.5	4 9	0.5
Boiler cost	1	0.1-2.3	-
Oxygen carrier	2	1.3-4	-
Steam and hot CO ₂ fluidization	0.8	0.8	0.8
Fuel grinding	0.2	0.2	0.1
Lower air ratio	-0.5	-0.5	-0.5
<u>Total</u>	<u>3.5</u>	<u>1.9-6.8</u>	0.4

¹Lyngfelt, A., and Leckner, B., A 1000 MW_{th} Boiler for Chemical-Looping Combustion of Solid Fuels - Discussion of Design and Costs, *Applied Energy* 157 (2015) 475-487

Estimated cost of CLC, less than half of competing technologies

Should be suitable for biomass.

•larger biomass boilers normally use CFB technology

Additional potential advantages

•No pollutants in flow from air reactor

- Lower air ratio possible ?
- •Pollutants, e.g. NO_x, concentrated in CO₂ flow
 - Possibility to eliminate NOx emissions ?

•No alkali from air reactor ?

- Alkali leaves with flue gases from fuel reactor ?
- and/or is captured by the oxygen carrier ?
- No corrosion ?
- Higher steam data / efficiency ?
- More research needed
- •No other ash from air reactor ?
 - Reduced fouling ?
 - Problems concentrated in smaller flow from fuel reactor ?

CO₂ capture and storage in Nordic countries

total Nordic fossil CO₂
emissions 200 Mt/year
in addition:
>50 Mt/year biogenic

CO₂ emissions, sources >100 000 tons/year: Total Fossil Biogenic Total Fossil Biogenic Total Fossil Biogenic Total Fossil Biogenic Finland Sweden Denmark Norway Iceland

potential storage locations

CO₂ biofuel point sources

Ideas of port in western Norway with pipeline to storage, could receive CO_2 by boat from Sweden/Finland.

Nordic countries and BioCCS

- Large biogenic emissions (25% of fossil)
- Very large and proven storage locations
- Key competence in storage, Norway worldleading
- Potential synergies with industrial emission that would need storage (cement, iron & steel...)
- Key competence in CLC
- Moral: Nordic countries have by far exceeded their "share of the atmosphere"
- We are rich, if we cannot afford it who can?

What is a reasonable cost ?

global carbon intensity ≈ ½ kg CO₂/€ => "avoidance cost" much less than 2 €/kg CO₂

Thus, avoidance cost < 0.1 €/kg CO₂ leads to cost <5% of GDP

Avoidance costs <0.1 €/kg preferred !!! (<100 €/ton)

Scale-up

Fuel size:

- Use intermediate size, 90-300 μ m
 - High CO₂ capture and low loss of char

Reactor and system design:

• Use existing proven CFB technology when possible

Scale-up strategy, lower cost by

- First step without CO₂ capture
- Dual purpose unit, i.e. CLC that can be used as CFB.

Circulation system/control

• Key for successful operation

Pilot operation:

- >9000 h of operation and ~3000 h with solid fuels shows CLC is feasible.
- Additional small-scale pilot operation will <u>not</u> answer key questions related to performance in full-scale
 - Small pilots do not have relevant height to show conversion possible in full-scale riser, wrt. conversion of gas and char
 - High bottom beds possible, but will be slugging because of high ratio H/D
- Technology ready for scale-up !

Nordic Energy Research

Flagship Project

Nordic Energy Research

Negative CO₂

Enabling negative CO₂ emissions in the Nordic energy system through the use of Chemical-Looping Combustion of biomass (bio-CLC)

		Budget (kNOK)
CHALMERS	Chalmers University of Technology	9258
BELLONA	The Bellona Foundation	2080
	Sibelco Nordic AB	240
	SINTEF Energy Research	6555
() SINTEF	SINTEF Materials and Chemistry	2787
	VTT Technical Research Centre of Finland Ltd	6667
Å	Åbo Akademi University	3337
Åbo Akademi	Sum:	30924

Conclusions

- •BioCCS will be needed in large scale to meet climate targets
- •CCS has reasonable costs
- •Nordic countries are very suitable for developing BioCCS
- •Chemical-Looping Combustion has unique potential for dramatically reduced cost of CO₂ capture

QUESTIONS?

>290 publications on chemical-looping on: http://www.entek.chalmers.se/lyngfelt/co2/co2publ.htm