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ABSTRACT
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Master's Degree Programme in Electical Engineering
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for Distribution System Operators

Masters Thesis, 91 pages, 2 appendix pages
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Examiner: Pekka Verho

Keywords: Common Information Model, Service Oriented Architecture, Distribution

Management System

This thesis evaluates a move towards a Service Oriented Architecture design in ABB

MicroSCADA Pro DMS 600, a Distribution Management System. The IEC stan-

dards 61968 and 61970, commonly referred to as the Common Information Model

are expected to provide a foundation for building such a computing architecture in

an interoperable fashion.

A Service Oriented Architecture di�ers in some ways from the existing DMS 600

architecture. In addition to identifying these di�erences, a short look is given to some

possible changes in the business environment of both system vendors and operators

made possible by the SOA. Security and other design issues raised by SOA were

discussed.

The maturity of the CIM data types is evaluated by implementing a network data

import functionality on the DMS 600 system using the CIM/RDF network model

format. This part of the standard is found to be in a usable state for application in

production environments, although additional CIM pro�les would be useful.

The internal communication protocols of the DMS 600 system are found to be

suitable for most types of information exchanges to be translated into such CIM

messages. Some Service Oriented design principles are found potentially bene�cial to

the DMS 600 system internally, and proposals are given for some future development

work.
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Tarkastaja: Pekka Verho
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järjestelmä

Tässä työssä tutkitaan palvelukeskeisen arkkitehtuurin ABBMicroSCADA Pro DMS

600 käytöntukijärjestelmälle tuomia mahdollisuuksia. IEC standardien 61968 ja

61970, joihin usein viitataan nimellä Common Information Model, odotetaan aut-

tavan järjestelmien yhteensopivuudessa ja avaavan mahdollisuuden siirtyä kohti täl-

laista arkkitehtuuria.

Olemassaoleva DMS 600 sisäinen arkkitehtuuri ei vastaa täysin palvelukeskeisen

arkkitehtuurin periaatteita. Nykyisen järjestelmän ja palvelukeskeisen arkkitehtu-

urin erojen tunnistamisen lisäksi työssä käsitellään mahdollisia liiketoiminnan muu-

toksia, joita palvelukeskeinen arkkitehtuuri saattaa aiheuttaa. Työssä käsitellään

myös palvelukeskeisen arkkitehtuurin aiheuttamia uusia tietoturva- ja muita teknisiä

kysymyksiä.

CIM tietomallin soveltuvuutta käyttöön tutkittiin toteuttamalla verkkotiedon tuon-

tiominaisuus CIM/RDF-muodosta DMS 600 sisäiseen verkkomalliin. Verkkomallia

käsittelevä standardin osa havaittiin nykyisellään pääosin riittävän yksiselitteiseksi

myös DMS 600 tarpeisiin.

DMS 600 sisäisen viestiliikenteen havaittiin pääosin soveltuvan myös palvelukeskeiseen

malliin muunnettavaksi. Jotkin palvelukeskeisen arkkitehtuurin suunnitteluperiaat-

teet saattavat olla positiivisia myös DMS 600 kehityksessä huomioitaviksi, ja työ

antaakin joitain suosituksia tuotteen tulevalle suunnittelulle.
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1. INTRODUCTION

Service Oriented Architechture, or SOA, is a computer system design paradigm. As

a concept, SOA may seem vaguely de�ned. De�nitely it is not a single technology,

although some technologies such as XML and Web Services are nowadays seen as a

key part in realizing a SOA deployment.

The promise of SOA, like many software development trends before it, is to

simplify deployment of new systems. The SOA way of integrating systems is creating

services, with which di�erent systems can interact. SOA discourages proprietary

point-to-point interfaces in favor of a centrally managed repository of distributed

services.

To enable these services to exchange data, they must use a commonly de�ned

language. In terms of markup, web technologies such as XML act as the enabling

technology. A commonly agreed way of expressing the information content is needed.

When it comes to electricity transmission, distribution and generation, the IEC CIM

standards family steps in. It is an e�ort to create guidelines for expressing the data

of electricity network operators.

The goal is to make interfaces so transparent that a new component can be

plugged in with only trivial con�guration. While true plug-and-play capability will

propably not be realized in the foreseeable future, the new ways of designing systems

have a potential of lowering the costs of system integration.

If systems are able to talk to each other easily, the bene�ts are numerous. For

the grid operators, vendor lock-in will be eased. Data is no longer captive in a

proprietary system, only to be liberated by countless hours of consultant work. For

vendors new possibilities arise. No longer do they need to o�er a complete software

stack to �ll all the needs of every client. When system interaction is �uent, a

company may be able to successfully market a piece of software to ful�ll a single

task of the customer.

Figure 1.1 shows a possible future system architechture of an electical network op-

erator. The real-time needs are �lled by corresponding standards from the IEC 61850

series. Business functions apply the data formats commonly adopted for such tasks,

regardless of sector. The core non-realtime systems for network management use the

CIM standards to talk to each other. Traditional systems, Distribution Management

System (DMS), Customer Information System (CIS) and Asset Management (AM)

1



2 1. Introduction

are overlaid on the picture, but they share functionality where traditional architec-

tures would overlap. Data in di�erent formats is converted using widely adopted

XML technologies such as XSLT when it passes to another domain. A separate data

warehouse is also depicted in the �gure. It may be used for cross-checking data in

individual systems and perhaps as the primary data storage for some.
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Figure 1.1: An illustration how a SOA system might look in the context of a Distribution
Network Operators computing system, and how it relates to the traditional view of software
packages, Network Information System, Distribution Management System and Customer
Information System.

The bus shown may be just a catalog of pointers to services o�ered by di�erent

systems. It may also be an Enterprise Service Bus, a system which passes messages

from system to another, verifying data, performing transformations and providing

reliable caching and queuing while doing so.

The most promising part about the SOA paradign is that one does not need to

convert all systems to it at once. The SOA principles are best kept in mind even

when designing point-to-point links between systems. One day another piece of the

SOA puzzle may be added, and at that point existing work can be leveraged. The

typical maze of systems is a product of decades of additions and extensions. The

SOA principles should be embraced when updating these legacy systems � one day

the e�ort may pay back.



2. A BREAKDOWN ON THE DSO BUSINESS

Electrical networks can be clearly categorized in two distinct groups, distribution

systems and transmission systems. Transmission systems are operated on large

geographical area, usually on national level and often include connections across

national borders. They are the backbone of the electricity network. Transmission

systems operate on high voltage levels and have strict reliability requirements. High

reliability is achieved using a meshed topology, where nodes are supplied by multiple

connections in normal operation.

Distribution networks are the usually medium and low voltage networks that span

a regional level. They are connected to the transmission system, and from the point

of view of it are the energy consumers. A distribution network provides electricity to

individual consumers in a cost-e�ective way. The networks are usually operated as

a branched topology, although meshed connections may exist for redundancy during

abnormal situations. The scope of this thesis is limited to the computer systems of

the distribution network operators. Although some overlap exists in both software

and operational procedures, the domains of transmission and distribution generally

require di�erent operational procedures.

Electricity networks are often seen as a natural monopoly due to high initial

investment costs. In most countries this status is enforced by law, while in others

the power system is actually owned by a public utility. In countries with private

distribution system operators, they may have elaborate reporting requirements and

price controls mandated by the law.

The operations of a DSO typically consist of distinct areas. Technical operations

can be classi�ed to network operation, planning, maintenance and construction.

Customer service and billing are important non-technical aspects. Network planning

is the ongoing e�ort to analyze future changes in the operating environment and

direct investment accordingly to ensure operational goals are met in an economically

sound manner. Maintenance consist of long-term condition monitoring of assets and

timely replacement of components. Network construction is typically made up of

clearly de�ned projects. Some construction tasks, such as laying cable or aerial lines

happens more often while others, such as commissioning new substations is more

rare and requires specialized know-how.

Network operation aims to provide a reliable system by optimizing the state of

3



4 2. A breakdown on the DSO business
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Figure 2.1: A typical fault isolation scenario on a radial distribution network. A fault
occurs on one feeder (a). It is immediately disconnected by automatic operation of a
circuit breaker (b). Supply is restored to as large part of the network as possible using a
meshed interconnection that is normally operated in the open state (c). The state diagram
was adapted from [1].

the network to best respond to unexpected situations, while ensuring losses in the

network are as low as possible. The �gure 2.1 shows a typical fault isolation scenario

on a branched network topology with a mesh interconnection. Some networks use

additional devices such as mid-line fault detectors or fuses to provide additional

protection. Nonetheless, the main function of the operations team is to make the

best decisions based on limited information in order to keep anomalies as isolated

as possible. [1]

2.1 Common types of computing systems

A DSO typically operates multiple pieces of software from di�erent vendors. It is

hard to de�ne the exact functional pieces of a type of software, but here we list some

terms commonly applied to speci�c functionalities. This list only includes systems

directly related to the operation of the power system.

A Supervisory Control and Data Acquisition system, or SCADA, is a computer

software that communicates with measurement and control devices of the power

system. SCADA software is also used in other �elds, such as process control in

plants and factories, or even HVAC and lighting functions in large buildings. A

typical SCADA product is not specialized to only one function, but is versatile and

can be deployed in very di�erent environments.

SCADA interoperates with devices, which makes for strict security and perfor-
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mance requirements. SCADA installations may even be deployed in a network

completely isolated from the internet to ensure this.

Asset Management, or AM, is a database of assets that is used to track their

state and plan long-term investment options. Other commonly used terms for similar

system are AM/FM/GIS (Automated Mapping, Facilities Management, Geographic

Information System) and NIS (Network Information System) which speci�cally in-

cludes functionality for network calculations. An AM may have some calculation

and analysis tools for both planning and operation purposes. GIS in general refers to

any system used for keeping a database where a geographical component is included

and the term is commonly used outside the domain of electrical networks.

A Customer Information System,CIS, is a system for keeping track of customer

contacts, such as billing. As billing is often a�ected by supply quality, a CIS may re-

quire data on the status of the network, yet it does not implement a network model.

A related system, Trouble Call Management is used to track customer complaints

to get information on the status of the network. This is especially important in in-

stallations that rely on medium voltage fuses for protection, as customer complaints

may be in cases the only source of information of a fault.

Advanced Metering Infrastructure, abbreviated AMI, refers to deployment of

remotely read or remotely controlled usage point eletricity meters. Another term

associated with AMI when referring to it as a functionality rather than a system

is AMR, or Automated Meter Reading. Although the primary goal of an AMI

deployment is to ease billing, electrical network operation also bene�ts from the

additional data such installations can provide. Depending on the system, AMI

can provide real-time measurements and alarms in addition to historical energy

measurement data. Future development is expected to allow AMI installations to

operate as the customer interface to demand response on the micro scale.

2.1.1 Distribution Management System

Due to thesis concentrating on a Distribution Management System, it warrants a

separate introductory section. The DMS is a system combining data from SCADA,

network calculation engines and asset management to present a real-time view of the

distribution network to the contol room pesonnel, and to record operational activity

for later review. The DMS naturally takes a role of the information hub in a system,

due to it requiring data from many separate systems. This means a DMS has to

deal with many types of data exchange interfaces, leading to practical problems on

implementation level, but also a great deal of possibilities for improving the overall

experience of the control room and other stakeholders.

The main interface of ABB MicroSCADA Pro DMS 600 is a geographical view of

the network laid on top of a map or aerial photographs. Colors are used to display
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information of the state of the network to control-room personnel. In addition to

topology analysis for determining unsupplied parts, DMS 600 includes information

on load levels, voltage drops and protection status of the network. It also includes

some analysis features to search for optimal operating state, such as selecting a

disconnector con�guration that minimises losses. Advanced planning features have

been developed to allow for estimating life-cycle costs of network construction by

taking expected outage costs of proposed con�gurations into account.

During normal operation, the DMS 600 warns the user when entering potentially

dangerous switching states, such as having a short-circuit current on part of the

network too low for relays to detect faults, or opening disconnectors that cannot

handle the real-time load-current. The main view may be overlaid with additional

information, such as real-time positioning of work groups.

During faults, the DMS 600 combines data from asset management and SCADA

to �nd potential fault locations based on load- and fault current and impedance of

the network, adjusted for the actual switching state and load level during the fault.

It can advise the operator on propable fault locations based on these calculation.

The main screen of the MicroSCADA Pro DMS 600 is shown in �gure 2.2.

The operations tracking allows the DMS 600 to simulate any past switching state

to allow for later review. From this data, reports can be generated for regulatory or

internal review of operational performance of the DSO. Real time situational data

can also be exported to other systems to give customers or other parties information

on the network supply status.

The MicroSCADA DMS 600 system architechture includes clients running on

workstation machines and exchanging data through both a proprietary TCP protocol

and a database connection. A typical environment is illustrated in �gure 2.3. The

client side includes two separate applications: the Network Editor (NE), used for

editing the network data and the Workstation (WS), the main program used for

monitoring the network state.

The NE uses the database as the primary storage, but it is also responsible of

writing a binary network �le, a compressed representation of the network data for

use by the WS instances. The creation of the binary network �le requires user

interaction, and is usually done after an operator performs modi�cations to the

network.

The instances of the WS application load the static network data �le as well as

background maps using standard operating system �le sharing protocols. When an

operator performs changes that need to be propagated to all instances, usually data

is written on the database and a DMSSocket message is sent. Other instances then

know to refresh their data from the database.

Most of the calculations are performed on client side instances of the WS appli-
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Figure 2.2: ABB MicroSCADA Pro DMS 600 displaying possible fault locations, overlaid
on top of aerial photogaphs.
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Figure 2.3: ABB MicroSCADA Pro DMS 600 environment.

cation. This means some calculation e�ort is duplicated on environments running

multiple instances. For others, e.g. load estimation, a separate calculation engine is

invoked periodically. The WS instances then load the data produced by this engine.

A single Server Application instance runs in the systems. The Server Application

is responsible for tracking changes in switching state originating from a SCADA

system. The SA communicates with WS instances through DMSSocket protocol.

2.2 Development trends

Historically, the distribution networks were often operated by an electrical utility

that also operated electricity generation. Nowadays electricity distibution and gen-

eration are often decoupled into separate companies or at least departments within

a company. Many countries enforce this decoupling by regulation. In Finland such

law entered into force in 1995. This law de�ned price controls, mandatory reim-

bursements in case of a failure to provide realible service and required electricity

sales and distribution business units to have separate accounting. [2]

Current environmental concerns, such as the e�ort to reduce greenhouse gas emis-

sions have ripple e�ects on the electricity distribution industry. While electricity

distribution does not cause emissions as such, distribution companies may be the

only party capable of providing information or control required by other parties.

As for energy losses in electricity distribution, methods for optimizing switching
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states are already in place in DMS systems, but further increases in electricity cost

- driven either by emission costs or fuel costs - may justify additional investment in

the network itself.

2.2.1 Technological

Electricity distribution has been a rather static industry from a technological point

of view since it appeared a century ago. From early on, the networks were mainly

operated as alternating current systems that utilized di�erent voltage levels to re-

duce losses. A modern transformer, the enabling technology of large scale energy

distribution is still fundamentally very similar to the original invention.

Progress has been made in operating the networks more reliably. Circuit breakers

controlled by electronic devices are increasingly accurate due to increased processing

power and better sensors, allowing much more �ne-grained constraints on protec-

tion. Development of hot-wire working techniques allow many types of maintenance

work to be done without causing an outage on the network. Remote monitoring

and remote control has enabled networks to operate with ever decreasing labor re-

quirements. Modern computer systems provide ever improving visualization and

situational awareness tools for operators.

A recent trend is the transformation to so called smart grid technologies. This

means having huge numbers of additional measurements from the network and using

these to operate the network more safely and reliably. The transition is fuelled by

higher energy e�ciency requirements, and programs such as the european aim of

producing 20% of all energy with renewable power by the year 2020, which in turn

push for more distributed generation. Smart grid technologies such as Automated

Meter Reading take remote control and monitoring down to the level of individual

customers. All new data must be processed in a meaningful way, and therefore

there is a lot of pressure on software vendors to implement new functionality made

possible by this additional data.

Safe operation of distributed generation also requires a lot more data on the

state of the network compared to established ways of operating the network. Small

generation scattered throughout the network result in the networks to be operated in

a partial meshed topology, giving distribution networks more of the characteristics

typically thought to only apply to transmission networks. Local generation also

theoretically enables island operation, or keeping the network electri�ed even in the

case of a fault cutting o� upstream power input.

Demand response capabilities are starting to appear in AMR systems. The use of

these is controversial, at least until electricity distribution contracts start including

clauses that give the customers a signi�cant incentive to allow parts of their non-

critical loads, such as air conditioning, be remotely controlled. New possibilities for
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load control may arise as new types of devices are acquired by customers.

One aspect of the smart grid trend is a tendency towards distributed intelligence.

If Intelligent Electronic Devices1 take over some of the decision making, response

to transient situations is expected to be faster. Distributing the control process re-

quires more information such as topology and state of other nodes to be sent down to

individual control components. These components also have to be interconnected.[3]

This development of distributed intelligence leads to considerations about transmit-

ting the decisions and data they are based on back to the central system, to ensure

control room situational awareness.

The in�ux of new technological capabilities brings forth concern about the cyber

security of the system. Security threats may endanger both the safety and reliability

of the system, but also the privacy of customers. An attack on the system that can

be carried out remotely and with little threat of getting caught may open new

motives for criminals. The exact measurements of individual load points may allow

an attacker to determine facts about a speci�c customer � something that has never

before been a concern related to power system operators. Legal liabilities of the

power system operators in case of a security breach are also unclear as the issues

are very recent.

2.2.2 Business

One clear trend in the business environment is the decoupling of grid maintenance

and construction from the core business of the grid operator. This includes grid oper-

ators selling maintenance services to their competitors and also separate companies

specializing in the maintenance of infrastructure, without owning any distribution

network of their own.

The �eld of electricity network operation has some characteristics that make it a

good candidate for outsourcing. An important aspect is the highly variable resource

requirements during normal operation compared to emergency situations, such as a

storm causing multiple faults in the network. Being a natural monopoly may actually

help in advancing outsourcing. Where strict goverment regulations are in place,

companies must already do cross-allocation of costs to separate business functions

in their accounting. This means the �rst step towards outsourcing, identifying costs

according to business units, may have to be taken just to comply with regulations.

Computing systems play a role in this process. In a 2009 questionnaire directed to

�nnish electricity network operators, incompatibility of computer systems was seen

as a major reason against increased outsourcing. The speci�c reasons for this were

not clear, but two main considerations are giving access to speci�c data without

1IED
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compromising the whole system and transferring data between systems where a

contractor does not posses systems from the same vendor. [4]

A related trend seen in various �elds of business is consolidation to big units.

Some smaller utilities are responding to the e�ciency gains of larger operators by

sharing parts of their operation in an umbrella company. Especially the latter causes

interesting technical requirements, as a shared system may see multiple independent

companies accessing it, but unwilling to share all data with others.

Going even further, some companies have taken a very passive role in actually

operating the network. Some networks may have two separate business entities

involved: the operator of the network and the owner. According to the previously

mentioned questionnaire [4], companies see network planning as the most integral

part of their business, a core competency.

2.3 Current situation of interfaces

The software stack at a typical electrical utility company contains an increasing

number of applications, many from di�erent vendors. The critical and more estab-

lished systems were reviewed in the previous chapter. From a network operations

perspective, an asset management software and a SCADA are central. A Distribu-

tion Management System uni�es information from both of these to give operators a

real-time view of the power system state. Multiple di�erent calculation and analysis

applications may have been built on top of the stack. From a business perspective

the customer information system and any supporting billing software are invaluable,

and as such there is a demand to interface these systems as well.

In addition to these, a smarter approach to network management calls for re-

motely read electricity meters, real time work group positioning and any information

useful in predicting electricity demand. Some of this information may be produced

externally to the DSO, for example weather forecasts may play a role in demand

estimation.

Extensions such as automated fault detection, identi�cation and restoration2 are

added on top of the SCADA system, sometimes by di�erent vendor. New intelli-

gent electrical devices perform more complicated tasks and therefore require more

information from other systems. Di�erent vendors may have di�erent views as to

the purpose of each system, which may result in overlapping features.

Figure 2.4 depicts some of the most typical and relevant interfaces available to

ABB DMS600 today. Many more are to be found within the utilities' networks �

shown are only some of those systems with direct interfaces to the DMS 600.

As the number of systems grows, the number of interfaces grows exponentially.

2FDIR
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Figure 2.4: A subset of interfaces available to ABB DMS600.

Standards may be lagging behind implementations and a very typical operations

room network carries multiple proprietary protocols, at times even speci�c to a single

utility company. Very expensive development work may be required to get di�erent

systems to talk to each other just because a speci�c combination of software versions

is not used anywhere else. To make matters worse, the designs may follow the best

software development practices of multiple di�erent decades. Documentation, where

it exists and is available, may be severely outdated. A simple con�guration change

may require the involvement of an external consultant. Small changes may also

result in non-obvious security implications.

2.3.1 TCP/IP socket messages

TCP/IP is the basic communication protocol nowadays used under pretty much

all network implementations. Building interfaces based only on TCP/IP gives best

possible control over what can be done and how, but it is left to the implementation

to supply functionality such as security, data de�nitions and the like. All other

interface types listed in this chapter add an abstraction layer on top of TCP/IP.

DMSSocket is a name used internally at ABB to refer to a proprietary, light-

weight protocol built on TCP/IP socket messages to handle synchronization and

small data transfer tasks in the DMS600 environment. It actually consists of two
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separate protocols, one (Unknown socket) based on pure ASCII messages and the

other on proprietary binary messages.

The internal protocol mainly sends noti�cations of events in the system, instruct-

ing the recipient system to refresh data from a shared source, such as the database.

Usually the data carried in the socket messages is insu�cient to update program

status.

The ASCII protocol provides less functionality, but is designed for very simple in-

terfacing from third-party systems. Currently it exposes such features as AMR event

input to the DSM600 system, desktop integration between the DMS600 Worksta-

tion and third party customer service software and receiving work group positioning

information from external systems.

The DMSSocket protocols are lightweight and simple. Security is achieved by

isolating the system from untrusted networks: as such, the DMSSocket protocol can

only be safely exposed to computers in a tightly regulated internal network.

2.3.2 COM/DCOM

(Distributed) Component Object Model is a proprietary Microsoft interface for inter-

process communication on the Windows operating system. Although gradually su-

perceded with .NET technologies, it is still a widely used API3 for data transfers.

In DMS600, COM is used among other things for communication between the

DMS and ABB MicroSCADA and for making requests to open speci�c user interface

features from separate programs in the DMS workstation. OLE for Process Control,

or OPC is a widely deployed interface standard to SCADA systems, and was origi-

nally built on DCOM technology. Future revisions of the standard are expected to

migrate from DCOM to Web Services technologies.

2.3.3 Database sharing

In a database sharing model two or more applications connect to a shared database.

Usually it is well de�ned in the interface speci�cation as to where each application

writes data and what data it consumes. This approach works for best when one

vendor speci�es the data formats and others implement very speci�c transactions.

The most obvious problem is that comprehensive access restrictions may be dif-

�cult or, depending on the database vendor, impossible to de�ne. This may lead

to data con�icts or even vulnerabilities, if too broad access rights are granted. The

problem is compounded by the fact that sotware vendors are rarely in the position

to unilaterally standardise on only one supported DBMS vendor.

The DMS600 suite heavily leverages database sharing for internal communication,

3Application Programming Interface
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Figure 2.5: An example electronic circuit, described in the SPICE format on code listing
1.

a situation where database sharing arguably is appropriate. Access restrictions not

supported by the database engine are partially built into the software. Some external

interfaces exist in DMS 600 leveraging database sharing, among them an interface

to an external automated telephone answering machine system.

2.3.4 File transfer-based data exchange

One way of creating communication interfaces between applications is based on

transferring �les. This method allows the usage of multiple di�erent protocols, such

as FTP4 or the networking capabilities built on Microsoft Windows, depending on

the environment in use. Current ESB suites often allow adapters for �le-based

transfer standards to provide routing and transformation for such older interfaces.

File-transfer based interfaces can further be categorized in two distinct parts.

More recent �le types are often de�ned as XML schemas, allowing the use of third

party software to aid in the �le processing. Using XML also simpli�es processing

the �le in an ESB. Simply using XML however does not make a �le format de�nition

a standard or allow for interoperability.

Older interfaces may use proprietary ASCII5 text �les, or binary �les. An ASCII

�le contains human-readable characters but may or may not provide structure. An

example of an ASCII based format can be found on �gure 2.5 and code listing 1.

A binary �le contains data where e.g. numeric types are �lled in using their

internal memory representation. A binary �le is very di�cult to parse without

knowledge of the �le format, and even in that case existing software may not be

able to parse it without implementing a speci�c adapter.

2.3.5 Web technologies

Many standards and de facto standards have risen with the popularity of the in-

ternet. These standards include SOAP, Web Services and others. XML is heavily

leveraged throughout. Especially so-called WS-* standards are useful as starting

4File Transfer Protocol
5American Standard Code for Information Interchange
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Code listing 1 An input �le for SPICE, an established electrical simulation program
showing a typical ASCII-based �le type. The circuit in questiong can be seen in
�gure 2.5.
R3 V3 0 1k

R2 v2 v3 4k

R1 v1 v2 1k

VVin v1 0 SIN(0 4 1k 0 0)

.end

points for new interfaces. They extend existing protocols, such as TCP/IP and

HTTP6. Many of them are published by the same W3C7 responsible for the ubiqui-

tos internet protocols and concepts.

While a WS-* type implementation tries to enforce an up-to-date documentation

in the form of XML schemas and WSDL8, an adhering interface does not automat-

ically equal to a standard interface. Data types are often still proprietary and if

bad development practices have been in place, the interface may for all practical

purposes be just as opaque as a decade-old binary transfer �le.

In the end the WS-* type implementations remain the modern choice. A SOA

deployment would naturally use these technologies, and existing implementations are

easy to upgrade as long as adequate documentation is available. In the case of ABB

DMS600, the WS-* technologies are the preferred way of creating new interfaces, and

recent additions include AMR deployments and workgroup positioning interfaces.

Most common IDEs provide a variety of tools to easy the development on top

of these technologies. On the �ipside supporting a recent revision of a WS-* stan-

dard may be hindered by lacking support of the development tool of choice. Frag-

mentation remains a problem, with multiple standards proposed with overlapping

functionality.

6Hypertext Transfer Protocol
7World Wide Web Consortium
8Web Service De�nition Language
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3. SERVICE ORIENTED ARCHITECTURE

As requirements for automated data processing grow, new functionalities need to

be implemented. Often these new functionalities are provided as separate systems,

possibly from vendors not yet delivering products to the computing environment of a

company. The trend of increasing number of systems from di�erent vendors interop-

erating with each other creates an ever greater number of interfaces required between

them. If all systems have to be interconnected, the number of interconnections will

become N(N − 1)/2, where N is the number of systems. Even assuming limited

interconnections, the maintenance requirements of these interfaces will saturate new

development at some point.

To mitigate this problem shared by all organizations operating a complex com-

puting system, the design guideline of Service Oriented Architecture has emerged.

SOA is not a single technology nor a standard. It merely refers to the principle of di-

viding software to granular blocks of functionality and sharing processing workload

by means of mutually agreed interface protocols. Interfaces in a SOA deployment are

loosely-coupled, which means they are implemented by clearly described protocols

instead of ad-hoc interfaces.

While at �rst sight dividing existing systems to even smaller pieces of functionality

- services - might seem to increase the maintenance workload, the idea is that well-

de�ned protocols allow di�erent systems to reuse the processing capabilities exposed

by other systems. Ideally, to implement new functionality, only the novel part has

to be created from scratch. Say a new algorithm of solving power �ow is discovered

(or, more realistically, made practical by advances in computing technology) to

implement it a vendor only needs to refer to the interfaces for fetching a power

system model from existing applications, which are preferably shared by multiple

vendors, and actually only implementing the algorithm - instead of creating a set of

tools to model the power system from scratch and fetching real-time data by means

of a multitude of separate interfaces.

The key to a successful SOA deployment is standardization. Without it, SOA will

only bring more interoperability hurdles. The standardization of the basic protocols

is well under way and is agreed across di�erent business domains. A key technology

here is XML, which will receive a more in-depth review later. The other part of

standardization are the interfaces within a business domain, such as power system

17



18 3. Service Oriented Architecture

control. An international e�ort to reach such a standard is ongoing in the form of

the IEC Common Information Model. [5]

3.1 Deploying SOA

SOA being a radical change in software development practices, most proponents

agree that an all-out SOA rollout is undesirable. Instead, existing systems should

be gradually SOA enabled. New deployments should blend in with existing operating

procedures, yet all levels of an organisation should be involved in de�ning the optimal

procedures into which computer systems should adapt.

The steps in the migration process are roughly

• De�nition of data types used in the industry and within a speci�c organization

• De�nition of business processes

• De�nition of services required to model said processes

• Identi�cation of existing implementations of said services

• Migration of said implementations to allow loose-coupling with the SOA in-

frastructure

• Implementation of additional services needed in the business process

• Management of the resulting architecture

Typically literature on SOA calls for the de�nition of the business data, required

services and processes from the ground up, instead of being dictated by software

vendors. For power system operators, the de�nition of data models is a done in

cooperation with multiple software vendors in the form of the CIM standards. A

general overview of the process of SOA migration and the development of the CIM

standards is shown in �gure 3.1. [6][7][8][9]

3.2 Concepts

This section explains some of the terminology associated with SOA. Technological

and implementation details will be discussed in later chapters.

Service A service is a function exposed in the system. It ideally provides an

interface to do a single task. Applications connect to the service using a prede�ned

protocol. A service may invoke other services to perform its task.
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Figure 3.1: This �gure shows a simpli�ed model for the steps in migrating towards a
SOA infrastructure and highlights the role of di�erent actors in the �eld of power system
operation.

Orchestration An orchestration is a work�ow involving multiple service invoca-

tions. An example could be an orchestration for handling an incoming customer

trouble ticket. This example orchestration would possibly invoke a service that han-

dles notifying control room personnel of the problem and another that creates a

data row in an outage statistics database.

Loose coupling Loose coupling1 refers to connecting software using a well de-

�ned, open protocol instead of code-level invocations of program assemblies. Loose

coupling ensures that a program does not care whether the services it invokes reside

on the same system or over a network, or whether they are running on the same

operating system, or indeed the operating system the service was originally deployed

on.

Enterprise Service Bus An ESB is a platform for routing service requests in

the network. An EBS typically executes the orchestrations. Features such as service

discovery are usually a component of an ESB.

Representational State Transfer REST[10, ch 5] is a related but not interde-

pendent concept to SOA. If an interface is RESTful, the state of an application is

held only on client side. Requests to a RESTful service hold all necessary data to

perform the request, whereas in a stateful interface the server must keep track of

client applications and their state.

1as in loosely-coupled interface
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3.3 Software as a Service

Software as a Service2 refers to an emerging business model where software is licensed

less as 'goods', as is the case with currently common perpetual licences, but more

as a service. In a SaaS model a customer pays for software based on their usage

instead of in large chunks of purchasing licences and upgrades. To achieve this, the

software is run and the data is hosted on the providers system.

The bene�ts of SaaS are faster feature delivery (because only one copy of the

software is installed, at the vendors system) and more adaptable pricing structure.

Points of concern, especially for software used to run basic infrastructure such as

power systems, are data security and privacy. When data is hosted by the service

provider, the service provider should be under the same data retention legislation

as the DSOs.

SaaS should not be confused with SOA. The term service in these abbreviations

refers to a di�erent concept - in SOA a software development concept, and in SaaS

a software distribution concept. However, a mature SOA deployment opens possi-

bilities for moving parts of the system to a SaaS infrastructure. This creates new

revenue generating opportunities for vendors. [11] [12]

3.4 Business perspective

A quick look from the business perspective is in order to analyse the basic changes

in the operating environment of parties involved in moving towards a SOA design.

This chapter is divided to both the system vendors and the network operators, eg.

the clients of a system vendor. A deeper analysis is beyond the scope of this thesis,

so this chapter will be limited to a super�cial listing of possible scenarios.

The assumption here is that multiple vendors start o�ering systems that expose

parts of their functionality as standards-compliant services. The economic bene�ts

of SOA will only be fully realized if many vendors embrace them.

3.4.1 System vendor

The primary gain for a system vendor is to ease development of new features by

making existing functionality easily accessible to new modules. The assumption

is that in a mature SOA ecosystem many basic building blocks already exist and

the need for reimplementation is lower. This of course should make development

cheaper and faster.

The bene�ts to completely new entrants seem enticing. Even only developing a

single service, be it an algorithm, database or user interface, it would be possible to

2SaaS
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o�er a usable product in an environment where the required software infrastructure is

easily interoperable. Possibly a SOA ecosystem would ease the path from a limited-

scope research project into an actual product.

For established vendors who already posses a lot of the basic functionalities needed

to introduce new features, the bene�ts seem lower than completely new entrants. A

completely closed product would allow a vendor to raise the entry costs for new com-

petitors. In business environment where standards are mature enough to support

deploying service oriented architectures, established vendors would either have to

choose competing with a closed product and providing all functionalities for a com-

plete system, or embrace the new environment and start focusing on core capabilities

while allowing some features to be provided by competitors.

In this environment of mixing small parts of functionality into an usable system,

new markets may arise for consultants to actually ensure the services cooperate

with each other and that the infrastructure (ESB, service discovery, network) is

stable. From the point of view of the current market, the vendor that delivers the

main package of the environment may be in a good bidding position to take on

the role of this integrator. Therefore, acquiring the resources to maintain a service

environment may become a good strategy for vendors such as ABB, if it is decided

that this business segment is desirable.

Marketing and pricing of existing systems may have to be adjusted to respond to

an environment where purchases are done for only a small fraction of the complete

feature set o�ered by the product. Customers are in danger of ending up paying

many times over for the same functionality when overlapping systems are deployed,

and this point should be leveraged in the marketing of products that can avoid

overlapping features. In the bidding process, a vendor that can clearly o�er only

what is asked should be able to give the best o�er.

Instead of all-out deployments for a total replacement of existing systems, cus-

tomer relations could build from small-scale projects to probe the capabilities and

willingness to cooperate of vendors. The bidding process could possibly move from

making speci�cations to doing more actual engineering work as proof-of-concept.

3.4.2 Network operator

A power system operator is in this business the customer. For them, in principle

a SOA future should bring more �exibility in selecting the best products from all

vendors for each task, when there is less need to worry about interoperability. In

any case, modernization of the power systems towards the smart grid goals will

introduce multiple additional systems to their environment, so interoperability will

become increasingly important.

All new software purchases should from the start of the bidding process take
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into account the new possibilities. Functionalities and price alone should not be the

deciding factor in a purchase, instead more emphasis should be given to assuring all

systems are interoperable and also expose their current functionalities su�ciently

for new features to be added by third parties after the commissioning of the system.

System operators should start gathering the required know-how to make successful

purchases that ful�l these requirements.

Another factor driving the system operators towards the SOA principles is in-

creased outsourcing of their business. This was the driving motivation behind the

LIPA case discussed in chapter 5.3. A computing environment where SOA princi-

ples are followed ensures that when a provider for certain function changes, the new

provider can use their own systems instead of doing a costly adaptation to whatever

environment was in place by the previous contractor.

A key decision is whether system operators want to keep the knowledge of the

standards in-house or start using consultants from early on in acquiring new soft-

ware. Clearly the task of tracking standards in the �elds of both power systems

and IT, and ensuring compatibility with them during the bidding process, is not a

simple one. Some companies, such as LIPA clearly take an active role in building

their system. A vendor, however, would be wise not to assume this will happen with

all DSOs. The ease of purchasing a complete system may be enticing enough for the

DSOs to discourage from researching the SOA technologies themselves. In this case,

a vendor that can o�er a full package while combining best available technology

from multiple other vendors, possibly also competitors, may be in a good position

to gain new customers.

3.5 Conclusion

If standardization keeps advancing and truly SOA compatible products become

available, the business environment may see some changes. It is important for both

vendors and system operators to track the state of standards and make sure their

processes take the new possibilities into account.

The vendors must be able to give de�nite answers on their compatibility level

with emerging standards and their customers should have enough expertise to ask

the questions. If SOA really catches on, established vendors may �nd themselves in

a position where they have to decide whether to invest in being compatible or rely

on existing momentum to take out competition.

From the point-of-view of ABB, the decision to embrace standards is clear and

written down as integral to company strategy. When it comes to CIM and SOA,

it is not yet certain whether the technology is mature enough to be deployed in

production. In anticipation, the answer to some questions should be made clear:

Are we capable of
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• delivering a small feature to be integrated on an existing system?

• making a competitive quotation on said feature and is our pricing structure

adapted to such sales?

• integrating third party software to �ll gaps in our product?

• o�ering a partial feature set and su�cient standard interfaces to respond to

speci�cations we cannot fully deliver alone?

Additionally, for the project organisation the question is whether we are comfort-

able of becoming the system integrator in projects with multiple vendors involved.

A positive answer depends on whether the business prospect is considered lucrative

and whether there are enough resources to support the infrastructure required in

such projects. This thesis will further attempt to identify the technologies required

for successful participation in the market as the system integrator.



24 3. Service Oriented Architecture



4. APPLICABLE DATA EXCHANGE

STANDARDS

This chapter explores some of the standards applicable to a DMS application. The

standard mainly of interest is the IEC Common Information Model (CIM), but

for tasks where existing inter-industry standards exist, those should propably take

precedence in implementations unless the CIM provides additional bene�ts, as this

eases interfacing with systems developed for other uses later on.

4.1 The CIM standards

The Common Information Model is a set of standards published by the International

Electrotechnical Commission. The standards in question are the IEC 61970, Energy

management system application program interfaces (EMS-API) and IEC 61968, Sys-

tem interfaces for distribution management (SIDM). IEC 61968 is an extension for

distribution management, sharing the majority of its data types with IEC 61970,

while adding some minor details to network models and many message types for

other related functions needed in distribution system operation. A complete list of

published and planned CIM standards is compiled in appendix 1.

The IEC structure is made up of Technical Committees, which in turn contain

many Working Groups. In the case of CIM, the Technical Commission in charge

is TC 57, Power system management and associated information exchanges, which

also publishes such standards as the IEC-61850, concerning communication between

IED:s and SCADA systems, titled Communication networks and systems for power

utility automation. The working groups dedicated to the CIM model are WG 13, in

charge of IEC 61970, and WG 14 for IEC 61968.

In addition to the o�cial IEC structure, a non-pro�t organization called UCA

International Users Group is dedicated to facilitating interoperability for products

using the IEC CIM. Vendors and end users, namely system operators, can join

UCAIUG. The organization in�uences the development of the CIM standards and

holds periodical interoperability tests. UCAIUG is further divided to groups, the

most relevant in this case being the CIM User Group, further abbreviated CIMUG.
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4.1.1 The CIM model

According to CIMUG, the CIM model is

an abstract model that may be used as a reference, a category scheme of

labels (data names) and applied meanings of data de�nitions, database

design, and a de�nition of the structure and vocabulary of message

schemas. The CIM also includes a set of services for exchanging data

called the Generic Interface De�nition (GID). Due to its abstract nature,

the CIM may be implemented in many ways. Some users may want to

be more speci�c to support a particular product or project; others may

want to limit its scope. The abstract nature of the CIM leads to �exi-

bility and competing demands for its enhancement. It is important to

remember that the CIM does not have to be implemented in its entirety

in a given project.

The model is built on object-oriented design philosophy. It is made up of classes,

which reference each other by inheritance and association. If a class inherits another,

it includes all properties of the parent class. A reference means that the data type of

one property of one class is an instance of another. An instance of a class is usually

called an object.

For example, refer to �gure 4.1. An OutageRecord describes an outage in the

network. It is a subclass of Document, which includes information such as the

creation and modi�cation dates of the document. Document itself is a subclass

of Identi�edObject which serves to give a unique identi�er to all objects within a

domain, such as the computing environment of a single distribution system operator.

In addition to the inheritance chain, an OutageRecord associates with zero or more

OutageSteps, which is used to list the equipment that was a�ected by the outage.

The CIM standards are very vague on implementation details. Communication

protocols and markup standards are left up to the implementation to decide, al-

though XML schemas are provided as non-normative appendices of some of the

standards. For network model data transfer, an RDF schema is provided.

For protocols, CIM standards use an abstract verb/noun structure. A message

exchange could be described for example as a client initiating a request to CREATE

OutageRecord, where CREATE is the verb and OutageRecord is the noun. The

actual communication exchange would involve wrapping this abstract command into

for example SOAP calls, depending on the implementation.

The model has many free-text properties. When using these, the semantics are

no longer easily deduced from the standards. For example, an Identi�edObject can

be associated with a Name object, which gives it an alias name. The Name in

turn references NameType, which is an object shared by many Names within a
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OutageRecord

+ actionTaken :String [0..1]
+ damageCode :String [0..1]
+ endDateTime :DateTime [0..1]
+ isPlanned :Boolean [0..1]
+ mode :String [0..1]

OutageStep

+ averageCml :Minutes [0..1]
+ callerCount :Integer [0..1]
+ criticalCustomerCount :Integer [0..1]
+ damage :Boolean [0..1]
+ estimatedRestoreDateTime :DateTime [0..1]
+ fatality :Boolean [0..1]
+ injury :Boolean [0..1]
+ jobPriority :String [0..1]
+ noPowerInterval :DateTimeInterval [0..1]
+ shockReported :Boolean [0..1]
+ specialCustomerCount :Integer [0..1]
+ status :Status [0..1]
+ totalCml :Minutes [0..1]
+ totalCustomerCount :Integer [0..1]

Common::Document

+ createdDateTime :DateTime [0..1]
+ docStatus :Status [0..1]
+ electronicAddress :ElectronicAddress [0..1]
+ lastModifiedDateTime :DateTime [0..1]
+ revisionNumber :String [0..1]
+ status :Status [0..1]
+ subject :String [0..1]
+ title :String [0..1]
+ type :String [0..1]

Core::IdentifiedObject

+ aliasName :String [0..1]
+ mRID :String [0..1]
+ name :String [0..1]

+OutageRecord

1 «informative»

+OutageSteps

1..*

Figure 4.1: The inheritance hierarchy of the OutageRecord class, and it's association with
an OutageStep.

domain. When creating a new implementation, however, the allowed content of

NameType.name, which identi�es the NameType, is not de�ned. Later in this thesis

the NameType is used to link a SCADA code to an object. However, the standard

does not de�ne an unambiguos way to do this: on one system, the NameType.name

of a SCADA code could be 'SCADA_name', on another 'OPC_code' and on a

third one 'etaohjaus_koodi' and so on. Due to this, additional coordination is

needed between vendors to create interoperable implementations. The naming class

relations are shown in �gure 4.2.

IdentifiedObject

+ aliasName :String [0..1]
+ mRID :String [0..1]
+ name :String [0..1]

Name

+ name :String [0..1]

NameType

+ description :String [0..1]
+ name :String [0..1]

NameTypeAuthority

+ description :String [0..1]
+ name :String [0..1]

+NameTypes

0..* +NameTypeAuthority

0..1+Names

0..* +NameType

1

+Names 0..*

+IdentifiedObject 1

Figure 4.2: The naming properties in the CIM model. Graphic is exported directly from
the IEC 61970 15v31 draft UML model.
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4.1.2 Standard development

While the IEC standards themselves are human-readable documents, an integral

part of the CIM standards is an Enterprise Architect1 UML �le containing the data

de�nitions. Large portions of many of the CIM standards are duplicating content

present in these EA models, and in the actual task of implementing an interface

these �les are very important. These �les are available even as work-in-progress

revisions for CIMUG members.

A CIM pro�le is a collection of rules as to which CIM objects should be used in

a certain context and which properties are required. Technically, a pro�le is often

presented as an XML, RDF or OWL schema �le, but a human-readable document

containing these rules is also a pro�le in a broad sense.2 An IEC standard giving

guidelines as to the usage of CIM is a pro�le - and indeed a schema �le is appended

to many parts of the CIM series of standards. In addition to these, speci�c pro�les

may be created for use in individual systems. Even as pro�les outline di�erent

requirements for data, the base data format is still shared between all pro�les, so

the aim of a standard interface is not lost.

The CIM model as distributed by the CIM UG is as of 2011 still ongoing a lot of

changes and frequently breaking compatibility with older revisions. IEC-published

standards set the model at a speci�c format, but at the current rate of development

basing features on a published standard will cause a huge maintenance overhead

when the standards are updated to the latest model versions. Therefore most work

on this thesis will be based on a recent Enterprise Architect �le release and not

on the already outdated standards. When referring to a speci�c CIM revision, the

convention is to use the major revision number of the IEC 61970 model. See �gure

4.3 for a reference on how the version number is currently expressed in the CIMUG

EA model �le names.

Recent major changes include a new naming system, changes to the transformer

model, a more detailed phase-wise modelling capability and many other additions

to the model. A lot of work has gone into converging network model formats of

distribution and transmission into a single base format. A detailed change log is

distributed by the CIM UG with every model release.

It is hard to see a standardized CIM gaining widespread adoption as long as even

fundamental parts of the model see signi�cant, compatibility-breaking changes on

an annual basis. Regardless of this, even the current non-stable model works well

as a basis of building application-speci�c implementations, as vendors can simply

1EA is a proprietary software for creating Uni�ed Modeling Language diagrams and associated
data models. The software also includes tools for code generation.

2However, according to the standard, a pro�le "may be expressed in XSD, RDF, and/or OWL
�les"
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iec61970cim15v31_iec61968cim11v12_iec62325cim01v07.eap
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Figure 4.3: The CIM version is usually referred to by a number, which is the major revision
number of the IEC 61970 data model. This �gure shows a typical �le name for a CIMUG
EA model. Note that typically all the standards of the CIM family share a single EA
model, as the data types contain cross-references.

agree to base a new interface on a speci�c CIM model release.

4.1.3 CIM interfaces

In the current state, CIM only provides a data model, but no speci�c interfaces.

Some parts of the standards, such as IEC-61968-93 provide a pro�le that lays out

the parts of the CIM model to be used in de�ning interfaces, and even some non-

normative directions for the interfaces in the form of WSDL schemas. Even this is

still not enough to make a plug-and-play interface just by following the standard.

It has been proposed that the CIM standards should not even try to go as far.

Instead, the standardization e�ort should focus on perfecting the data models, while

implementors would freeze a subset of the model to be used in the implementation

as a pro�le. Further, implementors could take advantage of XML constructs such

as namespaces to allow software to know which subset of the CIM is in use. [13]

4.2 Other data exchange standards

This section lists some standards speci�cally applicable to the operating environ-

ment of DSO:s. With the exception of MultiSpeak, these are not direct alternatives

for the CIM family, although some overlap does exist. In addition to standards listed

here, many more exist for general business purposes. Beyond standards, organisa-

tions exist that publish guidelines for selecting and implementing them, a �nnish

example being TieKe4, a non-pro�t organisation for the advancement of computing

technologies in the society.

4.2.1 Geographic data exchange standards

The network management systems like a DMS and AM are actually lightweight

GIS packages, and the term 'lightweigh' is becoming increasingly less applicable.

Therefore easy geographic data exchange and utilization is becoming more and more

important.

3Interfaces for meter reading and control
4Tietoyhteiskunnan Kehittämiskeskus [14]
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Simple positioning of components on a map does not require elaborate service

based map exchange. For simple operations, manually importing map data peri-

odically su�ces. Recently the use of governmental land use guidelines as basis for

outage worth calculations has been suggested in Finland. [15] The same data may in

future be required for investment calculations as well. As this kind of data may be

frequently updated and failing to use up-to-date data may result in a breach of legal

requirements, automated map data updates may become a customer requirement

for DMS vendors.

Organizations providing geographic data exchange standards include the Open

Geospatial Consortium and Open Mobile Alliance. A source of geographic data, the

OpenStreetMap also de�nes their own data structure.

The Open Geospatial Consortium, is a standards body formed by over 400 com-

panies � including names such as Google and Oracle. Their publications include

multiple standards for exchanging geographic information, among them GML and

WMS.[16]

GML, or Geography Markup Language is an XML-based format for de�ning

data in a Geographical Information System (GIS). The standard covers 2- and 3-

dimensional data, time-dependent properties, di�erent map projections and complex

shapes. The GML does not specify a service interface. [17] Previous versions of the

CIM base model referred to GML datatypes on representing geographical data.

WMS, or Web Map Service, on the other hand aims to de�ne a standard HTTP5

interface for fetching map data from a service or multiple services. [18] Currently

the DMS600 map handling is implemented internally, with importers of multiple

map types. In most current DMS600 installations map data is held on a central

server from where it is cached to workstations manually. Applying a protocol such

as WMS would decouple part of the map maintenance from the DMS600 suite and

simplify data sharing over multiple systems.

The Open Mobile Alliance Mobile Location Protocol de�nes an XML format for

transferring location data of mobile devices. This standard could provide usable

data especially for work group positioning features in a DMS. The MLP does not

de�ne a transport protocol. Because of the nature of XML, data formatted in

MLP would be easily translatable to CIM data using simple XSLT, or equivalent,

transformations. The CIM data objects that might be constructed from MLP data

would be especially Crew objects, which reference the Location object. The Crew

object is likely to be de�ned in the upcoming part 6 (Interfaces for maintenance and

construction) of IEC 61968.

OpenStreetMap6 is a service aiming to create free global streetmaps that are

5Hypertext Transfer Protocol
6http://www.opensteetmap.org
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Figure 4.4: An example map from OpenStreetMap, showing an area with above-average
detail.

uncumbered by copyrights. Due to the open nature of the project, the quality of the

map data varies greatly with location, being at best very detailed as shown in �gure

4.4. The service provides a proprietary XML format export of their data. Using

this data as maps in a DMS/AM system might prove an interesting case study. The

project has at least some coverage for locations around the world, so a demonstration

installation capable of reading OSM data would be able to legally access local maps

free of cost. In a production deployment the costs acquiring proprietary map data

and implementing the required conversion routines is a lesser part of the expenses

involved in deploying a DMS/AM system and therefore using such free data is less

intriguing. The OSM provides a very simple XSLT stylesheet for transformation to

GML, so implementing a GML importer would allow usage of this free data.

4.2.2 MultiSpeak

Developed before the CIM model by National Rural Electric Cooperative Associa-

tion, MultiSpeak serves a very similar if not as broad purpose as CIM. The �rst Mul-

tiSpeak speci�cation was released in late 2000. While the CIM model is designed to

be used in transmission, generation and distribution operations, MultiSpeak mainly

focuses on distribution. [19]

Another key di�erence is that MultiSpeak lays out the communication protocols

and markup used in a normative fashion. The transport layer de�ned by MultiSpeak
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is SOAP over HTTP, or alternatively a �le-based transfer. XML is used as the

markup language.[20, p. C-1] Where an XML markup is used for implementing

the CIM model, a direct translation between CIM and MultiSpeak can be achieved

using stylesheets and readily available tools. This does not guarantee completely

compatible semantics, but an IEC working group is active in producing mapping

guidelines between the two. [21]

Multispeak de�nes three communication types: batch, request/response and pub-

lish/subscribe. Encryption of communications is not required by MultiSpeak, but

SSL security is allowed where desirable.[20]

Being more normative in it's choice of supported technologies, MultiSpeak has

matured into a standard directly usable for new implementations. A central au-

thority performs compliance testing of products and a number of reports have been

published. According to NRECA, MultiSpeak implementations are used at over 250

utilities as of early 2011.

Although international recognition is claimed by NRECA, MultiSpeak utility

members are exclusively US companies as of 2011. [19]

4.2.3 IEC 61850

The IEC 61850 series of standards de�nes functionality for substation automation.

It partly overlaps with the CIM standards, and as such a mapping between the two

is in progress.

The IEC 61850 standards di�er from the CIM in that they provide more re�ned

solutions to smaller scale problems through strict semantic rules, whereas the CIM

mostly de�nes data types that can be utilized more loosely. Certi�cation is available

for IEC 61850 compatibility for vendors. The aim is to provide a more plug-and-play

compatibility between products.

MicroSCADA, the SCADA system of which the DMS 600 is part of, contains

some support for IEC 61850.



5. PREVIOUS IMPLEMENTATIONS OF THE

CIM STANDARDS

Due to the broad nature of the CIM standards, a single application is unlikely to

include the whole CIM model is practical use. This chapter lists some known existing

deployments.

5.1 In MicroSCADA pro DMS 600

During the past few years, some features to support interoperability through the

CIM standards have been developed in the DMS 600. Most notable is a network

data export to CIM/RDF format, done as a masters thesis. This work has partially

steered the development of internal data models to be more compatible with the

CIM model, although they remain proprietary and direct mapping or a move to use

the CIM model internally is not a goal. [22]

In addition to the MicroSCADA pro DMS 600, another ABB product, ABB

Network Manager, utilizes the CIM model for data exchange.

5.1.1 An AMI interface to DMS600

A new AMR interface was created concurrently with this thesis, and the design was

a point-to-point SOAP protocol with a subset of the IEC 61968-9 data types being

utilized. In the future it is expected that this interface can be converted into a

real SOA deployment with trivial development work. The author was involved in

the speci�cation work, while the instructor was representing ABB in the project.

The interface supported relaying alarms and remote connect/disconnect instructions

between the DMS and the AMI. Billing and metering functions were implemented

in a separate project.

The interface was speci�cally developed for a single distribution network operator.

In addition to representatives from the utility, the project spanned an AMI vendor

and a 3rd party system integration consultant. Actual implementation of the DMS

side of the SOAP interface was contracted to 3rd party developer.

The architechture is explained in �gure 5.1. While the �gure shows a message

bus and an existing Microsoft BizTalk installation was leveraged, the actual role of

the bus for this implementation is to just act as a message queue on a point-to-point

33
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link. The CIM model is partly used in the SOAP interface between the DMS600 web

service interface. The bus is administered by a third-party integration consultant.

A proprietary protocol is used to interface the AMI system and the bus. The DMS

600 web service interface pushes the data on the proprietary DMSSocket protocol,

which propagates them to DMS 600 WS instances.
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Figure 5.1: The AMR deployment where a CIM point-to-point SOAP interface was devel-
oped.

The point-to-point SOAP link is of interest to this thesis. The speci�cation chose

to support a few data types from the IEC 61968-91, most importantly MeterRead-

ings, EndDeviceEvent(s) and EndDeviceControls. Only select �elds of these object

types were allowed, most important being the category �eld of EndDeviceEvents. For

this �eld, a set of allowed values were de�ned based on annex E2 of the standard.

In accordance with the schemas de�ned in the informative annex H3 of the stan-

dard, plain XML was used for markup. The data structures required in this scope

do not have cross references or other features that would call for RDF or OWL.

Acceptable values for alarm types were speci�cally listed.

Where classes inherited properties from others, XML subtags were used. No

reference, such as the RDF dot notation, was made to the parent class in accordance

with plain XML/XSD convention. Code listing 2 shows a simple EndDeviceEvent.

1Application integration at electric utilities - System interfaces for distribution management -
Part 9: Interfaces for meter reading and control

2Recommended EndDeviceEvent category enumerations
3XML Schemas for message payloads
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In the CIM class model e.g. the property category is inherited from ActivityRecord,

but in here it is not implied.

Code listing 2 An EndDeviceEvent in XML notation as used in the SOAP AMR
interface. Schema references have been omitted for brevity.
<EndDeviceEvent>

<category>6.25.1.160.128</category>

<createdDateTime>18-01-2011 16:38:42+02</createdDateTime>

<Assets>

<mRID>METER_00</mRID>

</Assets>

</EndDeviceEvent>

Listing 2 also shows another notational decision made. While the annex E2 de�nes

a system of creating values for the EndDeviceEvent.category �eld, a way to signify a

fault indicates only a speci�c phase is expicitly de�ned. In the end, phase notation

� 128 signifying phase A � from anned C was used as an appendix to the category

code.

As both endpoints of the SOAP pipe were developed in co-operation, it remains

to be seen how trivial it would be to make the interface compatible with a separate

AMR implementation built on top of the IEC-61968-9 standard. The standard does

de�ne the syntax of the messages clearly, and therefore these would not be expected

to cause incompatibilites. The standard gives, however, very scarce instructions on

the semantics of the messages. Therefore it is expected that the content of messages

from a separate implementation would not be understood or even misinterpreted.

This was understood throughout the project, and although supporting all the pos-

sible messages was not even attempted, the implementation was made such that

extending it is trivial.

In the end, the speci�cation for the interface turned out to be comparable to

size to what a from-scratch implementation would have been. Embracing CIM is

expected to pay out later, as now the interface at least is similar to others based

on the CIM. In this case, the same interface will be utilized by many separate AMI

systems. Being based on a standard, it has been easier to convince other vendors to

adopt this speci�cation.

5.2 Other vendors

Other vendors are increasingly adopting the CIM standards. This section lists some

products that claim support for CIM. In addition to these, many small applications,

such as CIMTool[23], CIMSpy[24] and CIM EA[25] exist. These tools are helpful in

validating and viewing models.
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The Siemens PSS is a family of software packages for network operation and plan-

ning. Among the components are PSS/E, an application for planning and operation

of transmission networks, and PSS/SINCAL, a calculation tool for electricity and

pipe networks. The Siemens PSS applications include CIM network model import

and export functionality, as well as tools to manage the CIM models.

DIgSILENT[26] makes software for power system simulation. CIM is among their

supported data exchange standards, although currently only transmission network

pro�le support is claimed. DIgSILENT products aim to connect to SCADA, GIS

and other applications through an Enterprise Service Bus and provide advanced

simulation features to supplement existing software.

5.3 Network operators

Some network operators have conducted research in cooperation with manufacturers

to allow more interoperability in their systems. This section lists some projects that

have been described in published articles. In addition to these companies, members

of the CIM User Group include many network operators, some of which also operate

a distribution network.

Companies operating transmission networks are generally much larger than the

ones dealing with distribution networks. This has also made them active participants

in the standardization e�ort.

One example of an active CIM user is Long Island Power Authority, a govern-

mental non-pro�t owner of a transmission and distribution network in the state of

New York, United States. The company serves 1.1 million customers, making them

one of the biggest electricity network owners in the US.

The company has selected a business model in which they act as the asset owners

in the electricity network, but outsouce all operations.[27] To gain the full bene�ts of

outsourcing, the company needs to be able to change service providers with minimal

overhead. As an asset owner, the company also retains ownership of all operational

data. To avoid having to specify a software stack for their contractors, they have

instead pushed through a project of creating a company-wide speci�cation for data

storage and transfer.

This project aimed to build a semantic model for all relevant data. The model

was based on CIM, but apparently exceeded in scope the currently published set of

CIM standards. In addition to CIM, the company reports to have used ANSI and

ISO standards and MultiSpeak in creating their own data vocabulary.

The infrastructure at LIPA was selected to be a set of two separate, although

bridged, ESBs. One was carrying the near-realtime data of the control center en-

vironment, the other used by asset management systems among other things and

coupled with more advanced data warehousing.
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The company concluded that their approach of creating a centrally managed data

model was needed to clarify the many possible interpretations of the CIM and other

standards. Also observed were 'signi�cant' performance issues on their implemen-

tation where large models were involved. Data translations (propably XSLT) were

identi�ed as a main cause for suboptimal performance.

The project continues and the company expects to increase their �exibility in

changing service providers and systems as needed. The project was estimated to

have lowered future life cycle costs of their core operations. [28]
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6. IMPLEMENTATION CONSIDERATIONS

Security considerations in a critical environment such as the control of the distribu-

tion network should be of similar level as is the security of the physical assets. When

more and more di�erent applications are implemented in the system, the security

model of completely isolating the installation becomes more di�cult.

The security considerations should prepare for both malicious and erroneous be-

haviour from both the users and the software. Malicious behaviour should not be

singled out to only arise from actors outside the system. A person with some access

clearance may attempt to cause behaviour they are not authorized for, and this has

to be taken into account.

A thorough analysis of security in smart grid deployments was conducted by

the United States National Institute of Standards and Technology in their report

Guidelines for Smart Grid Cyber Security. This report divided the security threats

in three domains: availability, integrity and con�dentiality. [29]

Availability means the system must be accessible at all times, and operations

must complete in a speci�c time. Though primarily a usability issue, availability

becomes a security issue when timely access to data is required to maintain safe

operations of a system.

Integrity means the origin of data must be known, data must not be modi�-

able by actors not authorized to do so and the data is known to be correct. The

NISTIR[29] also speci�cally identi�es time stamp data as something that should be

con�rmed to be correct.

Con�dentiality means data in the system must not be accessible without au-

thorization. This has both legal and business implications. There may be legal

consequences for releasing eg. customer data. On the other hand, market data may

cause harm to business pursuits.

6.1 Encryption and signing

Though other so-called symmetric methods are usefull in some situations, the basis of

encrypting messages and verifying their origin in modern computer systems is based

on public/private key, or asymmetric systems. The basic functionalities provided by

the PPK1 model are

1Public/Private Key

39
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• Given a public key, a sender can encrypt the message so that only recipients

possessing the corresponding private key can read it.

• Given a private key, a sender can sign a message so that all recipients who

posses the corresponding public key can verify the integrity of the message.

• A public key cannot be used to obtain a private key.

These capabilities lead to further security considerations

• Private keys must not be compromised.

• Some method must be in place to verify the origin of a public key.

In a wide deployment such as the internet, the latter is often addressed using

trust chains, where a public key is signed by the private key of a third party that

can verify its origin, and the public key of said third party is then signed by the

private key of another party that can verify the identity of the third party, and so on.

In the end a recipient of the message should be able to �nd a link in the chain they

can trust. In an internal deployment, such as a typical SOA at a DSO, the keys can

be individually veri�ed. More complex systems may be needed as the deployments

expand across companies.

In a SOA deployment where encryption and signing are desired, one consideration

is whether messages should be signed by a key belonging to a system (the software

program), or a person (the user). Using a single key for each system probably results

in simpler maintenance, but does not provide the same level of security. Additional

security could be achieved by maintaining personal keys in a system such as a smart

card deployment, which would ensure no private key ever resides in a computer.

When a message bus is deployed, some functionality of the bus may depend on its

ability to read and process the messages that �ow through. Allowing this weakens

the security of the deployment, as illustrated in �gures 6.1 and 6.2. Note that the

same consideration also applies for message encryption, even though the captions

refer to signatures.

6.2 Denial of Service

Denial of Service is a type of attack where the availability of information or a control

system is compromised by an attacker blocking access to legitimate users. A similar

type of failure may be caused by malfunctioning software, such as a subsystem

creating too many requests in a short time.

A denial of service attack may happen either by sending a massive amount of

legitimate requests, or by triggering a bug in the software and therefore causing

it to enter an in�nite or longer-than-expected loop in processing the request. The
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Figure 6.1: Signing messages in the bus. In this example, the sender system signs a message
using their own private key. The bus is unable to make modi�cations to the message, so
intermediate processing is impossible. The recipient knows for certain which system sent
the message.

Figure 6.2: Here the sending system signs the message as before, and the bus veri�es the
signature to make sure the �rst transmission link was uncompromised. But in this example,
modi�cations are made to the message in the bus, thus invalidating the original signature.
The receiving system sees a message signed using the bus key, and is therefore unable to
verify the real origin of the message. This creates a single point of failure for the security
of the system, the message bus.
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Type of communication Acceptable delay
Protective relaying ≤ 4 ms
Transmission situational awareness monitoring < 1 s
Substation and feeder SCADA data seconds
Monitoring of noncritical equipment, some
market pricing information minutes
Meter reading, longer-term market pricing
information hours
Collecting long-term data such as power
quality information days/weeks/months

Table 6.1: Acceptable time delays in a smart grid environment from a security standpoint.
[29]

former can be prevented by setting limits on the number of requests allowed by a

speci�c subsystem, but the latter requires validation and timely upgrades in case a

bug is found.

The NISTIR outlines acceptable time delays for di�erent types of messages in

the system. These requirements are outlined in table 6.2. Using the limits in the

table as guidelines, it can be conluded that some interfaces require advanced pro-

tection against DoS attacks, while for others it may be acceptable to assume human

interference in case an attack is detected.

The IEC 61850-3, which speci�es general requirements for the interfaces in sub-

station automation speci�es DoS attacks as a threat to be considered. A lot of

the use cases for the CIM standards on the other hand fall into categories where

time-critical operation is not required, but the threat should be considered on a

case-by-case basis when implementing data exchange interfaces.

6.3 Data integrity

To achieve reliable operation of systems participating in a SOA deployment, it is

important to ensure messages are not lost and that a single subsystem sends only

messages that do not con�ict with others. There exist WS-* extensions and message

queue implementations that de�ne features for ensuring messages are never left

undelivered or pending for a long time without notifying relevant systems of the

failure, and that a single message is not delivered many times.

Another part in ensuring integrity is validating the data being transferred. Syn-

tactic validation means checking a message against a prede�ned set of rules, a

schema. This is generally done automatically for basic message formats such as

XML/XSD when a generic toolkit is used. Less generally adopted formats such as

RDF and OWL also de�ne schema formats that can be used to check syntax, but

tool availability is more of a concern. Such document may pass XML validation,
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Figure 6.3: The problem of ensuring data quality in a SOA environment. On the left,
a user inputs incorrect data on a traditional centralized system. The error is noticed in
the validation procedures and the user is noti�ed. On the right, a badly designed SOA
environment propagates the command to two separate services that perform their own
operations on the data. The other system detects the error, but no mechanism is in place
to cancel the processing on the other service and notify the user.

thus being valid XML, but fail to adhere to speci�c requirements of the RDF or

OWL schema.

Semantic validation refers to checking that the data itself is not only in the correct

structure, but also correct in the speci�c sense of the domain, in this case power

grids. Existing schema validation tools cannot be used to provide a complete set of

validation rules for all cases where an engineer instantly sees a declaration cannot

be correct. In current systems, a lot of data validation takes place on client side

code. The DMS for example does not allow the user to draw a network that is not

consistent. This issue should be considered when distributing parts of the system

to separate services that do not see all of the relevant data at once to ensure no

regressions happen in the feature set of the tools.

An illustration of the problem can be found on �gure 6.3. The situation can

be resolved by implementing a transaction system where the service endpoints re-

ceive and validate the message, but only proceed after all systems have noti�ed the

message can be processed and a commit order is issued.

6.3.1 Model Resource Identi�ers

The mRID �eld in the CIM objects gives a globally2 unique identi�er for each

object. A datatype commonly used for such identi�ers is a 128 bit number, often

called unique identi�er in database management systems and visually represented as

a string of 32 dash-delimited hexadecimal digits. The CIM does not mandate the use

2across systems
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of this datatype, but it would be desirable to ease interoperability with databases.

The DMS600 database does not use the unique identi�er data type for all iden-

ti�ers, insted some use running numbers and others arbitrary strings. Objects of

di�erent types may have colliding identi�ers in the DMS600 system, which is pro-

hibited by the CIM. To overcome this, lookup tables will be needed to give each

DMS object an identi�er that can be guaranteed to be unique. In the long term,

migration towards using unique identi�ers internally is expected, not only for CIM

compatibility but also for database performance and code maintenance reasons.

A related issue arises when synchronizing data between multiple systems, which

may each have a separate internal representation of a single real-world object. This

is undesirable, as con�icts in the data are imminent in a complicated system.

To mitigate this, a single 'authority' system can be selected for each datatype,

the other systems being obliged to keep their data synchronized with this master

system by listening to the relevant event broadcasts. To see an illustration of this

problem, see �gure 6.4.

On actual implementation a central repository should be created to allow lookups

of the authority of each message type. Technologies such as UDDI are possible

choices for this function, being augmented by an ESB suite to perform the rout-

ing. Part 454 of IEC 61970, which is currently in draft form, provides additional

guidelines for creating such a repository.

6.3.2 Version control of network assets

As the CIM communication bus in theory relays all messages related to the operation

of the distribution network, it seems an optimal place to implement a version control

system of the network model and related documents. This functionality may or

may not be an integral part of the communication system. In theory a separate

program, that subscribes to related messages could implement this functionality.

Many functions of the DMS would bene�t from such a repository. More detailed

historical operations records could be constructed from such data. New network

designs could be more easily compared with installations already decommissioned.

Some version control is also built into the CIM objects themselves. A Document

object for example has attributes status, revisionNumber and lastModi�edDateTime.

Nonetheless, this is not su�cient to track previous version of the object.

Some libraries exist to create di�erentials of XML �les, such as XML Di� by

Microsoft[30], an open source solution di�xml[31] or a Java library by Oracle[32].

Unfortunately, all of these produce output in non-standard and incompatible for-

mats3. Before an authority such as W3C comes up with a standard format, the

3with the limited exception of Oracles tool, which can output an XSLT �le to transform from
one version of a �le to another
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Figure 6.4: A clari�cation of the Object Author problem. In this example, the network
model is held in two di�erent databases, one for asset management purposes, the other for
a distribution management system. New content is created on the AM database. Update
noti�cations are propagated to the DMS database (1). Queries from separate systems are
routed in the message bus to the correct service interface using a service discovery database
(2). The problem arises when existing code is unaware of the service architechture and
makes a modi�cation to the data internally in the DMS database (3). This problem can be
partially solved by inserting hooks to the relevant events in the DMS system to propagate
change requests to the AM system. However, the AM system may in turn refuse the
modi�cation, but the existing codebase does not know how to handle the situation.
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utility of a version control system based on XML di�erentials might be limited to

internal uses within a one-vendor system.

An incremental model has been proposed speci�cally for CIM data by Langdale

Consultants. It is implemented in some tools, such as CIMSpy. While the proposed

di�erence model format itself is not speci�c to the CIM model, but is rather a generic

RDF di�erential format, the proposal includes many useful conventions speci�c to

CIM, such as instructions on naming conventions. [33]

6.4 Performance

The performance of a system is comprised of two components: the latency and

throughput (or bandwidth). Latency means the maximum time a single message

travels from a sender to the recipient. Throughput is the maximum amount of

simultaneous messages the system is able to handle without a degradation in latency.

The acceptable latency from a security point-of-view was outlined in section 6.2,

and these should be taken as the worst-case acceptance limits. From a usability

viewpoint, the acceptable delays are shorter.

Estimating the throughput requirement can be done by estimating a worst-case

scenario of simultaneous messages being transmitted in the system. One possible

starting point is a large-scale outage that causes a majority of remotely read meters

to trigger an alarm at once. If a major event would destabilize the whole power

system, a transmission volume of

Nms (6.1)

can be foreseen, where Nm is number of messages and s is the size of a data package.

Such an event would also cascade to other systems, creating a large amount of

additional messages. In an event such as this, additional latency or even delivery

failures may be acceptable, depending of the overal design of the system.

For normal operation, the required average throughput for a given system can

similarly be obtained from
Nm∑
i=0

Ns,isifi (6.2)

where Nm is the amount of di�erent messages transmitted, Ns,i is the amount of

senders for a given message type, si is the size of a given message and fi is the

frequency of a given message. The result of this calculation will be slightly optimistic,

as it assumes all message types are transmitted at a constant interval. In reality

transmissions would overlap. Estimating the e�ect of this is di�cult without a

real-life pilot deployment.

The throughput capability of a messaging system also cannot be analyzed only

from a network transmission viewpoint. If any message processing or veri�cation
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is done on the ESB, the performance of these will likely cause a bottleneck instead

of the network bandwidth. Performance problems in the processing steps may also

be more di�cult to solve by simple hardware upgrades, unlike transfer rate issues.

The maximum allowable time to process a message to allow worst-case performance

could be estimated by
tltw
Nm

(6.3)

where tl is the allowable latency for a given message, tw is the time window during

which the broadcasts will occur and Nm is the amount of messages being sent.

While rough, these considerations should be taken during the development of a

system to ensure the development does not reach a dead-end in terms of achievable

performance.

6.5 Available technologies

CIM leaves many implementation details open. While recommending XML/RDF

on some points, details such as communication protocols are left for implementers

to decide. Whether future revisions will enforce speci�c standards remains an open

question. This chapter looks at some of the technologies - both standards and

implementations - commonly used in realizing a SOA.

A central concept of SOA is platform independency. Although protocols are open,

some pitfalls arise when using third-party libraries to implement them. Di�erent

libraries, or toolkits, support a di�erent subset of WS-*4 speci�cations, so a protocol

implementation using a speci�c toolkit may depend on features not readily available

on others. This e�ectively makes the implementation platform and API speci�c,

barring a from-scratch implementation of the underlying WS-* protocol in use. Some

consideration should therefore given to selecting WS-* protocols that have wide

acceptance.

If an ESB suite is used on the deployment, signi�cant work may have to be put

to creating rules, transformation, orchestrations and extensions to it. These are not

always transferrable to another ESB. Again, some open standards exist, but care

should be taken to select an ESB that supports those standards, or accept that

migrating to another ESB is prohibitively expensive in terms of reimplementation

work.

6.5.1 XML

The markup language selected dictates the breadth of syntactic validation that can

be performed using standard methods, and tool availability. Since XML has gained

4see section 6.5.3
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widespread adoption, the question currently is not whether to use or not, but rather

which extensions are most appropriate.

In some border cases performance of XML may not be acceptable due to its

human-readable design. In such cases, some binary formats exist which aim to

provide some of the bene�ts of XML while sacri�cing human-readability. In other

narrow implementations more simple markup standards may be appropriate, such

as JSON5 in web development.

The eXtensible Markup Language is a W3C6 standard. It is intended as a struc-

tured data de�nition language. It is designed to be easily parseable by a computer

but to also remain human readable. The XML standard itself de�nes markup rules,

but the content and semantics is up to the user to decide. Accompanying standards

de�ne further rules for more speci�c use cases. The additional standards of the

XML family increase the usability of XML, but an implemenation does not need to

support all of them. [34]

Being computer parseable and having multiple implementations for the core parts

of the standard, XML can easily be used in an application even without deep knowl-

edge of the standards. For an example of an XML �le, see listing 3.

Code listing 3 A simple XML �le, the �le type (the namespace) being
http://tut.�/keskiketuri
<?xml version="1.0" encoding="utf-8"?>

<Example xmlns="http://tut.fi/keskiketuri">

<Text>Abc</Text>

<Number>123</Number>

<Number>256</Number>

</Example>

XSD is the preferred �le extension of XML Schema, which is an XML-based

markup for de�ning the allowed elements in an XML �le. This information is pri-

marily used for validating the contents of an XML �le, but can be utilized by code

generation tools as well. For an example of an XSD �le, see listing 4. [35]

The main bene�t of using XML Schemas is that data validation can be provided

with little additional work. Many tools in development environments and ESB suites

use XML Schemas as the basis of their operation.

Another XML extension, XPath is a way of making queries within an XML �le.

For example, the XPath expression /Identi�edObject[mRID='abc']/name returns

the name-property of all objects of type Identi�edObject with the mRID-property

set to 'abc'. [36]

5JavaScipt Object Notation
6World Wide Web consortium, the standard authority of internet technologies
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Code listing 4 A simple XML Schema, specifying an XML based �le format called
http://tut.�/keskiketuri. An example �le conforming to this schema was shown in
listing 3
<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://tut.fi/keskiketuri"

elementFormDefault="qualified"

xmlns="http://tut.fi//keskiketuri"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="Example">

<xs:complexType>

<xs:sequence>

<xs:element name="Text" type="xs:string"

minOccurs="1" maxOccurs="1" />

<xs:element name="Number" type="xs:int"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

XSLT or XSL7 Transformations is an XML based format to model a transfor-

mation from one XML schema to another. XSLT uses XPath to de�ne the trans-

formations. An XSL �le is a set of instructions that transform data from one �le

format to another. [37] An example transformation is shown in listing 5.

Some graphical tools exist for creating XSL transformations, for example Sty-

lus Studio XSLT Mapper[38]. An ESB software could use XSLT to map messages

between incompatible web service interfaces. Microsoft BizTalk uses a proprietary,

partly compatible Biztalk Mapper �le format to achieve a similar purpose[39], al-

though other Microsoft tools, such as the .NET libraries and the Visual Studio

development environment provide good support for XSLT.

6.5.2 RDF and semantic markup

The Resource Description Framework8 is a W3C standard for describing allowed

relations of data objects. While the RDF model does not specify the use of XML to

represent the relations, the most common variant of RDF is the RDF/XML format

where RDF relations are de�ned in an XML �le. [40] [41] Other markup styles for

RDF exist, for example RDF Turtle syntax, which aims to be more human-readable

than RDF/XML.

As is the case with bare XML, RDF/XML also builds upon two types of �les:

7XML Stylesheet Language, a set of standards consisting of XSLT, XPath and XSL-FO.
8RDF
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Code listing 5 An example of an XSL Transformation to map from the previously
de�ned http://tut.�/keskiketuri �le format to another one. The code inside the
match attributes is in fact XPath. The terms &lt; and &gt; are escape sequences
to the characters < and >, which are reserved characters in XML. The transformed
�le is shown in listing 6.
<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:e="http://tut.fi/keskiketuri"

xmlns="http://tut.fi/keskiketuri#modified"

>

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/e:Example">

<AllNumbers>

<xsl:apply-templates select="e:Number" />

</AllNumbers>

</xsl:template>

<xsl:template match="e:Number[. &gt; 150]">

<BigNumber>

<xsl:value-of select="."/>

</BigNumber>

</xsl:template>

<xsl:template match="e:Number[. &lt;= 150]">

<SmallNumber>

<xsl:value-of select="."/>

</SmallNumber>

</xsl:template>

</xsl:stylesheet>

Code listing 6 The output of the example transformation when applied to the
example �le. Another XML Schema could be provided for this �le format, but is
not included in this thesis for brevity. Note that schema de�nitions are not required
for the transform to function, although it it uses the namespaces to qualify elements.
Multiple namespaces may coexist in a single �le, as in the case of vendor speci�c
extensions to a standard �le.
<?xml version="1.0" encoding="utf-8"?>

<AllNumbers xmlns="http://tut.fi/keskiketuri#modified">

<SmallNumber>123</SmallNumber>

<BigNumber>256</BigNumber>

</AllNumbers>
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the RDF Schema9 and the RDF data �le. The RDFS �le de�nes allowable relations

between objects and the RDF �le de�nes the data content of the objects. To pro-

cess an RDF �le, a schema is not necessarily required. The schema only provides

validation information, but it contains no data. [42]

The CIM standards recommend the use of an RDF/XML �le for representing

network topologies. An obvious advantage of this is that RDF/XML provides a

standard way of making multiple references to other objects. In bare XML/XSD

objects can be de�ned, but no data type exists for creating and validating a reference

to another object without making multiple copies of said object. While XSD vali-

dated bare XML �les can specify identi�ers and make references to those, an RDF

Schema speci�es which types of objects a speci�c property can reference. Code

listing 7 gives an example of relation de�nitions in an RDFS �le.

To further explain the di�erence between RDFS and XSD, a sentence can be

used. An XSD can de�ne a constraint on a property as such:

A TopologicalNode must include a property called Terminal, the data

type of which must be a string.

RDFS can describe a further constraint:

The string value of TopologicalNode.Terminal must equal to exactly one

MRID property of an object of type Terminal de�ned elsewhere.

While XML and XSD are very common standards and parsers, validators and

editors exist for many di�erent programming environments, RDF on the other hand

lacks such tools. Some toolkits are in development to support RDF Schema valida-

tion and RDF �le generation, but these are not mature enough to provide a common

solution for all problems involving RDF. This is a serious hinderance for leveraging

RDF. In limited use cases, such as CIM topology representation, not all features

of RDF need to be supported and therefore a partial RDF implementation � be it

third party or self developed � may be acceptable.

The Web Ontology Language10 is a further extension of RDF designed to further

describe ontologies. Ontology in this context means the description of relationships

of objects such that new facts can be deduced from existing information. OWL

aims to enable computers to do these deductions. The e�ort is part of a future

development towards a so called semantic web, which aims to provide the capability

of combining information from distinct sources. [43]

As an example, lets say there is an OWL schema de�ning the domain of educa-

tional ranks. Additionally, we have data stating a person is marked the author of a

9abbr. RDFS
10OWL
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Code listing 7 An extract of an RDFS �le used in de�ning network topology in
the CIM format. The �rst paragraph de�nes TopologicalNode as a subclass of Iden-
ti�edObject. The second paragraph de�nes a property called Terminal for Topolog-
icalNode. The content of a TopologicalNode.Terminal has to be an object of type
Terminal, or a subclass thereof.
<rdf:Description rdf:about="#TopologicalNode">

<rdfs:subClassOf rdf:resource="#IdentifiedObject"/>

<cims:belongsToCategory rdf:resource="#Package_Topology"/>

<cims:stereotype rdf:resource="http://langdale.com.au/2005/

UML#concrete"/>

<cims:stereotype rdf:resource="http://langdale.com.au/2005/

UML#byreference"/>

<rdfs:comment>For a detailed substation model a TopologicalNode

is a set of connectivity nodes that, in the current network state,

are connected together through any type of closed switches,

including jumpers. Topological nodes changes as the current

network state changes (i.e., switches, breakers, etc. change

state).

For a planning model switch statuses are not used to form

TopologicalNodes. Instead they are manually created or deleted in

a model builder tool. TopologialNodes maintained this way are also

called "busses".</rdfs:comment>

<rdfs:label>TopologicalNode</rdfs:label>

<rdf:type rdf:resource="http://www.w3.org/2000/01/

rdf-schema#Class"/>

</rdf:Description>

<rdf:Description rdf:about="#TopologicalNode.Terminal">

<cims:stereotype rdf:resource="http://langdale.com.au/

2005/UML#aggregateOf"/>

<rdfs:comment>The terminals associated with the topological

node. This can be used as an alternative to the

connectivity node path to terminal, thus making it

unneccesary to model connedtivity nodes in some cases.

Note that the if connectivity nodes are in the model,

this association would proably not be used.</rdfs:comment>

<rdfs:label>Terminal</rdfs:label>

<cims:inverseRoleName rdf:resource="#Terminal.TopologicalNode"/>

<rdfs:range rdf:resource="#Terminal"/>

<rdfs:domain rdf:resource="#TopologicalNode"/>

<cims:multiplicity rdf:resource="http://iec.ch/TC57/1999/

rdf-schema-extensions-19990926#M:0..n"/>

<rdf:type rdf:resource="http://www.w3.org/1999/02/

22-rdf-syntax-ns#Property"/>

</rdf:Description>
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masters thesis, the publication status of which is 'pending'. From this data and the

OWL de�nition a generic computer program can deduce that the educational rank

of this person must be 'bachelor of science'.

Just as RDF, OWL also does not mandate the use of XML for de�ning the

ontologies, but an XML syntax is de�ned which extends on RDF/XML. The CIM

User Group distributes some OWL schemas. As of date, the advantage they provide

over the plain RDF Schemas is for example that they de�ne cardinality constraints,

such as A ConductingEquipment always has exactly two terminals.

Due to the way RDF and OWL link data, queries can be run on top of the data.

The main di�erence compared to the established SQL11 is that object relationships

are already de�ned by RDF, whereas SQL queries must de�ne such relations for

every query using the JOIN construct.

For example, to estimate what percentage of outages could be cleared faster if

additional remote-controlled switches were deployed, it might be useful to list all

previous unforeseen outages which required operating a manual switch. A human-

readable equivalent of this query would be

Fetch all OutageRecords having isPlanned 'false', which link to a Work-

Task of type 'manual switch operation'.

SPARQL is one such query language speci�ed by the W3C[44], which resembles

SQL in syntax. Additional speci�cations exist for representing query results in XML

format[45] and for passing queries over a Web Service[46].

6.5.3 Simple Object Access Protocol

SOAP[47] is a standard for de�ning messages for service transactions. A SOAP

message consists of an envelope holding a separate header and body. The header

includes metadata required by the service interface while the body contains the

actual request, or data transfer. The SOAP standard is a W3C recommendation

and enjoys wide adoption.

SOAP messages are formatted in XML and typically transmitted over HTTP, al-

though other transports are possible. Additional standards and speci�cations extend

the vocabulary carried in the SOAP headers. These standards are often referred to

as Web Service technologies, or WS-*. The endpoints of a service exchange refer-

ence these speci�cations by XML namespace de�nitions. To enforce an additional

speci�cation in the message exchange, the endpoints can de�ne a property MustUn-

derstand, which requires that the other party responds with a fault in case it does

not support the given header tags. SOAP also de�nes ways of transferring error

messages, or SOAP exceptions.

11Structured Query Language, a query language used in database management systems
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Some widely adopted extensions to SOAP, or WS-* standards, are

WS-Addressing A W3C standard by Microsoft, IBM, SAP, Sun Microsystems

and BEA, WS-Addressing[48] de�nes vocabulary that enables asynchronous replies

to SOAP messages. It allows de�nition of endpoint addresses, usually SOAP func-

tion URL:s to which replies are to be delivered.

WS-ReliableMessaging WS-ReliableMessaging[49] is published under OASIS[50]

and de�nes an extension to provide validation constraints to SOAP messages. It al-

lows ensuring that a sequence of messages is received in correct order, that all mes-

sages are actually received exactly once and they are received within an allowable

timespan. A prior OASIS standard, WS-Reliability[51] exists for similar purpose.

WS-Security Although SOAP messages can be transmitted over a channel se-

cured at the transport level, WS-Security[52] adds extensions to allow signing and

encrypting SOAP message exchanges at the content level. WS-Security is pub-

lished through OASIS. WS-Security introduces a signi�cant performance penalty

over transport-level security. Another standard, WS-SecureMessaging allows for se-

curing conversations of multiple messages to be secured with a single key exchange,

increasing performance. [53] Other related standards include WS-Policy[54] for

de�ning acceptable security models, WS-SecurityPolicy[55] to extend WS-Policy to

de�ne additional policies such as requiring transport-level security and WS-Trust[56]

to allow for exchanging security tokens.

WS-Coordination WS-Coordination[57] de�nes vocabulary for distributing trans-

actions across multiple services. Another standard, WS-AtomicTransaction[58] de-

�nes further message attributes for de�ning transctions, ie. exchanges that involve

multiple service invocations that should only be committed in case all of them are

successful.

WS-Enumeration WS-Enumeration[59] provides tools for transferring large datasets

in chunks, similar to transferring rows of an SQL query.

6.5.4 Service Discovery and metadata

Service discovery refers to publishing details about services that are available in a

given network at a given time. This allows clients requiring a function to only know

how to search for a service, instead of knowing the exact details of each service it

references. Service discovery may be used to identify which service to invoke in the

case a client �nds many that provide the same functionality. This feature may be
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useful for example in mapping a certain function to a certain software system, even if

many are available that implement it: e.g. multiple systems may provide a function

to query certain data, but it may be that only one system is kept up-to-date in a

given installation.

The main solution to de�ning service interface syntax is WSDL, or Web Service

De�nition Language. It is an XML markup for de�ning service protocols. A WSDL

de�nition is a single �le which includes a list of available functions and the message

format de�nitions (parameter/return value) using XML Schema. Tools are available

to generate client side code given a WSDL de�nition for multiple programming

languages.

To exchange the de�nition, WS-MetadataExchange[60] provides vocabulary for

requesting service descriptions, namely WSDL �les from running services. Some

frameworks use a simpler method of altering the service URL to allow for HTTP re-

quests for downloading metadata while WS-MetadataExchange de�nes SOAP mes-

sages to do this and therefore increasing interoperability between web service toolk-

its.

Two main approaches exist for the problem of service discovery. UDDI, Universal

Description Discovery and Integration[61] provides service discovery using a central

repository. An UDDI repository implementation is included in many ESB suites,

among them Microsoft BizTalk.

An alternative to UDDI, WS-Discovery is a distributed service discovery protocol.

Instead of a central repository, services use broadcast messages to notify others of

their appearance and disappearance.

6.5.5 Web Service frameworks

To ease the workload in implementing and maintaining a service, it is useful to

leverage an existing library for handling the protocol-level communication. This

section lists some such frameworks. Table 6.2 shows a feature matrix for these

implementations. The data in this table is compiled from web pages of the vendors,

so cannot be considered fully reliable.

Main considerations in selecting a WS-* framework are the feature support, ease

of development and ease of extending implementations to support WS-* speci�ca-

tions not included in the standard feature set.

Apache The Apache Software Foundation provides two separate WS-* frame-

works. Axis2[62] is an open-source toolkit from the Apache project, primarily known

for their widely adopted web server. Development can be done in both Java and C

languages. Tools are available for the Eclipse IDE. Another Apache o�ering, CXF,

was created as a merger of XFire and Celtix[63] WS frameworks, Apache CXF[64]
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provides a toolkit for Java and Javascript languages. The list of available transports

is interesting and includes such protocols as Jabber, originally an instant messaging

protocol.

gSOAP gSOAP is a WS framework for C/C++ distributed under an open-source

license, but with optional proprietary licensing available from Genivia for commer-

cial developers. The library is compatible with multiple operating systems, and

according to their website is adopted by numerous large companies. [65]

Metro Metro[66] is a WS toolkit developed as part of the GlassFish ESB, which

was originally released by Sun Microsystems and later moved to Oracle with their

acquisition of the former. Development plugins are available for both Eclipse and

NetBeans IDE. The stack can be used in Java applications. A part of the project

is Web Service Interoperability Technologies (WSIT), which aims to provide better

compatibility between Java and .NET implementations, namely WCF.

Windows Communication Foundation WCF[67] is the WS technology o�ered

by Microsoft. As such, the development tools and libraries are tightly integrated to

other Microsoft products such as Visual Studio. The libraries are distributed with

modern versions of the Windows operating system. Development can be done in lan-

guages supported by the .NET platform, namely C#, C++ and VB.NET. A partial

implementation is available as part of the open-source Mono project, which aims

to provide binary and source level compatibility with .NET for multiple operating

systems[68].

6.5.6 The communication bus

An ESB, or Enterprise Service Bus is a software suite that handles delivery of mes-

sages in a SOA environment. It is not a necessary part, but using one may easy

deployment by providing easy to use con�guration and logging tools.

Typically, an ESB contains message queues that handle some of the task of assur-

ing message delivery and consistency. Another part of an ESB is an orchestration

engine, which means a speci�c message can be con�gured to trigger a set of opera-

tions (e.g. service invocations) and perform transforms on the messages. In addition,

the ESB suite may contain additional services, such as an UDDI implementation.

Communication with an ESB can be done using various methods, such as �le

transfer, proprietary APIs or WS-interfaces. An ESB is often designed to allow

handling of data in legacy formats, so they support many types of protocols.

The choice of an ESB most likely is not one the system vendor does, as these

systems may already be deployed on the environment for other purposes. If that is
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Apache Axis2 3 3 3 3 3 3 3

Apache CXF 3 3 3 3 3 3

gSOAP 3 3 3 3

Metro 3 3 3 3 3 3 3 3 3 3

WCF 3 3 3 3

Table 6.2: A list of some available Web Service frameworks. If a framework does not
support a given WS-* speci�cation, that support must be implemented on a case-by-case
basis.

the case, the system must adapt to whatever platform is in place. When an ESB

is selected, care should be paid to it supporting standard formats for things like

orchestrations in order to not lock development work on a single platform.

Some notable ESB suites include Microsoft BizTalk, IBMWebSphere and TIBCO

ActiveMatrix. Open source implementations exist, for example from the Apache

Software Foundation.
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7. IDENTIFICATION OF SERVICES IN DMS600

This section attempts to analyze the current architecture of the DMS 600 system

and identify parts of functionality that would bene�t from a migration to a more

service-oriented architecture. While most of the use-cases here are either already im-

plemented or possible to implement without a new architechtural concept, they are

good candidates of considering whether Service Oriented Architecture is worthwhile.

7.1 The internal architecture of DMS 600

As described earlier, internally the DMS 600 system exchanges data between work-

stations by means of direct database connections and proprietary TCP/IP socket

messages. External interfaces connect to either, but as a rule-of-thumb real-time

data goes through the the socket protocol and periodic batch transfers access the

database.

The DMSSocket protocol is the main synchronisation strategy in current DMS

600 releases. It propagates network state changes to all workstations running on a

system and acts as an input channel for some data from external sources.

For external systems to receive information of state changes within the DMS 600,

the DMSSocket messages would have to be translated to a common format and

relayed to them. Due to the nature of the DMSSocket messages, simple methods

such as XSLT cannot be used, instead a runtime has to be built to handle the

transformation to each new protocol. This situation is illustrated in �gure 7.1.

In future deployments, where more complicated data structures are needed, it

should be considered if extending the DMSSocket protocol is wise, or if it should be

gradually superceded by an XML-based transfer format, likely one based on CIM.

The obvious drawback is more complicated internal protocol handling in the DMS

600 applications. This is illustared in �gure 7.2.

A third option is possible: the internal data transfer continues to use the methods

that are simple to implement in the applications. Shared database methods are used

for more complicated data types and the DMSSocket protocol remains to be used

for simple internal messages. A CIM/XML-based interface is created on top of

these, and external clients always connect to the CIM interface. In this scenario,

a CIM interface only needs to be created once. Additional XML-based interfaces

can be implemented using XSLT, without additional code. Future extensions to

59
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DMSSocket

C
IM

W
G

pos.

AMR
Figure 7.1: Current DMS 600 integration strategy. External messages are transformed to
the internal DMSSocket protocol. The protocol is not XML-based, so common methods
such as XSLT cannot be used.
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Figure 7.2: Possible future protocol layout. The internal protocol is XML-based, so XSLT
can be used for mapping external XML interfaces without custom code. Direct interfaces
to the internal protocol may also become possible if the CIM datatypes prove to be speci�c
enough to allow interoperable clean-room implementations.
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Figure 7.3: A synthesis of the possible implementation strategies. Internal messaging
continues to use simple methods, but a CIM-based wrapper interface is built on top to
allow leveraging XSLT for future interfaces.
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internal protocols may choose to use the CIM layer directly, if it is perceived to o�er

advantages. This strategy is illustrated in �gure 7.3.

While the third option seems most complicated, it would follow the principles of

gradual improvement. Continuing to use the DMSSocket protocol as the external

interface would be very laborous as the number of interfaces grows. A complete

rewrite of the internal communication would be hard to justify as well, when the

current implementation is fast and mature.

Currently client applications in the DMS 600 environment place direct database

requests to the central server, or in a distributed DMS system to an area server.

While this approach is fast, it somewhat limits the user account restrictions that

can be enforced, as the user running the application has to have either direct or

indirect access to the credentials required to run database commands. Restrictions

like limiting access to speci�c tables can be done in the current system, but more

detailed limits such as geographic user access limitations are impossible to enforce

if the user is determined to connect using a separate program to directly access the

database. In other words, some user access controls are implemented on the client

side, which is inherently insecure. In some environments, this design is mitigated by

running the clients in a controlled sandboxed environment, thus ensuring the access

controls of the DMS client software cannot be bypassed.

Real bene�ts would be gained if the allowable database commands were wrapped

in a service and the user only held the required credentials to communicate with

this service, not the database. This approach would propably be slower than direct

database queries, especially on operations involving large amounts of data to be

transferred or those requiring small latency, such as operations involving a user

interface. Yet, on systems where strict security is a requirement, sandboxing the

application on a remote server creates even worse performance overhead and the

possibility of doing data caching to avoid hitting the actual database could actually

improve performance for those requests that are frequently done by multiple clients.

In addition to the security issues, a bene�t of wrapping all database accesses

would be stability of the client programs in the case of database connection failures.

In a separate service it would be easy to retry connections in case the server is down,

introducing some latency but possibly avoiding connection errors to be shown to the

end-user. Codebase maintenance could also become easier as all calls to speci�c data

types would exist in a single place, the wrapper service. On the other hand, the

additional complexity could just as well make maintenance more di�cult.

The current codebase for the DMS 600 Workstation alone contains over 700 calls

to read data from the database. Rewriting all of this would be no small task, but

could be done in incremental steps. In addition to rewriting the calls to instead

contact a service, some user interface logic might have to be redesigned to allow for
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greater latencies.

7.2 Possible functionality to be implemented as services

This section looks at future functionality that would be di�cult or less e�cient to

implement using the current architecture. These proposals are mainly expansions

of existing features. New interface requirements with external systems are not dis-

cussed here, as the merits of a SOA approach to common integration scenarios has

been communicated in previous chapters.

7.2.1 Processing AMR events

Automated Meter Reading deployments provide information from the low voltage

networks which when combined with a topological network model can be used to

deduct information about state of the medium voltage network. Knowing the phasor

group of the transformer that a low voltage AMR meter is supplied by, speci�c phase

voltage inconsistencies and unbalances are known to signify a speci�c type of fault

in the medium voltage network. In some cases this information can help identify a

fault di�cult to detect otherwise.

ABB has previously involved in developing a pilot system for managing such

events. In the pilot system the main part of the deductions were performed on

the lowest level, the smart meter. [69] This section proposes moving some of the

deductions higher up on the system. The previous approach requires a capability

of remotely upgrading con�gurations in the meters if network topology changes,

although such changes are often rare or non-existant - for example distribution

transformers within a single system most likely all have the same vector group.

A good implementation on a higher level would include a simple way of de�ning

parameters for these algorithms, such as voltage limits that are interpreted as a

speci�c type of fault. An optimal solution would not have hardcoded detection

algorithms, but instead allow the user to de�ne new alarm/topology combinations

that trigger a higher priority alarm.

One way of detecting these faults is running the detection algorithms on the DMS

client side computer. For systems with multiple workstations subscribing to AMR

alarms, the detection would run multiple times. Another possible deployment would

be to have a separate service subscribing to AMR alarms with only the required part

of the network model in memory. This service would run heuristics on the incoming

alarms and send new, higher priority alarms as necessary. The proposed design is

illustrated as a sequence diagram in �gure 7.4.

Implementing the functionality in a separate service would allow the management

of the parameters of the algorithms in a single place. This type of implementation,
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if done in accordance with standard message formats, would be easy to migrate to

di�erent environments, while a DMS 600 built-in functionality would be tied to that

platform. Additionally, the new alarms would also be propagated to possible other

systems subscribing to AMR alarms. A DMS internal functionality would require

yet another set of interfaces to be created to notify each system of such �ndings, or

every system requiring AMR alarms would have to duplicate the functionality.

DMS AMR RefineryAMI Bus

Alarm: voltage
treshold exceeded

Propagate alarm

Perform heuristic

Alarm: earth fault

Propagate alarm

Figure 7.4: A proposed service which subscribes to AMR events and performs heuristics
against a prede�ned set of rules. In this example the 'Re�nery' service detects anomalies
advertised by the AMI are likely caused by an earth fault and sends a more informative
and higher priority alarm.

7.2.2 Workgroup positioning

The DMS 600 has the capability of overlaying positioning information from work

groups on the �eld on the main map display of workstations. The current imple-

mentation works by having an adaptor to receive position information from a third

party system and send change noti�cations on the internal DMSSocket protocol.

The next step in providing better situational awareness data would be to have

the workgroups receive information from the control room operators, such as work

instructions. Additionally, these teams would bene�t from seeing the real-time state

of the network on their end devices. Lastly, the teams should be able to communicate

back the operations they have done.

These features would essentially require a two-way communication protocol be-

tween the �eld groups and the DMS system. Allowing these mobile clients to access

the whole DMS system in most cases would not be acceptable, as the work groups

connect through untrusted mobile networks, and possibly are subcontractors who

should not have access to all of the data in the system.
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7.2.3 Sharing outage data

The DMS 600 holds internally a comprehensive log of the network state, historical

events and future plans. Sharing these to external stakeholders is a common require-

ment. Figure 7.5 illustrates the information requirements of di�erent stakeholders.

The image displays both real-time and periodical reporting requirements. While at

�rst sight outage reporting and ongoing state seem to be separate concepts, both

are renderings of the same data that should only be accessible internally by the DSO

personnel.

-Detailed topology model
-Detailed switching log
-Detailed work plan

-Aggregated log of
outages

-Simplified geographic
representation of
current situation
-Estimated time to
normal situation

DSO
int

er
nal

Ex
te

rn
al

st
ake

holders

Figure 7.5: The relation of the internal data to the requirements of external stakeholders
for both reporting and real-time situational awareness. Note that the internal data does
not necessarily reside within a single vendor system.

One feature of the ABB DMS600 is producing data to a public web server to

display ongoing and expected outages. The DMS produces periodically, typically

every few minutes, an XML �le with data on the outages. This data is parsed by a

JavaScript application to display the data on a dynamic map. This design allows the

service to be deployed on very simple web servers, as only one-way data is required.

It also means no part of the DMS system has to be visible to the internet. The

setup is illustrated in �gure 7.6.

This same data may in future be leveraged by additional stakeholders, such as

emergency response departments in cases of large scale disturbances in the network.

A �nnish research project aims to further develop the methods for sharing emergency

information. This work is discussed in [70]. The same data is also useful for other

forms of presentation, among them automated SMS text message noti�cations to
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select customers. One aspect of the text message output is that it is desirable to

only have noti�cations sent to customers when a speci�c change happens and the

situation is known to remain stable for some time. [71]

A set of a few simple XML �les is, however, not suitable for sharing larger data

sets. DSOs are expecting to allow broader web based customer service, and some

already add information from systems external to the DMS, such as energy mea-

surements. Sharing such data requires authenticating the user and showing data

only relevant to them. An expected regulatory requirement in Finland is deliver-

ing customers historical data on outages that have a�ected them. For security and

implementation reasons, a database is required on the web server, which only gives

out relevant data to speci�c customers.

The expanded features could be implemented by batch exporting of a subset of

the data from the main DMS database to the partially-internet-exposed database.

Another service oriented approach is proposed here. The web server could have a

service that listens to speci�c broadcasts on a bus and stores relevant data internally.

This approach would allow greater compatibility between parts of the system from

di�erent vendors. A batch database transfer would require the implementation to

be planned according to internal database structures of both the DMS and the web

service. A CIM based service oriented architechture would also share the interface

with possible other systems that take advantage of the same data. The proposed

service layout is displayed in �gure 7.7.

From the image it can be seen that two-way data transfer might now be required,

if only to allow the relevant publish-subscribe tra�c to be compatible with the

implementation of the bus. This should not present security issues as long as the

design of the bus is taking security in account from the beginning. Only messages

de�ned as originating from the web service should be accepted. Only those that are

speci�cally allowed for export should be sent to the web server, regardless of what

the web server (possibly compromised) might request.

Outage reporting is a key feature of a DMS. With the system logging all switching

operations and following the state of the network topology, it can provide exact data

on outages: durations, customers a�ected etc. During outages, the control room

operators add additional data such as outage classi�cation which is stored with the

other records.

The internal outage records are usually presented to the end users aggegated

in a format speci�c to the DSO. Some of these reports follow national regulations

guidelines, others follow company standards in place within the DSO. The reports

access the internal data through a database interface.

Outage reporting has additional considerations compared to typical operations

within the DMS system. The reports are often run by personnel not directly involved
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XML

JavaScript app DMS
FTP push

HTTP

Figure 7.6: Current outage noti�cation web service. Data on outages is pushed as an FTP
�le dump to the web server, where a JavaScript application accesses these static �les. The
DMS environment is heavily �rewalled from the internet.

XML

JavaScript app

DMS
PUBLISH
SUBSCRIBE

HTTP

Server side
runtime

CIM Bus

Figure 7.7: A possible implementation of a more feature-rich web based customer noti�-
cation system.
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in the system operation. It is desirable to be able to separate the reporting from

the network where the actual system is run to allow a range of personnel access on

aggregations of otherwise sensitive data.

In some deployments, the outage records have to be frozen after they are �led.

Any modi�cations to the frozen records have to be logged and veri�ed. This may

be due to legal requirements or internal company guidelines.

When an outage record is created, noti�cations should be sent to multiple parties

involved, such as customer service (to allow for informative replies to customer

queries), personnel in charge of reporting (to ensure requred data is �lled in by the

operators as soon as possible) or management (to keep them updated on events).

These requirements: access control, separation from operation environment and

up-to-date noti�cation propagation makes many applications of the outage tracking

a prime target for SOA-type integration.
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8. CIM NETWORK MODEL FORMAT

As stated earlier, the CIM model provides a format for transferring network models.

The recommended markup for transferring bulk network data is RDF. CIM objects

are used to represent components. An RDF/XML syntax is de�ned in part 552 of

IEC 61970 and is augmented by other parts of the standard. For partial updates

over an event-based communication protocol, the standards allow the use of plain

XML markup even for network data. An example of such case would be an update

on the electrical data of a single component, transmitted over eg. a Web Service

link.

A good network data import/export should be able to represent all data inside the

software in an unambiguous way, all the while not adding implementation-speci�c

types, unnecessary objects or enforcing semantics in naming conventions. As the

internal model in DMS 600 di�ers at points greatly from that of the CIM, objects

need to be generated and concatenated on each import/export run. The goal of

getting standards compliant data out and generating the exact same network from

this data is elusive, but CIM does seem to provide the tools to at least get close.

8.1 Topology

The topology model of CIM di�ers from the internal model used in DMS 600. CIM

also allows for more variation in entities to represent the same data. The basic

topology modelling block in DMS 600 is an MV Node, which is an entity that always

has a geographical location and a type. An MV node can be eg. a transformer, a

disconnector or a customer connection point. A special type of node, the branching

node, is used to represent sitations where no component other than a connection is

present in the topology.

MV Nodes are connected to each other by MV Sections. A section includes

information about the conductor type, and a special conductor type, BUSBAR, is

used when connections of negligible impedance are modelled.

In the CIM model, ConductingEquipment is a supertype of all network compo-

nents. Each ConductingEquipment can have one or two Terminals, which represent

connections to other components. Each Terminal is associated to exactly one Con-

ductingEquipment and can connect to zero or one ConnectivityNodes, which is an

object that connects the terminals with zero impedance.

69



70 8. CIM network model format

ConductingEquipment

Connector

BusbarSection Junction

PowerSystemResource

VoltageControlZone

AssetInfo

AssetInfo::BusbarSectionInfo

+ ratedCurrent :CurrentFlow [0..1]
+ ratedVoltage :Voltage [0..1]

+BusbarSection

1
+VoltageControlZone 0..1

Figure 8.1: The CIM Connector classes.

Line sections are not represented by separate object types, instead they are sub-

types of the same ConductingEquipment used to represent all components. Special

objects, also subtypes of ConductingEquipment are used for representing busbars.

CIM provides two classes for describing connectors, BusbarSection and Junction.

They are inherited from ConductingEquipment and used by connecting a single

terminal to a ConnectivityNode - they can be thought of as kinds of descriptors to

the ConnectivityNode instead of actual network components. The DMS600 models

a connector using a branching node or as a separate busbar object. The inheritance

of these types is shown in �gure 8.1.

Figure 8.2 illustrates the DMS 600 data model, showing an example of com-

ponents connected to each other. The same topology is represented in the CIM

format in �gure 8.3. Here the components are subtypes of ConductingEquipment,

which links to a Terminal object, which in turn can connect to one object of type

ConnectivityNode. The situation is more complicated in the CIM model when the

connection is made with non-zero impedance. This is shown in �gure 8.4. The

topology model in DMS600 internal format is the same for both CIM examples, the

only di�erence being the conductor type.

When translating from CIM to the DMS 600 internal format, the Connectivi-

tyNode can either be neglected, or an MV Node of type branching node can be

created to represent it. In the latter case, two separate MV Sections have to be

generated. The additional node may make the model more complicated than is

desired, so in the examples of �gures 8.3 and 8.4, no additional node should be

created. However, the CIM model allows for more than two connections to be made
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MV_NODE

MV_NODE

MV_SECTION

Figure 8.2: A basic topology in DMS 600 internal format. Two components are connected
to each other via an MV Section. The electrical characteristics of the connection are
represented by a conductor type associated with the MV Section. A special conductor
type, BUSBAR, is used to represent connections with zero impedance.

ConnectivityNode

ConductingEquipment

ConductingEquipment

Terminal

Terminal

Figure 8.3: A basic connection between two components in the CIM data model. In this
example, the components are connected with zero impedance, so in the DMS 600 model
the BUSBAR conductor type would be used.

to the ConnectivityNode. In DMS 600, a section can only have two endpoints, so

a ConnectivityNode with more than two connected Terminals would have to be

modeled as a branching node. This situation is illustrated in �gures 8.5 and 8.6.

Further di�erences in the network models are shown in �gures 8.7 and 8.8. As

can be seen, a major di�erence is in the handling of voltage levels. In DMS 600

low voltage networks are separate from medium voltage even at the level of data

structures. In the CIM model, all components that a�ect the network topology

are subclasses of ConductingEquipment. This has been left out from the picture to

maintain simplicity. The DMS 600 handles two base classes, nodes and sections,

while CIM only has ConductingEquipment.

8.1.1 Voltage levels

The internal data model of DMS 600 separates medium voltage and low voltage

networks in di�erent data types altogether. To work with low voltage networks, the



72 8. CIM network model format

ConductingEquipment

ConductingEquipment

Terminal

Terminal

ConnectivityNode

ConnectivityNode

ConductingEquipment
(Conductor)

Terminal

Terminal

Figure 8.4: A connection between two components in the CIM model. Analoguous to �gure
8.3, except here the connection has non-zero impedance and thus a Conductor object is
used between the components. Note that Conductor is a subtype of ConductingEquipment,
which is used to represent all other components.

ConductingEquipment

ConductingEquipment

Terminal

Terminal

ConnectivityNode

ConductingEquipment
Terminal

Figure 8.5: A CIM topology with multiple components connected to each other with zero
impedance.

MV_NODE

MV_NODE

MV_NODE

MV_NODE
MV_SECTION

MV_SECTION

MV_SECTION

Figure 8.6: The DMS 600 topology analoguous to �gure 8.5
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Figure 8.7: A more advanced network in the DMS 600 internal topology model.



74 8. CIM network model format

EnergySource
Terminal []

Terminal

Terminal
ConnectivityNode

Terminal

Terminal
ConnectivityNode

Terminal

Terminal
ConnectivityNode

Terminal

Terminal
ConnectivityNode

Terminal

Terminal
ConnectivityNode

Terminal

Terminal
ConnectivityNode

Switch
Terminal []

PowerTransformer
Terminal []

PowerTransformerEnd
Terminal

PowerTransformerEnd
Terminal

PowerTransformer
Terminal []

PowerTransformerEnd
Terminal

PowerTransformerEnd
Terminal

ACLineSegment
Terminal []

ACLineSegment
Terminal []

EnergyConsumer
Terminal []

Figure 8.8: The network of �gure 8.7 expressed as a CIM model.
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user must explicitly load a portion of the low voltage network to memory. Com-

monly each distribution transformer feeds a certain part of the low voltage network.

Even if low voltage networks of separate transformers have connecting lines, this is

only assumed to be for providing a separate feed in case of transformer failure or

maintenance and therefore each load point is assumed to statically link to a single

transformer.

In the CIM model, low, medium and high voltage components use the same data

types. There are no separate "LV Energy Consumer" and "MV Energy Consumer"

objects, unlike DMS 600. When importing CIM network data to DMS 600, an

arbitrary voltage must be selected as the crossover point upon which it is decided

whether the import functionality should create low voltage or medium voltage ob-

jects. Some import functions also need to be duplicated, as DMS 600 low voltage

types are not exact copies of medium voltage types.

Unfortunately, even this is not enough in all cases. It is possible that a CIM object

does not de�ne the ConductingEquipment.BaseVoltage property. In this case, the

network topology needs to be traversed to determine the correct voltage level.

8.1.2 Transformer modelling

The basic transformer model has classes PowerTransformer and PowerTransformerEnd,

where PowerTransformer is a subclass of ConductingEquipment. Each PowerTrans-

formerEnd describes a single three-phase terminal of the transformer, so a typical

transformer model would consist of one PowerTransformer and two PowerTrans-

formerEnds, one for the primary voltage and one for secondary. Although Power-

TransformerEnd is not a ConductingEquipment, it associates to a single Terminal

to allow describing which part of the network is connected to it.

Additionally, CIM provides classes TransformerTank and TransformerTankEnd

to model the winding details for each phase. A TransformerTank objects associates

with PowerTransformer. Both TransformerTankEnd and PowerTransformerEnd

share a common parent, TransformerEnd, which allows for a shared representation

of most of the electrical data, even though a transformer model should only contain

either TransformerTankEnd or PowerTransformerEnd.

The CIM also provides the class TransformerEndInfo to allow a single data de-

scribing object to be associated to multiple transformers. This is useful especially in

the case of distribution networks, where multiple transformers are of the same type

and therefore share electrical data.
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ConnectivityNode

ConductingEquipment

ConductingEquipment

Terminal

Terminal

AuxiliaryEquipment

MV_NODE
MV_SECTION
MV_NODE

MV_SECTION

MV_NODE

Figure 8.9: A current transformer as modeled in CIM and DMS600.

8.1.3 Auxiliary equipment and connectors

The CIM model treats auxiliary equipment such as fault indicators1 and voltage2-

and current3 transformers di�erently from other components. While normally all

components are subclasses of ConductingEquipment, these components are sub-

classes of AuxiliaryEquipment. Each AuxiliaryEquipment object only connects to

exactly one terminal, while ConductingEquipment connect in most cases to two.

Additionally, AuxiliaryEquipment do not have their own terminal, but they share

one with a component of type ConductingEquipment. In the DMS600 model these

components are ordinary MV nodes. When importing AuxiliaryEquipment, addi-

tional BUSBAR line sections need to be created when an AuxiliaryEquipment is

connected to a terminal of a ConductingEquipment. The modelling di�erence is

illustrated in �gure 8.9.

When current and voltage transformer readings are directly used by a relay, they

may not be modelled as network objects in the DMS, instead the electrical properties

are part of the relay data sheet. To accurate create these models, additional logic

would have to be implemented to decide whether a separate object is required or

not. If, for example, a terminal of a ProtectedSwitch has a PotentialTransformer con-

nected and the OperatedByProtectionEquipment de�ned, the potential transformer

could be collapsed within the relay model.

8.1.4 Identi�er consistency

As the internal DMS600 objects do not directly map to CIM objects in every case,

new objects have to be dynamically created to represent the real situation. This

step should ideally be deterministic, meaning every time the generated objects have

the same properties and also have the same identi�ers. To ensure this, it is foreseen

1FaultIndicator
2PotentialTransformer
3CurrentTransformer
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MV_NODE

MV_NODE

MV_NODE

MV_SECTION

MV_SECTION

MV_SECTION

Conductor

ConductingEquipment

ConductingEquipment

ConnectivityNode Terminal

Terminal

Terminal

Figure 8.10: Possible data in lookup tables. The topology includes two components, con-
nected to a branching node by the zero-impedance BUSBAR conductor type, and an
additional conductor leaving the node with a non-zero impedance conductor. Enough data
should be stored in a lookup table to ensure that this connection is collapsed to a single
ConnectivityNode having the same identi�er on every export run, and expanded into the
same DMS objects on every import.

that some lookup tables need to be created in the database. An example of such a

situation is illustrated in �gure 8.10.

On import, it is enough to save the DMS identi�ers of each node and section.

One CIM object, e.g. the ConnectivityNode of the previous �gure, may equal to

multiple DMS 600 objects. The opposite is also true, the most basic example being

the ConductingEquipment-Terminal pair that is represented by an MV node in DMS

600. During export, the same lookup tables should be used.

Unless identi�ers are consistent, no incremental updates on the model can be

performed. With fully consistent object creation, network data can be tracked up

to the level of a single object, such as a network component.

As the DMS600 integrates with SCADA systems, it requires certain objects to

de�ne a SCADA code. Often this would be an OPC code. The CIM standard has

no explicit �eld to de�ne an OPC code, so the class Name should be used. Each

incoming �le should use a prede�ned NameType to identify a Name as an OPC

code.

8.1.5 Coordinates

The DMS600 is fundamentally a lightweight GIS system. In the DMS600 data

model, every component that can possibly have a coordinate associated with it, has

to have it. This is essential for drawing graphics and visualizing the network. A CIM

network data �le on the other hand may be generated for a multitude of purposes.

For calculations, it is possible to use a data �le with no geographic information. Even

if some coordinates are provided, another system may only provide them for those

parts where they clearly can be determined from the real world, such as line sections.
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Figure 8.11: Failing creation of busbar section from connectivity nodes when Termi-

nal.SequenceNumber is missing or wrong. Dashed line represents a zero-impedance line
section, represented as conductor type BUSBAR.

So if a circuit-breaker and a primary transformer sit within a substation, it may be

reasonable to provide the coordinates of the substation and just assume the other

components are within that point or area. In order to import such data as a usable

model in DMS600, some coordinates have to be automatically generated based on

the data available. If no coordinate information is present, there is no way to do this

unambiguosly. In implementations of the network import, the computer-generated

coordinate information should be �agged as unreliable to prevent it con�icting with

data in another GIS system.

Additionally, a single CIM model may contain coordinates in many formats. Each

Location references a CoodinateSystem object, and di�erent components may pro-

vide di�erent coordinates, for example coordinates in separate mercator projections.

For further complication, an additional Diagram object exists in CIM. It can be

used to specify abstract coordinates and even a separate polygon representation for

anything of type Identi�edObject. Multiple diagrams may reference a single model

object. The DMS600 does use a similar system of diagrams for substation layouts,

where the diagrams are obtained from SCADA, but each diagram when imported

gets de�ned corner points as real-life coordinates and is always drawn in that loca-

tion. In DMS600, only a single diagram can reference a single power system object.

For line sections, a list of coordinates is given. For network calculations the

order of coordinates naturally does not matter4, so not all systems include the

sequence numbers in the network model. However, for a visual representation of the

topology, the order of the coordinates is more important. The order of coordinates

should correspond with the order of terminals to ensure there are no extra-long

zero-impedance sections that connect wrong terminals graphically. Thus, at least

all Conductor objects should de�ne the terminal order. The results of failure to do

this are illustrated in �gure 8.11.

4except in the special case of a line section including a Cut object, which has the property
Cut.lengthFromTerminal1.
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8.1.6 Conductor Types

The DMS600, being oriented for distribution systems, requires all line sections to

reference a single conductor type. The CIM model, however, allows an ACLineSeg-

ment to either de�ne the eletrical properties of the whole section or in the case of

a DCIM5 model, reference a WireInfo object that de�nes the electrical properties

in per-length form. If incoming data uses the former method, DMS600 Conductor

types must be created accordingly. While this is possible, it easily leads to several

very similar conductor types. Therefore some additional heuristics may be needed to

determine whether two ACLineSegment objects have 'close enough' electrical datas

to use a shared conductor type.

Even if su�cient WireInfo objects exist in the model, the DMS600 wire model

does not directly map to the CIM model. The CIM WireInfo and related classes

are shown in �gure 8.12 and the conductor type de�nition of DMS 600 in �gure

8.13. In general, the CIM model provides more �ne-grained information than the

DMS model. Some properties are needed by the DMS600 that are not provided by

the standard CIM, such as the 1 s short circuit current (for protection analysis),

the cooling time constant τ (for analyzing acceptable time-dependent overloads for

cables) or conductor mass and cost (for planning analysis). Some of these could

be deduced from the cable properties, but doing so would open up many possibili-

ties of miscalculation for properties that are often standard datasheet material for

conductor vendors.

The conductor model di�erences between CIM and DMS 600 provide a good

example of the problems in implementing a lossless round-trip network model im-

port/export functionality. The cooling time constant is used to calculate cable

cooling time using the equation

∆T (t) = ∆T0e
−t
τ (8.1)

where ∆T is the ambient-cable temperature di�erence and t is time. When a cable is

subjected to multiple overload situations on a short cycle, the subsequent overloads

run a higher risk of heating the cable above the allowed limit. This is illustrated in

�gure 8.14. The time constant is sometimes estimated using the equation

τ(min) =
1

60

∣∣∣∣ I1s

Imax

∣∣∣∣2 (8.2)

where I1s is the maximum allowable one second current and Imax is the maximum

allowable continous current. The exact time constant is de�ned as

5CIM with Distribution extensions
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«enumer ation»
WireInsulationKind

asbestosAndVarnishedCambric
butyl
ethylenePropyleneRubber
highMolecularWeightPolyethylene
treeResistantHighMolecularWeightPolyethylene
lowCapacitanceRubber
oilPaper
ozoneResistantRubber
beltedPilc
unbeltedPilc
rubber
siliconRubber
varnishedCambricCloth
varnishedDacronGlass
crosslinkedPolyethylene
treeRetardantCrosslinkedPolyethylene
highPressureFluidFilled
other

OverheadWireInfo

ConcentricNeutralCableInfo

+ diameterOverNeutral :Length [0..1]
+ neutralStrandCount :Integer [0..1]
+ neutralStrandGmr :Length [0..1]
+ neutralStrandRadius :Length [0..1]
+ neutralStrandRDC20 :ResistancePerLength [0..1]

CableInfo

+ constructionKind :CableConstructionKind [0..1]
+ diameterOverCore :Length [0..1]
+ diameterOverInsulation :Length [0..1]
+ diameterOverJacket :Length [0..1]
+ diameterOverScreen :Length [0..1]
+ isStrandFill :Boolean [0..1]
+ nominalTemperature :Temperature [0..1]
+ outerJacketKind :CableOuterJacketKind [0..1]
+ sheathAsNeutral :Boolean [0..1]
+ shieldMaterial :CableShieldMaterialKind [0..1]

«enumer ation»
WireInsulationKind::
CableConstructionKind

compacted
compressed
sector
segmental
solid
stranded
other

«enumer ation»
CableOuterJacketKind

none
linearLowDensityPolyethylene
pvc
polyethylene
insulating
semiconducting
other

«enumer ation»
CableShieldMaterialKind

lead
copper
steel
aluminum
other

AssetInfo

WireInfo

+ coreRadius :Length [0..1]
+ coreStrandCount :Integer [0..1]
+ gmr :Length [0..1]
+ insulated :Boolean [0..1]
+ insulationMaterial :WireInsulationKind [0..1]
+ insulationThickness :Length [0..1]
+ material :WireMaterialKind [0..1]
+ rAC25 :ResistancePerLength [0..1]
+ rAC50 :ResistancePerLength [0..1]
+ rAC75 :ResistancePerLength [0..1]
+ radius :Length [0..1]
+ ratedCurrent :CurrentFlow [0..1]
+ rDC20 :ResistancePerLength [0..1]
+ sizeDescription :String [0..1]
+ strandCount :Integer [0..1]
::IdentifiedObject
+ aliasName :String [0..1]
+ mRID :String [0..1]
+ name :String [0..1]

«enumer ation»
WireMater ialKind

copper
steel
aluminum
aluminumSteel
acsr
aluminumAlloy
aluminumAlloySteel
aaac
other

«enumer atio...
WireUsageKind

transmission
distribution
secondary
other

TapeShieldCableInfo

+ tapeLap :PerCent [0..1]
+ tapeThickness :Length [0..1]

IdentifiedObject

Wires::
PerLengthImpedance

Wires::
PerLengthPhaseImpedance

+ conductorCount :Integer [0..1]

Wires::
PerLengthSequenceImpedance

+ b0ch :SusceptancePerLength [0..1]
+ bch :SusceptancePerLength [0..1]
+ g0ch :ConductancePerLength [0..1]
+ gch :ConductancePerLength [0..1]
+ r :ResistancePerLength [0..1]
+ r0 :ResistancePerLength [0..1]
+ x :ReactancePerLength [0..1]
+ x0 :ReactancePerLength [0..1]

Wires::PhaseImpedanceData

+ b :SusceptancePerLength [0..1]
+ r :ResistancePerLength [0..1]
+ sequenceNumber :Integer [0..1]
+ x :ReactancePerLength [0..1]

+WireInfos

0..*

+Impedances

0..*

+PhaseImpedance 1

+PhaseImpedanceData 1..*

Figure 8.12: The CIM WireInfo class with direct relations and child types. Note that the
PerLengthImpedance can be speci�ed either by symmetric components (PerLengthSequen-
ceImpedance) or as an impedance matrix (PerLengthPhaseImpedance), so methods should
exist to use either model in calculations. The current DMS 600 model utilizes mainly a
symmetric component model.



81

CODE
Resistance (Ω/km)
Reactance (Ω/km)

Zero reactance (Ω/km)
Zero resistance (Ω/km)

Ground susceptance (μS/km)
Line susceptance (μS/km)
Neutral conductor resistance (Ω/km)
Neutral conductor reactance (Ω/km)
Max. continuous load current (A)
Max. 1 s short circuit current (kA)
Cooling time constant, τ (min)
Conductor mass (kg/km)
Info
Installation cost (m.u./km)
Equivalent temperature
Number of phases

Figure 8.13: The DMS600 internal model for conductor types.
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Figure 8.14: Cable temperature plotted against time in a situation with multiple subse-
quent overloads. The cooling slope is de�ned by the thermal time constant (τ) of the
cable.
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τ =
ρcpV

hAs

(8.3)

where ρ is the density, cp is speci�c heat capacity, V is volume, As is the surface

area and h is the heat transfer rate. This means that to actually come up with

the correct τ , one would also need to take into account the heat transfer rate. Heat

transfer depends on the temperature gradient, and materials used. The IEC 60287-2

gives formulas for estimating thermal resistance of conductors, which is related to

heat transfer rate by the equations

h =
Φ

Asθ
=

1

AsT
(8.4)

where Φ is the heat �ux, θ the temperature di�erence and T the thermal resistance.

[72]

According to IEC 60287-2, the thermal resistivity of surrounding ground varies

greatly depending on the type of ground, where generally more moist ground is

better at transferring heat. The recommendation is to use values measured in similar

conditions. [73]

These equations mean that the CIM model is su�cient for an engineer to make

rudimentary network calculations, but importing the data to an existing system is

not as straightforward. In this case, the import routine could use a combination of

a materials- and installation types database and cable data to come up with a value

for τ .

8.2 Di�erences between transmission and distribution net-

works

The modeling requirements for transmission and distribution networks vary slightly.

In a real-world use case, distribution networks need to model a greater amount of

components such as line sections and transformers. In a transmission network, the

properties of individual objects are known to a much greater detail. In distribution

networks however, the only available data may be type information which is then

assumed to be applicable to a large number of components.

The CIM model addresses this di�erence by adding certain object types for de-

scribing type information in part 11 of IEC 61968. This documents builds upon

part 452 of IEC 61970, which de�nes the basics of representing network topology.

The base class for these type de�nitions is AssetInfo, which can relate to any object

derived from type Asset. Additional subclasses are de�ned for transformer, switch,

wire and busbar speci�cations.

The operation of transmission networks also di�ers greatly from operation of dis-
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tribution networks. In transmission networks, looped connections are used to ensure

redundancy. Distribution networks are usually designed to be operated in a radial

con�guration, where load �ow direction is clearly from substation to customer nodes.

A looped state is an anomaly and load �ow calculations are usually limited in this

mode of operation due to the much greater complexity of the network. These dif-

ferences need not be represented in the data models, but when considering software

packages to run in di�erent environments, it must be noted that a calculation algo-

rithm designed for one mode of operation may have performance problems or even

be completely incompatible in another. A generalization is that transmission net-

work algorithms use simple data in complex calculations while distribution networks

use complex data in simple calculations.

A speci�c complication in distribution networks is the possibility of single-phase

installations. Many distribution systems only have balanced three-phase installa-

tions, but in some countries this may not be relied on. The DMS600 recently added

support for single phase systems, and the distribution extensions of the CIM allow

the modeling of these.

8.3 Implementation of network data import

To successfully communicate event data in the style of a service oriented architech-

ture, in many cases the counterparties need to have consistent topology models.

This is especially important in cases such as the exchange of measurements or cal-

culation results. The DMS 600 already has a proof-of-concept level implementation

of network data export to the CIM/RDF format. During the work for this thesis,

work on network model import functionality was started.

For event data, where the IEC standards recommend using basic XML markup,

libraries and development tools are readily available to serialize data to the correct

XML format, using a computer-generated XML Schema �le as the reference. For the

RDF format, tools are more sparse. Therefore, a simple RDF serializer/deserializer

was developed. It uses C# code generated from the XML Schema as reference,

and reads in RDF data to create internal in-memory instances of the CIM classes.

The serializer heavily leverages dynamic typing capabilities of the C# language.

Theoretically, in the event of a change in the CIM model, only code generation

needs to be run and the serializer will adapt to changes. This also means that

if multiple incompatible CIM versions need to be supported, multiple branches of

generated code have to be maintained.

To ease the translation from CIM objects to DMS internal objects, a database

serializer was also implemented. It dynamically creates database tables with the

input RDF data �lled in. The idea is to run simple SQL queries over these tables

and insert the results in the DMS 600 internal database tables. This approach
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works well for simple translations, such as network component models. For topology

translation, the SQL approach is not su�cient to allow for maintainable code as

similar CIM models may need to be translated into very distinct DMS 600 models.

Some supporting code was implemented in the C# language to allow for a consistent

and robust translation capability.

Another bene�t of the approach of copying all input data to the database is that

a consistent reference is created to the original data. In case the DMS 600 network

model does not support all of the input data, the data is at least stored in an usable

form. Possibly a future version the DMS 600 can directly reference the CIM objects

where appropriate, ie. where new functionality is developed in the DMS 600 which

uses data formats similar to those already de�ned in the CIM model.

For upgrading the previous export functionality, the code developed for this

project may be leveraged. The same database and RDF serializer classes already

allow for a reverse translation. To update the export functionality to a recent CIM

version, some SQL queries or other code would need to be developed to �ll in the

CIM database tables from the DMS 600 internal tables.

The general architechture of the import functionality is shown in �gure 8.15.

As the functionality heavily leverages code generation, updates to the CIM model

only require updates in the SQL conversion scripts. All other functionality can

be updated by simply running code-generation against the new model de�nition.

The use of an XML Schema as an intermediate code generation step ensures that

functionality using plain XML markup, such as web service implementations, uses

the exact same data model as the RDF functionality. The downside is that some

semantic validation provided by RDF Schema de�nitions is not possible.

The network import functionality was mainly developed and tested based on the

CIMUG Enterprise Architect UML models and some �les produced by other vendors

for CIMUG hosted interoperability tests. Eventually only one real-world external

model was usable in an unmodi�ed state, due to the others lacking geographic

data, which is needed for the DMS to achieve its primary function as a situational

awareness tool. More models are available in older formats, but the implementation

used a draft version 15 CIM model and supporting older models at this stage was

not deemed worthwhile. Future modi�cations are to be expected as the CIM model

re�nes further.

The performance of the import functionality deserves a mention, as performance

concerns are sometimes raised regarding the use of XML. This implementation was

not optimized for speed. A small single-substation medium voltage network of

around six thousand CIM objects takes around half-an-hour to import on a modern

laptop computer running a database server locally. However, the main cause of the

slowness is the use of single-shot database connections throughout the import pro-



85

RDF serializer

CIM/RDF
network model

CIM Enterprise
Architect UML model

C# classes

XSD
Schema

DB serializer

DMS 600
CIM importCIM table

structure

DMS table
structure

b

a

c

Figure 8.15: The general architecture of the import functionality. The components in
the diagram are divided into three blocks depending on their maintenance requirements.
Components of block a are transparent to CIM model changes. The operations of block
b, creating the C# class representation of the CIM model are done on every update to the
underlying CIM model, but require minimal developer intervention. The only component
requiring maintenance to support new CIM model releases is the import functionality on
block c, which consists mainly of SQL queries. The DB serializer and DMS 600 CIM
import components can be reused when transferring CIM data from other formats, such
as plain XML or a web service.
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seconds

Parse
RDF

Populate CIM
table structure

Populate DMS table structure
from CIM table structure

10 minutes20 minutes

Figure 8.16: A breakdown of the processing time of a small RDF �le on the current
implementation.

cedure. While database access is generally a very fast way of transferring data, the

overhead of opening a new query is relatively huge when transferring small amounts

of data, therefore leaving a lot of room for optimization on the implementation.

The actual parsing of the �ve megabyte XML �le takes less than ten seconds. This

does not undermine the fact that XML transformations are often identi�ed as the

performance bottleneck. This application does not perform such operations on the

data. A coarse breakdown of the processing time is shown on �gure 8.16.

Some improvements to the CIM/RDF export functionality were considered during

the course of this thesis. Although an old proof-of-concept exists, changes in the CIM

model have created a need for an updated version. The previous implementation did

not leverage any code-generation or XML/RDF libraries, so instead of modifying

that code a new implementation could be started, based on the work done on the

export. The implementation should leverage the same lookup tables as the import

to ensure consistency of identi�ers up to a certain point.

8.4 Model and pro�le maturity

Barring minor exceptions such as the thermal properties of conductors, the CIM

base model seems well suited for exchanging all types of information used by the

DMS 600 system. Most cases of lack of necessary information on models tested come

down not the base model missing properties, but the �les not declaring them. This

is a problem of either incomplete pro�les, missing support for pro�les by vendors,

or both.

The current o�cial CIM pro�les are de�ned in the standards IEC 61970-501 and

IEC 61968-13, the former concentrating on transmission networks and the latter

on distribution. In light of the experiences from this thesis, the distinction be-

tween transmission and distribution pro�les may not be as relevant as the di�erent

requirements between di�erent types of information systems.

While calculations can be run on network models without any geographic infor-

mation, a key feature of the DMS 600 is the visual representation - both geographical

for objects than can de�nitely be placed on a map and pseudo-geographical diagram

positions for objects in one place, such as within a substation. Thus a successful

transfer of a model to DMS 600 would require comprehensive geographical data and

additional diagram objects to place everything in a visually representative single
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view. This can be achived through the CIM base model, but current CIM pro�les

do not seem to enforce it.
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9. CONCLUSIONS

This thesis concentrated on two main topics. On the other hand the concept of

Service Oriented Architecture was evaluated, given the CIM standards are expected

to facilitate creating near plug-and-play interfaces for common tasks in the DSO

computing domain. The maturity of the CIM network model was analyzed by

implementing an import functionality from the CIM/RDF �le format to the DMS

600.

DMS 600 is not implemented according to the principles of SOA. However, it

does use a database system in the backend to share data and it includes a synchro-

nisation mechanism, the DMSSocket which together can be tapped to implement

new functionality in a service oriented way: data and events currently in the system

can be accessed by implementing separate modules instead of expanding the client

side application code.

The development of DMS 600 would bene�t from more strict segregation between

user interface functionality and backend calculations. In e�ect, the DMS600 client

side code should be made thinner and more processing should move to services,

which are easier to manage and oversee.

The CIM data types are already mostly in a usable state. Future changes are still

expected to many parts of the model, so creating an interface based on CIM data

types does not guarantee future compatibility with other systems. The CIM also

does not in its current state de�ne unambiguous service interfaces. For example, it

is not possible to implement a calculation engine with a CIM interface and expect it

to be plug-and-play compatible with another system. New interfaces, even if based

on the CIM types, require some speci�cation work.

The network model of the CIM is for the most part mature enough to be used

for exchanging network data without additional input or user interaction. The main

problem is that di�erent types of systems, e.g. asset management and a DMS,

concentrate on di�erent information. The network data import that was developed

as part of this thesis can currently create usable models from third party network

de�nitions obtained from CIM User Group interoperability tests, but some polishing

is required to make the model have all the information a typical DMS installation

has. This is not an inherent problem with the CIM model, rather a problem of DMS

requiring some properties on models that are not mandated by currently used CIM

89



90 9. Conclusions
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Figure 9.1: Testing the CIM/RDF import functionality on an existing system.

pro�les.

The SOA techniques enable software vendors to deliver smaller pieces in a system,

and this may create a new market for an integration consultant. The ABB project

organisation is in a good position to enter this market, but some skills have to

be acquired and maintained to successfully operate in this position. Primarily,

understanding of the status of the CIM model and the types of data exchanges

it enables is needed. Additionally, knowledge on the general technologies will be

required, namely understanding of XML technologies, key WS-* standards and the

concept of the message bus.

9.1 Future work

The CIM/RDF import functionality should be tested. A proposed way of doing this

would be to set a testing environment on a site with a 3rd party asset management

system that already has a proven interface with DMS 600 and a CIM/RDF export.

In this kind of system, an initial network data import could be done on a clean

DMS 600 installation to check whether the resulting network models match. The

proposed test con�guration is illustrated in �gure 9.1.

Another bene�t of setting up this kind of installation would be that it would

ease further development of a CIM-based service interace. The two systems could

be set to share event data only via the CIM interface and the test system would

be monitored to check consistency with the production system. Although in this

con�guration both the receiving and sending ends of the interface would re�ect the
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ABB understanding of the standard, at least it would allow to pinpoint inconsisten-

cies in the service implementation and events where su�cient data is not transferred

on the CIM interface.

Currently setting up this kind of system is not possible as no publicly released

CIM export functionality exists in the 3rd party asset management systems that

already have an existing proprietary interface with the DMS 600. A simpli�ed

con�guration would be to export data from an existing system and import it to

a fresh one, thereby validating both the import and export implementations and

proving they contain all the information available on a DMS 600 system.
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APPENDIX 1: A LIST OF PUBLISHED AND

PLANNED STANDARDS IN THE CIM FAMILY

The standards of the CIM family (IEC 61968 and IEC 61970) are listed in this

appendix, along with their publication dates. Note that some information is publicly

available also for the parts still in development, in the form of the EA model �les

from CIMug.

IEC 61968

Published Part Title

2003-10 1 Interface architechture and general requirements

2003-11 2 Glossary

2004-03 3 Interface for network operations

2007-07 4 Interfaces for records and asset management

Unpublished 5 Interfaces for operational planning and optimization

Unpublished 6 Interfaces for maintenance and construction

Unpublished 7 Interfaces for network extension planning

Unpublished 8 Interface standard for customer support

2009-09 9 Interfaces for meter reading and control

Unpublished 10 Interfaces for business functions external to distribution

management

2010-07 11 Common information model (CIM) extensions for distribution

Unpublished 12 Common information model (CIM) use cases for 61968

2008-06 13 CIM RDF Model exchange format for distribution

Proposed 14 Mapping between MultiSpeak and CIM
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IEC 61970

Published Part Title

2005-12 1 Guidelines and general requirements

2004-07 2 Glossary

Common Information Model (CIM)

2009-04 301 (2nd ed.) Common information model (CIM) base

Unpublished 302 Common information model (CIM) �nancial, energy

scheduling and reservations

Component Interface Speci�cation (CIS)

2005-09 401 Component interface speci�cation (CIS) framework

2008-06 402 Common services

2008-06 403 Generic data access

2007-08 404 High Speed Data Access (HSDA)

2007-08 405 Generic Eventing and Subscription

2007-08 407 Time Series Data Access (TSDA)

2008-06 453 CIM based graphics exchange

Unpublished 456 Solved power system state pro�les

CIS Technology Mappings

2006-03 501 Common Information Model Resource Description

Framework (CIM RDF) schema

Unpublished 502-8 Web Services Pro�le for 61970-4 Abstract Services


