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The energy reform, which is happening all over the world, is caused by the 

common concern of the future of the humankind in our shared planet. In order to 

keep the effects of the global warming inside of a certain limit, the use of fossil 

fuels must be reduced. The marginal costs of the renewable sources, RES are 

quite high, since they are new technology. In order to induce the implementation 

of RES to the power grid and lower the marginal costs, subsidies were developed 

in order to make the use of RES more profitable. 

From the RES perspective the current market is developed to favor conventional 

generation, which mainly uses fossil fuels. Intermittent generation, like wind 

power, is penalized in the electricity market since it is intermittent and thus diffi-

cult to control. Therefore, the need of regulation and thus the regulation costs to 

the producer differ, depending on what kind of generation market participant 

owns.  

In this thesis it is studied if there is a way for market participant, who has wind 

power to use the special characteristics of electricity market Nord Pool and thus 

reach the gap between conventional generation and the intermittent generation 

only by placing bids to the market. Thus, an optimal bid is introduced, which 

purpose is to minimize the regulation costs and thus lower the marginal costs of 

wind power. In order to make real life simulations in Nord Pool, a wind power 

forecast model was created. The simulations were done in years 2009 and 2010 

by using a real wind power data provided by Hyötytuuli, market data from Nord 

Pool and wind forecast data provided by Finnish Meteorological Institute. 

The optimal bid needs probability intervals and therefore the methodology to 

create probability distributions is introduced in this thesis. In the end of the thesis 

it is shown that the optimal bidding improves the position of wind power pro-

ducer in the electricity market.  
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Energiauudistus, joka on tapahtumassa ympäri maailmaa on saanut alkunsa yh-

teisestä huolesta, joka on ihmiskunnan kohtalo jaetussa maailmassa. Pitääkseen 

ilmastonmuutoksen vaikutukset tietyn rajan sisällä, fossiilisten polttoaineiden 

käyttöä on vähennettävä. Monet uusiutuvan energian tuotantokustannukset ovat 

tällä hetkellä korkeita. Madaltaakseen uusiutuvan energian tuotantokustannuksia 

on jouduttu ottamaan käyttöön useita erilaisia tuotantotukia. Tuotantotuet ovat 

kuitenkin tarkoitettu väliaikaiseksi ratkaisuksi ja lopulta erilaisten uusiutuvien 

energiamuotojen on seisottava omilla jaloillaan. 

Uusiutuvan energiantuotannon kannalta katsottuna sähkömarkkinat on rakennet-

tu suosimaan konventionaalista tuotantoa, joka pääasiassa käyttää fossiilisia polt-

toaineita. Jaksoittainen tuotanto, kuten tuulivoima, kärsii nykyjärjestelmästä 

luonteensa vuoksi, koska se on jaksoittaista ja siten vaikeasti hallittavaa. Tämän 

vuoksi säädön tarve ja säädöstä aiheutuvat kulut tuottajalle eroavat suuresti riip-

puen siitä minkälaista tuotantoa osapuolilla on kaupankäynnissä. 

Tässä työssä tutkitaan, voiko sähkömarkkinoilla toimija, jolla on tuulivoimatuo-

tantoa, käyttää Nord Pool:n erityisominaisuuksia hyväksi ja täten kuroa konven-

tionaalisen tuotannon ja jaksoittaisen tuotannon eroa ainoastaan asettamalla tar-

jouksia sähkömarkkinoille. Tämän vuoksi tullaan esittelemään optimaalinen tar-

jous markkinoille, jonka tarkoitus on minimoida tasehallinnasta aiheutuvia kulu-

ja ja siten alentaa tuulivoimalla tuotetun sähkön tuotantokustannuksia. Saadak-

seen simuloitua Nord Poolissa tuulivoimatuottajan käyttäytymistä jouduttiin 

luomaan tuulivoimatuotannon ennustemalli. Simuloinnit suoritettiin vuosina 

2009 ja 2010 käyttäen oikeaa tuulivoimadataa, jonka tarjosi Hyötytuuli, markki-

nadataa Nord Poolista sekä tuuliennustedataa, jonka tarjosi ilmatieteenlaitos. 

Optimitarjous tarvitsee todennäköisyysjakaumat ennusteen päälle, jonka vuoksi 

menetelmä niiden luomiseksi esitellään tässä työssä. Lopuksi työssä todetaan, 

että optimaalinen tarjous parantaa tuulivoimatuottajan asemaa sähkömarkkinoilla 

ja täten pienentää tuulivoiman tuotantokustannuksia. 
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Abbreviations and symbols 

 

A   area 

Aw    weibull scale parameter 

    constant 

c   constant 

       power coefficient 

      Cumulative Distribution Function 

CFD   Computational Fluid Dynamics 

DW   Deutscher Wetterdienst 

d   deviation  

    energy production 

e   error 

EC   Evaluation Criterion 

ECMWF  European Centre for Medium scale Weather Forecast 

EST   Eastern European Time 

F   probability distribution 

FMI   Finnish Metrological Institute 

G   cumulative distribution  

H   Hessian matrix 

HIRLAM  High Resolution Limited Area Model 

IC   imbalance cost 

Imp   improvement 

kw    weibull shape parameter 

MAE   Mean Average Error 

MOS   Model Output Statistics 

MSE    Mean Squared Error 

NCEP   National Centers for Environmental Prediction 

NWP   Numerical Weather Prediction 

OTC   Over-The-Counter 

     power production 

PDF   probability distribution function 
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R   revenue 

RMSE   Root Mean Square Error 

SCADA  Supervisory Control And Data Acquisition 

SDE   Standard Deviation of Errors 

t   time 

TSO   Transmission System Operator 

u   wind speed 

z   loss expextation function 

 

Mathematical symbols 

 

+   up regulation 

-    down regulation 

^   forecasted 

—   mean 

Greek symbols 

 

     Beta distribution scale parameter 

    Beta distribution scale parameter 

    capacity factor  

     efficiency 

           density 

    standard deviation 

    mean 

     wind direction 

    price 

    forgetting factor 

 

Subindexes 

 

abs   absolute 
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act   actual 

ext   extra 

m   month 

MA   moving average 

max   maximum 

meas   measured 

n   nominal 

pen   penetration 

pc   power curve 

q   quarter 

quad   quadratic 

ref   reference 

rot   rotor  

tur   turbine 

w   Weibull  
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1 Introduction 

Numerous countries all over the world are struggling with increasing CO2 emis-

sions, caused by their energy sectors. Scientists, all over the world, are unani-

mous that the human made CO2 emissions must be in order to limit the global 

warming. One way to deal with this global problem is to move towards cleaner 

energy sources, which are in many cases renewable energy sources. For instance, 

European Union is trying to implement its 20/20/20 targets, which purposes are 

to reduce greenhouse gas emissions by 20%, increase the amount of renewable 

source to 20% and reduce the overall energy consumption by 20%. However, the 

problem with implementing of renewable sources is that energy markets and the 

whole energy sector are constructed for the needs of conventional generation, 

which make the integration of renewable energy sources to the energy markets 

difficult.  

 

Renewable energy sources are highly variable by their nature and thus their con-

trollability is weak. In the Nordic energy market time span from market closure 

to delivery hour can be 36 hours, which equals eternity from renewable sources 

point of view, since the predictability and controllability of renewable sources is 

weak. This unfair design of the market will cause problems to the renewable 

energy sources by adding its marginal costs, since the energy market is designed 

so that the imbalances caused by differences in bid energy and actual energy 

delivery are always penalized. Thus, this is the environment where the renewable 

sources must be equally competitive as the conventional generation, in order to 

implement more renewable energy to the grid. 

 

In this thesis it is discussed how the wind energy participant could reach the gap 

between marginal costs of conventional generation and renewable energy by 

using optimal bidding. This optimal bidding uses special characteristics of the 

Nordic electricity market, Nord Pool, by overestimating or underestimating pro-

duced energy at a delivery hour with a sensible manner. This method was intro-

duced in the earlier research of (Linnet, 2005) and was further refined by 
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(Pinson, 2006). It assumes that the balancing energy costs are imbalanced, which 

can be used together with probabilistic forecasts as an input to gain an optimal 

probability, where the optimal bid can be found. In this study, the probabilistic 

forecast was created by assuming that the wind farm‘s power can be divided into 

25 equally sized bins, where forecast error can be assumed to follow a beta dis-

tribution (Bludszuweit, 2008). 

 

As a result, this combination of probabilistic forecast and optimal bidding gave 

strong indications that the optimal bidding will increase wind power participants 

revenue by only taking the uncertainty of a forecast and imbalanced balancing 

energy costs into account. In chapter 0 short overview of the Nordic electricity 

market with it characteristics is represented. The weight is given to the aspects, 

which are important for participant who has wind energy. In chapter 3 overview 

of wind power forecasting is represented and also some of the special character-

istics of wind power and wind itself are represented. In the fourth chapter the 

methodology to derive point forecasts, probabilistic forecasts and optimal bids 

are represented. Also the results induced by optimal bidding are represented.    
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2 Electricity market 

The Nordic electricity market refers to the market area that is shared between 

Finland, Sweden, Norway, Denmark and Estonia. The idea is that there is one 

marketplace for selling/buying electricity as a commodity. The name of this 

common marketplace is Nord Pool and it was founded in 1995. The Nord Pool 

was a great step forward in the deregulation of energy market in Nordic coun-

tries. Before the deregulation of the energy market the companies, owned by the 

state, held a dominant position in transmitting and producing/selling  electricity. 

In all of the Nordic countries the structure before deregulation was different. For 

example the Finnish power sector was dominated by the state owned company 

called Imatran Voima, IVO, which was responsible for the transmission of  elec-

tricity. However, there was also a large share of generation owned by the Finnish 

industries, which established their own transmission company to interconnect 

their generation to the supply areas. Hence, there was two different transmission 

grids at that moment. (NordPool, 2011) 

 

The actual deregulation started in the Nordic countries by following the example 

of England and Wales, which started the wave of deregulation in the energy 

markets. In the Nordic countries deregulation was led by Norway in 1990, fol-

lowed by Sweden in 1991. In 1995 free competition in producing and selling 

electricity was partly introduced in Finland. Denmark and Estonia followed their 

example respectively a bit later. The idea of deregulation was to make it possible 

for the customers and the producers to follow the principles of free market whilst 

the energy transmission and distribution would be monopolized businesses. By 

doing so the quality and security of energy transmission and distribution would 

not be harmed by the free market (NordPool, 2011) 

 

One of the important aspects in looking at the market mechanisms at the moment 

in the Nordic countries is that Sweden and Norway established in 1995 Nord 

Pool, which is the market place of electricity and emission trading at this day. At 

the moment the Nord Pool, is divided into physical marketplace and financial 
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marketplace. The actual selling and purchasing of electricity takes  place in the 

physical power market, whereas the financial market place is for buying finan-

cial products as in buying and selling options. Trading in physical power market 

always leads to physical trading of electricity, whereas financial contracts are 

settled with money (NordPool, 2011). 

 

 As a result, deregulation has also led to another common thing besides of the 

joint market: Nordic market area has gained a common transmission power grid. 

It means that the actual electricity transmission is possible over the nations‘ bor-

ders and while the AC -transmission is used, same voltage frequency can be seen 

at every point of the grid. The common grid allows to preserve the stability of 

electricity transmission and also naturally formulates the boundaries of the joint 

power market. The other nations that transmits electricity to the Nord Pool‘s area 

are connected with AC-DC-AC converters in order to maintain the quality of 

electricity in the Nordic countries. Even though, the Nordic countries share the 

market area, it still does not guarantee the wholesale electricity price that is for-

mulated in the Nord Pool is same at every grid point, since the transmission ca-

pacity is finite and it is sized only with common agreements. Therefore, in some 

heavy transmission situations the common price area needs splitting because the 

limited transmission capacity prevents the power market from functioning prop-

erly. Hence, the price areas  need to create depending where the transmission 

capacity is inadequate in relation to the requirements of the market. Usually the 

boundaries of the price areas are composed by the boundaries of the nations. 

However, for Denmark and Norway it was necessary to create internal price ar-

eas because of the inadequate transmission capacity inside the nation. Also Swe-

den will be split into four price areas in November 2011 (NordPool, 2010). All 

the presented issues lead to the conclusion that the location of consumption and 

production plays a highly important role in the Nordic market and especially in 

forming the market price. In the Nord Pool price areas and flows from price area 

to another can be seen. Besides the flows that can be seen from the figure, the 

Nord Pool market is also connected to markets in Germany, Russia, Netherlands 
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and Poland (Partanen et al., 2010). In Figure 2.1 the current price areas in Nord 

Pool. 

 

 

 

 

 

 

 

 

 

 

 

The future development of Nord Pool is that the market will integrate more with 

European energy markets since there is a need for a stronger inner market in the 

EU and also the it follows the principles of EU. It will also increase the competi-

tion in the markets and thus allow the customers to tender their electricity re-

tailer. Since the European markets differs from another, market integration is 

achieved through market coupling, which means that efforts are made to com-

bine the already working markets with various methods including so-called im-

plicit auction (NordPool, 2011). 

 

2.1 Electricity exchange 

As a electricity trading place, Nord Pool is the market place where the electricity 

price is founded for every hour of the day, every day of the year. In Figure 2.2 

the example of price formulation, where the system price is the intersection point 

of the demand and supply curve. System price is the price that is valid for all 

market participants, if there is not any restrictions in transmission capacity be-

tween any price areas. As it is possible to see from the Figure 2.2 the market 

reaches the lowest possible price naturally by arranging the different electricity 

producing methods by its marginal costs. Marginal costs are the costs of  produc-

 

Figure 2.1 Nord pool system prices and flows (NordPool, 2011) 
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ing one unit of electricity. Therefore the two lowest methods to produce electric-

ity are hydro power and nuclear power according to their marginal costs. The 

amount of wind power in the Nordic electricity market is still about 3 % of the 

total energy production in the Nordic countries, therefore its effect on the market 

price is low. However in some price areas for instance in DK1, where wind 

penetration may be over 50 %, there are clear signs that the amount of wind en-

ergy has an impact on the electricity price. The price reduction may be over 30 

% when the wind penetration is over 50 % , compared to the situation when wind 

penetration is zero (Jónsson, 2008).    

 

 

Figure 2.2 Foundation of the system price. System price is the intersection of the de-

mand and supply curve. In this example system price is 55 €/MWh (Vehviläinen et al., 

2010) 

 

It can also be noticed from  Figure 2.2 that electricity price is determined by the 

level of demand. The demand can also vary in function of electricity price but as 

the Figure 2.2 shows that the variation is rather small. In the Nordic power mar-

ket the fluctuations in the level of hydro power determines the level of electricity 

price. During a less rainier year the electricity price increases and on the con-

trary, if the year is rainy, the price  decreases in relation to a year with an average 

precipitation (Partanen et al., 2010). The carbon dioxide tax increases the mar-

ginal costs of the energy that is produced from the fossil fuels, uranium as an 
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exception that has a low carbon dioxide emissions per produced unit of electric-

ity. 

 

As it was mentioned in the previous chapter the electricity exchange is divided in 

the physical and the financial marketplaces. The financial marketplace was pre-

viously owned by the Swedish and Norwegian transmission companies Svenska 

Kraftnät and Stattnett, respectively. In 2010 they sold their share of the company 

and thereafter the financial marketplace has been owned by the NASDAQ OMX. 

The clearing house that was previously owned by the separate company, Nord 

Pool clearing ASA and it also changed its ownership to NASDAQ. The physical 

market is still owned by the Nordic nations transmission companies (NASDAQ, 

2011). In Figure 2.3 The structure of the Nordic electricity market, Nord Pool. 

 

 

Figure 2.3 Structure of the Nord Pool. In the left branch the physical market and in the 

right branch the financial market.  

2.1.1 Physical markets 

The purpose of the physical marketplace is to allow to buy and sell electricity to 

meet the actual electricity demand. The physical market in the Nordic market is 

called as a Spot market. The turnover of the Spot market is 288 TWh, which re-

sponds to 72 % of the total electricity consumption in the Nordic market. The 

rest of the electricity is traded with Over-the-counter, OTC or in other words 

with off-exchange trades. Therefore, Spot -market can be seen as a liquid and 

efficient electricity marketplace (NordPoolSpot, 2009).  
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The Spot -market is divided into two parts: day-ahead market, Elspot and intra-

day market, Elbas. Elspot- market is the more liquid one of the markets. The 

turnover of Elspot is more than one hundred time the turnover of Elbas. Hence, 

the ‗main‘ market for having electricity exchange is Elspot. (NordPoolSpot, 

2009) 

2.1.1.1 Elspot 

In the Elspot-market it is possible to trade physical power delivery of the deli-

very hours for the next day. In Finland the delivery hours are 01-24 whereas in 

most of the Nordic countries the delivery hours are one hour behind due to the 

time difference. Everyone who has a connection to the transmission grid and 

fulfills the requirements of Elspot have the possibility to access the Elspot-

market. Also the participants need to have a balancing agreement with the re-

spective transmission system operator, TSO (NordPool, 2011).  

 

The Elspot-market closes at 1 p.m.  Finnish time and before that all the purchase 

and sale bids to each delivery hour need to be submitted. A delivery hour can 

contain both purchase and delivery bids. There are three kinds of bids that the 

participant can use: hourly bid, block bid and flexible hourly bid. The hourly bid 

is the basic type of bids where the participant selects two or more price intervals, 

up to 62 and determines what is the volume that the participant wants to sell or 

purchase during that interval. Then the amount of power trade  depends on which 

interval the system price lies in. In Table 2.1 is an example of placing hourly 

bids.  

 

Table 2.1 Example of placing hourly bids. This example is covering just the first two 

hours of the 24 delivery hours. The system price for hour one is 20€/MWh and for the 

second hour 50 €/MWh, which means that in the first hour the participant needs to buy 

30 MW and in the second hour the participant needs to sell 35MW of energy.  

Price Hour / 
Price -200 10 10.1 40 40.1 2000 

1 50 50 30 30 -30 -30 

2 50 50 20 20 -35 -35 
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The second type of the bids is block bid, which means that the participant has the 

opportunity to set bids for multiple hours and put a ‗all or nothing‘ condition to 

all hours within the block. Block bids can be either sales or purchase blocks. The 

sales block is accepted when the bid price of the sales block is lower than the 

average Elspot area price. The purchase block functions in the opposite manner. 

The block can also be linked to each other in a manner that if one block is ac-

cepted, then the others are too. The block bids are used in cases where the cost of 

starting and stopping the power production is high. However, there has been dis-

cussions about whether the binary choices that the block bids introduce to the 

market, increases the market price and thus increases the income of the produc-

ers in a unfair manner (Vehviläinen et al., 2010) (NordPool, 2011).  

 

The third kind of bids that can be demonstrated in the Elspot market is flexible 

hourly bid. It is a sales bid with a fixed price and volume, but without any specif-

ic deliver hour. The bid is accepted in the hour with the highest price, given that 

the price is higher than the limit set in the bid. If there is no such  hour, the bid is 

rejected. 

 

Immediately after the Elspot-market has closed the trading, all of the hourly sell-

ing and buying bids are combined thus creating one curve to illustrate the de-

mand and one curve to illustrate the supply, see Figure 2.2. This procedure needs 

to be done for every delivery hour and the intersection of these curves is the sys-

tem price of the delivery hour. System price does not take into account any re-

strictions in the transmission capacity. Therefore it is the lowest possible price 

that can be achieved in the joint market, if the market is assumed to work in a 

optimal manner. 

2.1.1.2 Elbas 

Elbas is an aftermarketplace for Elspot-market. In contrast to Elspot market that 

can defined as day-ahead closed auction market, Elbas is a continuous real time 

marketplace like the traditional stock market is usually presumed to be. The pur-

pose of Elbas is to sharpen electricity trade offers when the actual electricity 
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consumption of a delivery hour is more certain.  Hence, it is possible to reduce 

the risk by leaving less electricity to the balance settlement, where it is impossi-

ble to affect the price of electricity that the participant must pay, or sell, in order 

to meet the demand. 

 

The trading in Elspot is possible after the prices of Elspot are announced at 2 

p.m. The trading is possible until one hour before the actual delivery hour. The 

actual trade in Elbas works so that the electricity buyers and sellers give offers to 

Elbas-market for each individual hour, and when the buyers and sellers price 

offers encounter, the trade is made. 

 

Elbas is very convenient for the participants who trade wind power produced 

energy, since the interval from the Elspot gate closure to actual delivery is 12 – 

36 hours. The wind power prediction can change a lot during that time interval, 

which means that the actual wind conditions on delivery hours can differ a great 

deal from the predicted wind conditions that the wind power prediction software 

provides before Elspot gate closure. Due to that, the financial losses might be 

great if the participant does not trade in Elbas.    

2.1.2 Financial market 

In the Nordic market the financial trade is made  in NASDAQ OMX market with 

the NASDAQ OMX commodities, see Figure 2.3. Buying or selling financial 

commodities will never lead to actual power delivery, which means that the 

Spot-market remains the only place where it is possible to buy or sell power de-

livery. The financial commodities are always settled against a reference price 

when the financial contract is supposed to maturity. The reference price, which 

all the commodities are settled against, is the system price. In the financial trade, 

NASDAQ always shows as a counterparty for financial commodity, which as-

sures that there is no risk for the counterparty and also the trade remains anony-

mous.  
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From the market participant perspective, who has obligation to deliver power to 

customers in predefined price, the financial market offers a way to distribute risk 

in the buying of electricity. Hence, many of the participants in the Nordic market 

uses financial products to ensure a level for market price in the delivery date and 

hence distributes the price risk.  

 

The financial commodities in the Nordic market are: Forwards, Futures, Options 

and Contract for Difference, CfD. In the following parts these commodities are 

shortly represented. 

2.1.2.1 Forwards and Futures 

Forwards and Futures are contracts provided to sell or buy a certain commodity 

in the future. The specifics of the contracts (price, volume, time and place) are 

defined before making the contract. The main difference between Forwards and 

Futures is that Futures are weekly contracts and Forwards are for standard time 

periods above one week. There are also differences on how the settlement of a 

contract is made. The details of the differences can be found in the webpage of 

NASDAQ  OMX. (NASDAQ, 2011). 

 

All the Future and Forward contracts can be bought in order to cover either the 

base load or the peak load. The difference between the base load and peak load 

contract is that the base load contract is valid every day and covers all the deli-

very hours of the day. While the peak load contract is valid only from Monday to 

Friday covering hours from 9 a.m. to 9 p.m Eastern European time, EST 

 

There are six different kinds of Forwards, which can be distinguished either by 

their time period from when they are valid or by their contract purpose,  depend-

ing whether  the contract is meant to cover  base load or peak load. The three 

different time periods are: a month, a quarter of a year and a year.  
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2.1.2.2 Options 

An Option is a right to buy or sell an underlying contract at a predefined price 

and date. The underlying contracts are specific a quarter of a year, or a year For-

ward contracts. Options are always binding only for the contract seller, not the 

buyer. There are two types of Options; Buying and selling options. A buying 

Option is called  a call Option while the selling Option is a put Option. As an  

example, a call Option has the possibility to buy an underlying contract from the 

seller with a predefined price by paying the seller a premium for the risk the con-

tract seller has to take. The size of the premium depends on the risk level, which 

the seller is willing to take. Put option works with the same manner than call 

option but the underlying contract, instead of buying, is selling of electricity at 

predefined volume. 

2.1.2.3 Contract for Difference 

The reference price for settling the financial products is always the system price. 

However, the actual physical delivery happens always with the area prices de-

pending where the consumption takes place. Therefore, if the participant wants 

to gain the best possible income from Forwards and Futures, it is necessary to 

buy CfD contracts to cover the difference between the system and area price. 

CfD covers the expenses that comes from the splitting of the market to the price 

areas. Hence, CfD can be thought as an insurance for the case where the area 

price differs from the system price. The concern is quite valid since in 2009 only 

25 % of the time all the price areas shared the same market price. However, 

Sweden and Finland shared the same market area 95 % of the time (Ruusunen, 

2010). 

 

2.2 Power balance management 

In Finland the power balance management is divided into two parts: first, the 

regulating market, where the continuous balance between production and con-

sumption is taken care by the frequency control. Secondly, the costs of regula-

tion are pointed to participants who have had imbalances between actual con-
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sumption and traded electricity. In the balance settlement every electricity mar-

ket participants actual consumption and production are examined for each deliv-

ery hour and the result of this examination is compared to the electricity trade 

that the market participants have done in the Spot-market. The surplus or the 

deficit electricity are handled with terms of balance settlement and thus the costs 

of regulation are pointed to the participants who have caused the need for up or 

down regulation.  

2.2.1 Regulating market 

The regulating marketplace is provided by the local TSOs, which uses the capac-

ity that the regulating market participants offer to the regulation market freely, to 

keep up the system frequency in control. The frequency must stay within a cer-

tain limits from the base frequency since the secure system operation requires a 

constant frequency all the time. The base frequency is 50 Hz in the Nordic grid. 

The basic idea is that when the consumption and production meet each other 

perfectly the frequency in the grid stays at 50 Hz. However, if there is there is 

more production than consumption or less production than consumption, system 

frequency will rise or fall, respectively. Hence, there is a need for balance the 

change in frequency by adding or removing power from the grid. This power is 

called as a regulating power and it is traded in the regulating power market. 

When all of the participants have offered available regulating capacities to the 

regulating market with the price and volume information. Then it possible to 

form for every delivery hour a Nordic regulating power curve. Up regulations are 

arranged ordered by price from cheapest bid to the most expensive bid and the 

down regulation bids are formed in the opposite price order – the most expensive 

bid first. Now, depending on the regulation need, the Swedish and Norwegian 

TSOs, who have chosen to be frequency regulators, can choose who participates 

to the frequency regulation with a price effective manner. In Figure 2.4 in the left 

hand side, the regulating power curve is represented. 

 

The hour when there is a need for increased power production is called as a up 

regulation hour and on contrary down regulating hour is when there is a need for 
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decrease in production. The system frequency is controlled on a minute level, 

therefore there might be hours when there is both down an up regulating in an 

hour. Then the regulating hour is defined based on which of the regulation vol-

umes is greater within the hour.  

 

 

Figure 2.4 Regulation prices relation to the balancing power prices in balance settle-

ment. (Partanen et al., 2010) 

 

The up regulation price is formed by the most expensive up regulation price that 

is needed to keep the power system in balance, and if there is no up regulation 

need, the up regulation price is the same than the area price. For down regulation 

hour, the price is the most cheapest offer to keep the power system in balance 

and if the hour is not down regulation hour the price is the same than the area 

price. In Figure 2.4 the connection between regulation prices and balance power 

prices.  

 

The reference level (origin) in regulation curve is Spot area price, hence the 

market ideally works with a manner that nothing can be gained from being out of 

balance. However, sometimes the regulating power price can differ from the 

ideal way. In 2010 up regulation and down regulation prices were negative 17% 

and 22% of the time, respectively. This phenomena can relate from very natural 

reasons although it is against the basic idea how the market should function. For 

instance, sometimes when there is a huge need for down regulation and there is a 

need for down regulate so called un-flexible generation as nuclear power or CHP 

plants. Shutting down or curtailing un-flexible generation may be very expensive 

since this kind of power plants are not created for this kind of operation. CHP 
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plants are used in winter time mainly for producing heat and the electricity is 

merely a side product. Hence, there is a significant correlation between produced 

heat and electricity output and thus the electricity output is determined by the 

heat demand. Therefore, curtailment of the electricity output can be very expen-

sive for the power plant owner, thus decreasing plant‘s electricity output can be 

only possible with a negative down regulation prices. In Table 2.2 and Table 2.3 

balancing energy prices in relation to the Spot area prices and ratios between the 

balancing energy costs are illustrated in Finland 2009 and 2010. For now on term 

balancing energy cost is a difference between regulation price and area price. 
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Table 2.2 Regulating power costs in Finland, 2009.   
  and   

  is monthly averaged up 

and down regulation costs.   
 and   

  are quarter of a year averaged up and down reg-

ulation costs. 

 

month 
  
  

[€/MWh] 
  
   

 [€/MWh] 
  
    

  
  
    

[€/MWh] 

  
   

 [€/MWh] 
  
    

  

  1 4.52 3.71 0.82      
Q1 2 1.29 4.39 3.41 2.47 5.15 2.09 

 
3 1.61 7.36 4.58      

  4 0.75 5.39 7.20      
Q2 5 1.76 2.90 1.64 1.96 3.52 1.80 

 
6 3.39 2.27 0.67      

  7 1.42 3.30 2.32      
Q3 8 4.27 1.63 0.38 2.23 2.68 1.20 

 
9 0.99 3.11 3.15      

  10 2.85 1.71 0.60      
Q4 11 1.14 2.52 2.20 2.83 4.53 1.60 

 
12 4.49 9.38 2.09      

 
mean  2.37 3.97 2.42 2.37 3.97 1.68 

 

It is possible to see that in 2009 down regulation balancing costs,   
  exceeds up 

regulation balancing costs,   
   on quarterly basis, which indicates that the excess 

energy is penalised more on average than the missing energy. Furthermore, there 

are only four months when the up regulating cost is higher than the down regu-

lating cost, which indicates that clearly for some reason TSO has wanted to pe-

nalize excess energy. Therefore, for market participant perspective optimal reve-

nue has been gained by under estimating the energy production and thus avoid-

ing down regulation prices. It is rather complicate to analyze why down regula-

tion prices are higher than the up regulation prices since it is difficult to say are 

the market participants deliberately overestimating their bids, or is the reason 

more technical. 

 

From Table 2.3 one can notice that the balancing power costs in 2010 differs 

greatly from 2009. On average, the quarterly regulating cost ratio,   
  /  

  is the 

same in both years, down regulation is penalised 1.7 times more than the up 

regulation. However, the distribution of regulation cost prices is different, the 

down regulation is more penalised in quarters 1 and 2 and up regulation is more 
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penalised on the last two quarters. In March the regulation cost ratio reaches its 

maximum value while the minimum value is obtained in November.   

 

Table 2.3 Regulating power costs in Finland, 2010 

 

month 
  
   

[€/MWh] 
  
   

[€/MWh] 
  
  /  

  
  
  

[€/MWh] 
  
   

[€/MWh] 
  
  /  

  

  1 8.92 16.44 1.84       
Q1 2 2.54 24.19 9.52 4.27 18.05 4.23 

 
3 1.34 13.52 10.12     

   4 1.06 5.14 4,84       
Q2 5 2.64 3.64 1.38 2.13 3.86 1.81 

 
6 2.68 2.80 1.04     

   7 6.37 2.57 0.40       
Q3 8 2.83 2.63 0.93 4.04 2.42 0.6 

 
9 2.93 2.06 0.70     

   10 4.44 1.94 0.44       
Q4 11 9.73 2.38 0.25 7.09 5.27 0.74 

 
12 7.10 11.48 1.62     

 
 

mean  4.38 7.40 2.76 4.38 7.4 1.69 

 

If some trend from the regulation costs are tried to formulate based on these two 

years, in the first and second quarters of the years, the purchasing costs are much 

bigger than the sale costs, which indicates that there is a lot of down regulation 

in those quarters. However, based on these two years it is hard to say anything 

about third and fourth quarters since up regulation is more expensive in 2010 and 

down regulation in 2009 . High balancing energy prices indicates, high regula-

tion volumes, In Table 2.4 and Table 2.5 this fact can be confirmed where the 

regulating volumes in 2009 and 2010 are represented, respectively. The need for 

down regulation is surprisingly large in the first quarters of the years since the 

consumption should be really high and therefore the production should be at its 

maximum. One reason behind this might be behaviour of the market participants, 

which induces imbalanced regulation prices.  
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Table 2.4 Regulating and balancing volumes in 2009. 

 

Regulating 
 [MWh/h] 

Balancing  
[MWh/h] 

 
Up reg. Down reg. Purchase Sale 

Q1 12281 -65017 121835 -120606 

Q2 18876 -35848 122435 -110949 

Q3 18776 -34335 98757 -102925 

Q4 44511 -48179 102337 -146232 

sum 94444 -183379 445364 -480712 

 

Table 2.5 Regulating and balancing volumes in 2010. 

 

Regulating  
[MWh/h] 

Balancing 
 [MWh/h] 

 
Up reg. Down reg. Purchase Sale 

Q1 17381 -124822 99354 -131014 

Q2 17577 -52983 124592 -126281 

Q3 36519 -29441 103943 -95080 

Q4 37120 -50880 111909 -111378 

sum 108597 -258126 439798 -463753 

 

If the regulating mechanism is considered in a wind power producer‘s point of 

view, then the costs that comes from the balance settlement are emphasized since 

the predictability and thus the controllability of the wind power differs greatly 

from the conventional generation, which output can be controlled with a very 

accurate manner. Wind power investment can be for investors tough decisions to 

execute the investment, or not. Therefore the poor predictability of wind induces 

more balancing costs and complicates the integration of wind power to the grid 

and thus increases the marginal costs of wind power produced energy. Better 

prediction methods and advance bidding strategies could give a stronger position 

to wind power and reach the gap between conventional generation‘s viability. 

These aspects are studied more carefully in the chapter 4. 

2.2.2 Price spikes in the Nordic market 

Price spikes in the Spot area prices, or in balancing energy can lead to serious 

losses to the market participants. Therefore, it is crucial to be aware of the risks, 

which lies in the market and take them into account with the best possible man-

ner. For instance, if participant could forecast these price spikes in balancing 
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energy market, one could offer bids to the Elspot-market, which guarantees that 

the losses, which are induced by the price spike are minimized and thus the profit 

is maximized. However, forecasting these spikes is not a trivial task and many 

state-of-the-art price prediction model tries to find a way to predict them. In  

Figure 2.5 Elspot area prices in Finland 2010. It can be noticed that most of the 

time area price seems to fluctuate around approximately its mean value, while 

sometimes, especially in the winter time, the area price seem to fluctuate more. 

The biggest price spikes occur in winter time, which usually originates from the 

combination of high consumption and outages from base load production capac-

ity. In summertime the area price seems to be rather stable, which proves that 

there might be a correlation between less fluctuating prices together with avail-

able production capacity combined with low consumption. The mean Elspot 

price in 2010 was 56,64 €/MWh with a standard deviation,            of 

144 
 

   
, which describes that the Elspot price fluctuates relatively a lot around 

its mean.  

 

 

Figure 2.5 Spot area prices in 2010 
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However, all above mentioned explanations about price spikes still leaves a 

question, what is a price spike. There is no inclusive way to say, what is the limit 

price for the price spike since it depends on the characteristics of the market 

(mean and variance). In Table 2.6 Elspot area prices in Finland that exceed the 

limit area price, which is represented in the first column, in 2009 and 2010.  

 

Table 2.6 Price spikes in Elspot price in 2009 and 2010. 

Area price 
[€/MWh] 

Amount of hours exceeding the 
limit area price [pcs] 

 
2009 2010 

> 100 22 359 

> 200 8 47 

> 300 6 29 

> 400 2 13 

 

One can notice right away that there was a lot more price fluctuations in 2010 

than in 2009. It says a lot that in 2010 there was more hours that exceeded 300 

€/MWh than in 2009 hours that exceeded 100 €/MWh. Also the mean area prices 

differs greatly between 2009 and 2010. In 2009 the mean area price was 36.98 

€/MWh while 2010 it was 19.66 €/MWh bigger than in year 2009. Therefore, 

one must not make any conclusions about how the market functions since two 

years, which are in a raw, differs greatly from another. Also one can say that the 

price spikes are quite relative depending on the characteristics of the year and 

thus it is hard to define a price limit for spike hour. The spike hours are not inde-

pendent events and usually the spike hours are highly correlated, since the reason 

behind them could be a weather phenomenon or a broken power plant. This 

might be the reason why in some years there are more hours with high prices 

than other years. 

 

Price spikes in balancing energy prices are highly correlated to the price spikes 

in Elspot area prices, as it is possible to see by comparing the Figure 2.6, where 

the balancing energy prices are represented in relation to Elspot area prices, to 

Figure 2.5. There is a strong correlation between the time when the spikes occur 

and also with the amplitude of the peak prices. Figure 2.6 also illustrates the ad-
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ditional losses of a participant if it has a need to buy or sell its energy from bal-

ance mechanism, which is called in this thesis regulation costs.  

 

Regulation costs are depending on the difference of Elspot area price and the 

balance energy price, and if they differ a lot then it possible to have huge losses 

since the income non imbalanced energy do not necessarily cover the costs of 

balancing energy. 

 

 

Figure 2.6 Balancing energy prices in relation to Elspot area prices in 2010  

 

For wind power producer the characteristic of this balancing energy prices are 

crucial since they cannot impact on the amount of produced energy at delivery 

hour. Also the wind power participants have a relatively more balancing energy 

than conventional generation. 

 

2.3 Formulating a participant’s revenue function 

Now that the whole chain from making the bids in the Spot-market and in the 

financial market to the explanation of regulating mechanism and balancing price 

formulation are explained. It is possible to create function to describe partici-
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pant‘s revenue. Therefore in the following parts a revenue function is created, 

which describes the revenue of the whole bidding chain to the balance settle-

ment.   

2.3.1 Participating in Spot market 

Participant‘s revenue function is composed from the bids in the Spot market, and 

imbalance costs if the actual consumption/production differs from the contracted. 

In equation (2.1) the participant‘s revenue function     for time t+k.  

  

                          
    

    
    

     
         

             
     (2.1) 

 

Where     
    

 is the Elspot price for time t+k,     
    

 is the contracted energy in 

the Elspot market,     
      is the Elbas price for electricity,     

      is the bid en-

ergy in the Elbas market with the new consumption prognosis for the time t+k, 

    
    is the deviation between actual and contracted energy and      is the im-

balance cost function. Thus the bid energy in Elbas in other way represented is 

  
      
    

     
     , where  

      
    

 is the new consumption prognosis for time t+k 

made at time   . Notice that     , since Elbas trade starts after the Elspot prices 

are announced. Imbalance cost for time t+k can be posed as: 

 

 
          

      
    
     

   
 
        

     

    
     

            
     

  (2.2) 

 

Where     
    is the deviation between actual,     

    and contracted energy.     
  

and     
  are the balance energy prices for buying and selling, respectively. In 

equation (2.3)     
    is represented in function of contracted energy. 

 

     
        

         
         

       (2.3) 

 

Since the balance prices are actually function of area price it would be more 

convenient to make the revenue function in a form so that the imbalance cost 
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prices are in function of     
      By doing so it is easier to see how the deviation 

between actual energy production and contracted energy effects the revenue. In 

equation (2.4) modified revenue function is represented with a modification of 

imbalance function,         
    , which is now represented in function of     

    
. 

 

          
    

     
        

           
         

              
      (2.4) 

 

where          
     is a function of regulation costs,     

     and     
     , which are 

the differences between spot price and balancing energy prices. In equation (2.5) 

Imbalance cost function 

 

 
        

      
    
        

         
      

    
     

            
     

    
        

         
      

    
     

            
     

  (2.5) 

 

One could think that why the revenue function in equation (2.4) is preferred in-

stead of revenue function represented in equation (2.1), since the revenue func-

tion in equation (2.4) seems to be more complicated than the original one. How-

ever, modified revenue function is a good way to represent the revenue since if 

the participant do not participate into Elbas market     
         then the revenue 

function includes two terms: first term tells what is the maximum possible in-

come, which means that the contracted energy is the same than the generated, 

    
     . The last term then represents the costs from imbalances when the con-

tracted energy differs from the generated. In equation (2.6) revenue function for 

hour t+k, assumed that the participant do not participate into Elbas market.  

 

          
        

            
     (2.6) 

 

It can be seen that clearly from the Equation (2.6)  participant must minimize the 

imbalance cost term         
     in order to maximize the revenue at time t+k. In 

chapter 4.9 it is shown how a wind power participant can minimize this term by 

taking into account characteristics of wind power curve and uncertainty of fore-

casting. 
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3 Wind power forecasting 

Predicting future has been an interest of the humankind since the dawn of time. 

Hence, people has found the very essential problem of the prediction centuries 

ago; there is an uncertainty in predictions. This underlying concept is the very 

gist of the wind power forecasting. How certain we can be about the tomorrows 

forecast or in statistical terms, what is the confidence of the forecast?  

 

The purpose of the wind power forecast, not only provide best estimate of tomor-

rows power for market participant but to contribute to find a secure and eco-

nomic power transmission operation. The time frame where wind power fore-

casting is mostly used is for the next 36 – 72 hours. This time frame is called in 

terms of wind power forecasting as short-term forecasting. In this time frame the 

impacts of the intermittent nature of the wind is intended to diminish by first-rate 

forecasting. Hence, that will give capacity value to the wind energy and the na-

ture of the wind energy is something else than a negative load. Also an accurate 

forecasting will reduce the productivity gap between wind energy and the con-

ventional generation in the electricity markets. 

 

There are two main branches in the wind energy forecasting; a statistical and a 

physical. Both of these methods relies to their strengthens: pure physical method 

trust that by adding more computer power to the forecasting the quality of the 

forecast will increase, as it does. And the pure statistical method relies to the 

persistent nature of the wind and trusts that the history of wind power production 

contains all necessary information about making predictions on future power 

production. However, most of the commercial applications are hybrids that uses 

the both the physical and the persistence nature of the wind in making wind en-

ergy forecasts. Another way to separate wind energy forecasting is to separate it 

to ‗meteorological‘ and ‗energy conversion‘ stages. Meteorological stage usually 

consists forecasting of wind at the specific site, and it is based on Numerical 

Weather Predictions, NWPs that are provided on a grid in that specific site 

around the wind turbines with various heights. This operation is also referred as 
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statistical downscaling. The latter stage relates to the energy conversion from 

wind to the power by modelling the wind park‘s power curve, which is not a 

trivial task as it is discussed later. However, each of these stages include a mod-

elling error and hence the wind energy forecast error is a combination of these 

modelling errors and therefore it is possible to deduce that there must be more 

weight on the error that happens in the ‗meteorological‘ stage than in the ‗energy 

conversion‘ stage (Pinson, 2006). It happens to be that the NWP is the biggest 

single error contributor in the wind energy forecasting. (Monteiro et al., 2009) 

 

Although, that the error source is well known and there have been major pro-

gress in NWP-models in last three decades, but as depressive it might sound but 

there are limits to the predictability of the flow in atmosphere, which can be 

proved with the chaos theory. Therefore the NWP cannot be ‗perfect‘ in any way 

and the methods in handling the uncertainty must be given more weight in re-

search. (Monteiro et al., 2009) (Lorenz, 1968) 

 

3.1 Introduction to the wind forecasting 

On the following parts basic principles and properties of wind power forecasting 

are shortly represented. 

3.1.1 Nature of the wind generation 

Atmosphere is constantly in changing state. The best way to see or feel it is by 

noticing the fluctuating nature of the wind or temperature by going outdoors. 

This constantly fluctuating nature of the wind is said to be in other words inter-

mittent. Hence there is a need to use statistical methods to analyse the wind in 

order to understand its nature with a better understanding.  

 

Wind is a non-stationary process although in many cases in meteorology, wind is 

assumed to be stationary in a short timescale like 10 min. (Dyrbye & Hanse, 

1997). When wind is assumed to be stationary it leads to assumption that it has a 

mean value and the fluctuations around its mean are zero, in the corresponding 
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time frame. This property of stationary can be very useful. For instance equation 

for logarithmic wind profile can be derived from the Reynolds-averaged Navier-

Stokes equations, which is done by using this imaginary property of wind (Lange 

& Focken, 2005). 

 

In a time frame of a year wind can be assumed to be Weibull-distributed. 

Weibull distribution can be explained with two parameters: a scale parameter Aw 

and a shape parameter kw. The equation for probability density function of 

Weibull distribution can be formulated as: 

 

 
     

  
  

 
 

  
 
    

 
   

 
  

 
  

 
 (3.1) 

 

The two parameters are site depended and hence it is necessary to solve them for 

each wind turbine  site separately from the measured wind data. The measure-

ments must be carried out more than for a year in order to attain reliable parame-

ters. In Figure 3.1 a probability distribution that Weibull distributed where the 

bins represents the measured wind and the solid red line represents a Weibull 

fitted data. 
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Figure 3.1Measured and Weibull fitted wind data in a Danish site. Scaling parameter 

Aw is 9,24 and a scaling factor kw is 2,21 

 

Weibull-distribution is a good tool to have a better understanding of prevailing 

wind conditions at different turbine sites, so that the turbines can be placed in the 

appropriate locations.  

 

It can be said that the wind do not produce power, but the turbine does since the 

wind‘s kinetic energy transforms to mechanical and eventually for electrical en-

ergy in a turbine. Therefore there is always a transformation from wind to power. 

Wind speed is related to the turbine‘s output with the following manner: 

 

 
  

 

 
               

   (3.2) 

 

Where    is the non-dimensional power coefficient, which takes into account the 

aerodynamic state of the turbine,      is the turbine‘s efficiency to transform 

mechanic energy to electrical energy,      is the air density,      is the area of 

the rotor and   is the velocity of the wind. 
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At the first sight the most interesting thing by looking equation (3.2) is that the 

turbines output is related to the wind velocity in third power. Hence, it gives a lot 

value for the high wind velocities. This gives a different perspective to examine 

the Weibull distribution in Figure 3.1. Now the distribution combined with the 

relation P ~     gives an actual value for wind energy resource at a site. Without 

going into too deep inside to the aerodynamics of a wind turbine it can be 

pointed out that the power coefficient    is a function of several variables and it 

is limited by the Betz limit (   equals 16/27). (Hansen, 2008) 

 

Wind energy conversion to the power can be demonstrated with a power curve 

Figure 3.2. Power curve represents well the non-linear nature of transformation 

from wind to power. There are three areas in the energy transformation that lim-

its the equation (3.2) to be valid at all the time. First of all, there is a cut-in wind 

speed where the turbine starts to rotate and produce energy. This wind speed is 

usually about 5 m/s. When the turbine starts to produce energy it reaches the area 

where the equation (3.2) is roughly valid until the rated wind speed is reached. In 

this area where the wind usually fluctuates (see Figure 3.1) the wind turbines 

power grows with a cubic relation to the power. The rated wind speed is deter-

mined by the size of the wind turbine, for instance typical nominal power of a 

turbine is nowadays 3 MW. The rated wind speed is usually between 12 – 14 

m/s. After the rated wind speed the power output of the turbine will stay at a 

constant level until the cut-out wind speed is reached. The turbine must be shut 

down because the wind turbine structures will not endure the high forces that the 

high speeds induces. (Fox et al., 2007) 
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Figure 3.2Typical power curve of a wind turbine. Power is normalised with the tur-

bine’s nominal power. (Pinson, 2006) 

 

It can be concluded that wind fluctuates usually in the non-linear part of the 

power curve meaning that small fluctuations in the wind speed leads to large 

variations in the power output.  

 

By now it should be noticed that the wind power plant do not work with the 

nominal power and it is even quite rare that the turbines run with their nominal 

power. Then how the actual energy that can be harvested from the turbine can be 

illustrated? There are two commonly used methods: One is by using the capacity 

factor and the other is to measure wind power penetration. Capacity factor de-

scribes the wind turbine‘s actual output in relation to the situation where wind 

turbine is producing power with a nominal power. The capacity factor is meas-

ured in a time frame, which the user see to be appropriate, for instance the time 

frame can be quarter of a year, or a year. Capacity factor is a good tool in analys-

ing feasibility of a turbine. The capacity factor,      of a single turbine can be 

expressed with mathematical terms: 
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  (3.3) 

 

where      is the actual output of a wind turbine in a time frame,      is the 

maximum energy of a wind turbine in time frame,       is the wind turbine‘s 

power at time t and    is the nominal power of a wind turbine. 

 

The other commonly used factor is the wind power penetration, also called sys-

tem capacity factor. Wind power penetration describes what is the share of the 

wind power production from the total electricity production. Wind power pene-

tration is used in describe the power system in a wind power point of view. Wind 

power penetration can be calculated with the following equation: 

 

 
     

     

       
 

           
 

   

             
 

   

  (3.4) 

 

Where       is the electrical system‘s total wind power production and the 

        is the system‘s total power production.       and         are the corre-

sponding energies in timeframe of  . 

 

For the single wind turbine, capacity factor describes well the wind resources in 

the turbine site. In example the average capacity factor of a turbine in Ireland 

measured over one year is 0.36 as in Finland it is 0.2 (O'Malley, 2011) (Stenberg 

& Holttinen, 2010). Hence, establishing a wind turbine in Ireland yields 80% 

more energy than a turbine in Finland. The wind power penetration of a system 

is a key figure describing the effects of a massive wind production to the system. 

For instance there has been showed correlations between high wind penetration 

and higher regulation costs (Holttinen, 2004). 
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3.1.2 Nature of wind to power conversion 

One of the most illustrative ways to represent the underlying problem of fore-

casting wind power is to show how the error distribution changes in the trans-

formation process from wind to power. In Figure 3.3 is represented prediction 

error transformation from wind to power. 

 

 

 

Figure 3.3 Representation of wind to energy conversion (Lange, 2005) 

 

It can be noticed from the Figure 3.3 that the wind prediction error (x-axis) is 

Gaussian distributed while the output of the wind to power conversion (y-axis) is 

distributed with a some unknown distribution. This is usually the case as it was 

proved by (Lange & Focken, 2005) in their field work all over the Germany, 

where they tested hundreds of turbines sites in order to see whether the wind 

predictions and power predictions errors are Gaussian distributed or not. They 

showed with χ
2
 -test that the wind prediction errors in one year were 92 % of the 

sites Gaussian distributed, and in a contrast, the power prediction errors at the 
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same time were never Gaussian distributed. This shows how the non-linear trans-

formation of power changes the nature of prediction error totally and thus diffi-

cult the prediction process.  

3.1.3 The wind power production at the wind farm or area level 

In many cases the analysis of wind energy is more reasonable to rise to the wind 

farm level, or the area level, instead of analysing single turbines in order to fully 

understand what is the nature of the wind power. This can done by Upscaling the 

wind power production of the corresponding wind farm or area of interest. It can 

be done with many ways, but the one of the most illustrative way is to formulate 

the wind farm power curve, see Figure 3.4.  

 

 

Figure 3.4 Wind farm power curve in function of wind speed and direction (The Anemos 

Project, n.d.) 

 

The wind farm power curve represents, which is the power produced by the wind 

farm in a function of wind speed and direction. The wind farm power curve de-

pends greatly on the direction where the wind blows, as it can be seen from the 

Figure 3.4. This comes from very natural reasons since the area around the wind 

farm is not symmetric to all directions and there might be obstacles on some 

wind directions. For instance it can be noticed from  Figure 3.4 that there might 
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be obstacles in wind directions 100° (East) and 250° (West) since the power 

drops dramatically at those points. The other interesting thing is that at the wind 

farm level the maximum nominal power is almost unreachable if the size of the 

wind farm is large. It can be notice from the Figure 3.4 that if the maximum 

power of the wind farm is 50 MW, then the wind farm could reach its maximum 

output at when the wind blows from south or south-west and the wind speed is 

more than 20 m/s. Single turbine reaches its maximum power when the wind 

speed is 12-14 m/s, see Figure 3.2. Therefore the wind direction and thus the 

surroundings and spatial smoothing have a significant influence on the power 

production. In the following part term spatial smoothing effect is discussed. 

3.1.4 Spatial smoothing effect  

One of the most important things when having discussion about the wind power 

production in system level is the discussion about the spatial smoothing of wind 

power. Although, that the nature of wind is intermittent and therefore the power 

production of a single turbine or a small wind farm varies relatively a lot, in 

large spatial area the harmful wind power fluctuation smoothens when the spatial 

area grows. The biggest reason behind this phenomenon is that the wind turbines 

in various spatial locations see different wind conditions at the same time and 

therefore their power production differs. Also by increasing the amount of wind 

turbines strengthens the smoothing effect. The smoothening effect causes that the 

power production in the area is levelled/smoothed and thus the power production 

is less time at the extremity ends. Therefore it is misleading to think that the 

wind power production, in a large geographic area goes in a short time frame 

from 0 – 100 % of the nominal power, but instead it the fluctuations might be in 

a system level only 20 % of the total capacity and on four hours ahead, 90 % of 

the time the fluctuations is less than 20 % capacity, as it was showed in (Fox et 

al., 2007). That study was done in Ireland, where they wanted to see how the 

wind power production changes over different time frames.  

 

The smoothing effect is proved for instance in (Hasche, 2010) and (Focken et al., 

2001) research works. They both prove the smoothing effect of wind power in 
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Germany with an empirical correlation curve, which was made by calculating the 

covariance of the wind farms‘ wind production data series. In a result, it can be 

seen from Figure 3.5 that the correlation of wind production is depending expo-

nentially to the distance of wind farms. Hence, in the market participant point of 

view, if the market participant has possibility to distribute its wind power genera-

tion in large spatial area instead of placing them close to each other, it will re-

duce the prediction error and thus improve its place in the markets.  

 

 

Figure 3.5 Correlation of wind production in function of distance. Dots represents the 

different correlation among the wind farms and the black solid line is the fitting curve 

(Hasche, 2010) 

 

The very interesting fact is that the smoothing effect depends more on the size of 

the area rather than the amount of the wind turbines in the area. (Lange & 

Focken, 2005) proved in his thesis that if the amount of wind turbines in certain 

area is increased, and placed them in random places, then the improvement to the 

smoothing effect is neglected after the amount of turbines exceeds a certain 

number. 
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3.2 Formulating a forecast problem 

The general problem of the prediction of a variable is to determine what is the 

future value of that variable when the current and past information of the vari-

able is available. In wind power prediction the variable of interest is power, p 

and its development over time. The history of a variable is always represented 

with a finite time interval, depending on how dynamic and important are the 

changes on a variable. In wind power the wind velocities are usually measured as 

10 minutes averages, which is sufficient enough to grasp the intermittent nature 

of the wind. This sampled wind data is characterized in statistical terms as dis-

crete non-stationary and nonlinear time series. This means that the wind speed 

evolves over time without any particular mean value or variance. The nonlinear 

nature of power is that the development of the power cannot be described with 

linear models as it is described in (Lange & Focken, 2005). The nature of wind 

power data is bounded from zero power to the nominal power, so that the wind 

power fluctuates within this interval. 

 

Forecasts has to be made with a conditional manner: ‗With the given dataset and 

with the used prediction model, what would be the power, p at time t’. This kind 

of a forecast is called as a point forecast. This is the most typical way to produce 

forecasts, since many of the forecast users need the point forecast in their field, 

i.e. the electricity brokers need to make an offer to the markets. The other way to 

make forecasts is to generate probabilistic forecasts, which is a quite opposite 

way to make forecasts if they are compared against point forecasts. Probabilistic 

forecast can be formulated as: ‗With the given dataset and with the used predic-

tion model, the power at the time t is within the interval, [a b] with a confidence 

level α’. Hence, the probabilistic forecast does not give any single value but in-

stead of that they give probability intervals with different probabilities. However, 

point forecast and probabilistic are linked to each other - probabilistic forecasts 

are usually centred around the point forecast. In other words the point forecast 

must be on the centre of a probabilistic distribution, which is the median of a 

distribution. In chapter 4.9 this phenomena is illustrated more carefully. 
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3.3 Numerical Weather Prediction 

The purpose of numerical weather prediction is to model the non-linear state of 

the atmosphere. In general, there is an analytical solution to the state of atmos-

phere, however in order to solve the state with reasonable accuracy, numerical 

models must be used. Numerical models are based on the fundamental mathe-

matical equations that describe the dynamics of the movements and processes 

that takes place in the atmosphere. The fundamental dynamical equations are: the 

horizontal momentum equations, the hydrostatic equation and the continuity 

equation. Solving of these equations is a dynamic problem, which requires taking 

into account the evolving of meteorological parameters, as the simulation runs 

forward. (Houghton, 2009) (Fox et al., 2007) 

 

All the atmospheric phenomena that occur in the real world as we see it needs to 

be mapped on a discrete three-dimensional computation grid in order to model it. 

Due to limited computational capacity the resolution of this discrete grid must be 

finite. Hence, there is a finite horizontal resolution and also a finite number of 

vertical levels where the state of the atmosphere is modelled. Therefore, for par-

ticular grid size there will always be a sub-grid scale process that the model can-

not solve, which means that the variables calculated at each grid point are aver-

age the values over the grid point representing the most likely state of the atmos-

phere in that grid point. These constraints give a demand for multiple models, 

which have various resolutions and cover different spatial areas, due to limit of 

computational power. Therefore, the commercial NWP models can be either 

global or limited area models. Global models try to capture the development of 

the synoptic weather phenomena with a quite coarse resolution ranging from 100 

x 100 km
2
 down to 50 x 50 km

2
. (Lange & Focken, 2005) In Figure 3.6 The nu-

merical grid of a global model is represented. Limited area models try to model 

local weather phenomena in higher accuracy by taking into account the local 

orography and higher grid resolution.   
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Figure 3.6 Numerical grid of the global model (GME) with spatial resolution of 60 x 60 

km
2
 (Giebel et al., 2005) 

 

Setting up the boundary conditions where the simulation gets its initial point is a 

complicated problem. In a global model it requires gathering measurement data 

from radiosondes, buoys, surface stations, commercial aircrafts and multiple 

satellite platforms, see Figure 3.7 (WMO, 2010). The amount of measurement 

data is massive although the measurements network is more tighter in the west-

ern society countries leaving large areas virtually unobserved. This lack of  

knowledge of the present state of the atmosphere leaves a place for an uncer-

tainty and a question: How to establish the initial state with the limited amount 

of data. The problem is solved by using data assimilation and data assimilation 

methods as 3D-VAR and 4D-VAR. These methods use a variation approach to 

optimize the initial state, often assimilating observations along a time window 

(Monteiro et al., 2009). More information about data assimilation for instance in 

(Järvinen, 2003). 
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Figure 3.7 Global observation system (WMO, 2011) 

 

The limited area model is usually nested inside of the low resolution model, so 

that the higher resolution model receives boundary conditions from the lower 

resolution model. In Figure 3.8 The Danish Meteorological Institute (DMI) 

HIRLAM (High resolution limited area model) domains. The domain that has a 

bigger coverage is HIRLAM-G, which covers the hole Europe and most of the 

northern America. It has a horizontal grid resolution 48 km and update interval 

of 90 s. The boundary conditions for this model comes from the ECMWF (Euro-

pean Centre for Medium scale Weather Forecast) global model for every six 

hour. Inside of the HIRLAM-G domain is nested HIRLAM-D, which covers 

Denmark and parts of Germany and also parts of the northern Europe countries. 

This model receives the boundary conditions from the HIRLAM-G model and it 

has a horizontal resolution of 5.5 km and time step of 30 s (Giebel et al., 2005). 

This how the higher resolution models with more frequent updating are nested 

inside of the lower resolution models with a less frequent updating time. By do-

ing so, it is possible to decentralize computational power and also permit the 

models focus on the different scale of weather phenomena. 
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Figure 3.8DMI-HIRLAM domains (Giebel et al., 2005) 

 

As a result it can be stated that although the huge progress that is happened in 

NWP in few decades it is still sadly true that the NWPs includes an error mar-

ginal that is sufficient to complicate integration of wind power to the power sys-

tem and markets. The influence of this error is great since in many wind power 

forecasting systems NWP is one of the major inputs. Therefore, if there is a great 

uncertainty how the winds at a turbine site will development, it is quite certain 

that the wind power forecasting system will provide forecasting information 

based on false assumptions. This leads to the conclusion that in wind power 

forecasting the NWP is the biggest contributor to the forecasting error.   

 

However the progress in achieving better NWP system is constantly in progress 

and the requirements for improved NWP are: Better atmospheric models, better 

observation network and better methods for data assimilation. (Fox et al., 2007) 
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3.4 Physical approaches of wind power forecasting 

Since the NWP provides the wind forecast information in a grid size of approxi-

mately 5 - 10 km
2
, it is clear that the NWP provides the most likely or average 

wind speed at that grid. Therefore, it is obvious that the wind conditions may 

change a lot inside of the grid since the local characteristics of a site. Also the 

placement of the wind turbines is usually optimized by taking into account the 

local orography, like hills or canyons so that the wind speed at the hub height is 

maximized and thus it differs from the average wind speed that the NWP pro-

vides. Hence, the main idea of the physical wind power prediction approach is to 

refine the wind field at the turbine site by using more detailed information of the 

area of interest. The detailed information may include information about the lo-

cal orography, roughness or obstacles in a site. There are two alternative meth-

ods how to distinguish physical wind power forecasting: first, the models that are 

based on the logarithmic wind profile and geostrophic drag law, and secondly, 

the models that use computational fluid dynamics, CFD to refine the wind field 

at the area of interest. (Pinson, 2006) (Lange & Focken, 2005) 

 

The other step in physical wind power forecasting is to transfer wind prediction 

to power prediction. This is usually done with a theoretical power curve that is 

provided by the wind turbine manufacture, see Figure 3.2. It might also be done 

with an empirical power curve especially in the case if the wind power prediction 

is upscaled to the wind farm level and the power production of a wind farm is 

modelled with power curve. (Pinson, 2006) 

 

Physical prediction systems can be very sensitive to a systematic error. The 

power curve might overestimate or underestimate the real power production or 

the local roughness might be too large leading to underestimating the real power 

production. However, many commercial physical prediction system uses statisti-

cal methods to remove the systematic error. Therefore, Model Output Statistics, 

MOS is used for post processing the power forecast. The commonly used method 

to post process the data is to use linear regression, which can remove the system-
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atic part of the error (Lange & Focken, 2005). In Figure 3.9 the main steps of a 

typical physical wind prediction approach. 

 

Figure 3.9 The main idea in physical forecasting (Monteiro et al., 2009) 

 

3.5 Statistical approaches of wind power forecasting 

The basic idea of the statistical approach is to use historical values of the power 

and power prediction, and also historical values of other explanatory variables 

can be used, and use those values as a reference to determine the development of 

wind power production. Some statistical models need to be ‗taught‘ in order to 

attain models, which adapt in different meteorological situations. The training of 

a statistical model is carried out with a training set which includes the historical 

information of actual and predicted power and also historical information of 

other explanatory variables. By running this training set, the parameters of the 

model can be optimized so that the model‘s output corresponds the power pro-
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duction with the best possible manner. The optimization is done with minimizing 

a loss function that describes the models performance. The loss function is usu-

ally a function of prediction error,          that can be calculated as following: 

 

                     (3.5) 

 

The most typical loss functions that are used to minimize the prediction error are 

the absolute error and squared error loss function, which are represented in equa-

tions (3.6) and (3.7), respectively. 

 

 

              

 

   

    (3.6) 

 

             
 

 

   

 (3.7) 

 

With    and    being constants. Typically minimizing the quadratic loss function 

gives better result in wind power prediction because it gives more weight on the 

larger errors. One of the main problems is to choose appropriate explanatory 

variables, which explain the development of the power production. There are 

also auto-adaptive models, which tunes the model parameters during the opera-

tion in order to reach optimal performance. (Pinson, 2006) 

 

The statistical prediction models can be separated into structural and black-box 

models. The structural models are based on the model‘s creator expertise on the 

field that creator is modelling. In example, in wind power prediction models 

creator tries to model nature‘s phenomena by adding structures to the model, 

which consider these phenomena. For instance model‘s creator can add some 

structures, which consider the diurnal variations of wind, or makes a model that 

includes changes in the terrain roughness, or takes the dust on the rotor blades 

into account and its effects on the power production (Pinson, 2006) (Madsen, 

2011). Black-box models instead of structural models are artificial-intelligence 
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based models like Support Vector Machines, SMV or  Neutral-Networks, NN, 

which both are self-learning models that use the model‘s artificial-intelligence on 

predictions and make the decision based only on that. Therefore these methods 

do not know anything about the physical phenomena that are underlying behind 

the wind power production.  

 

Typical statistical approaches relies a lot on the persistence nature of the wind, 

therefore the statistical approaches performance really well in the time horizon of 

less than 5 hour.   

 

3.6 Defining the quality of forecasting 

As mentioned before, forecasts always contain an prediction error because of the 

chaos in atmosphere, therefore it is impossible to achieve a perfect wind power 

forecast. However, the forecast does not need to be perfect since the purpose of a 

forecast is to provide information to users that have a different sensitivities to the 

different magnitudes of the prediction error. Some forecast users need forecasts 

just to have an idea what is the magnitude of the of the variable of interest, and 

some users are very sensitive to the prediction error, like small electricity mar-

kets participants with a lot of wind power. Although, the forecast users sensitiv-

ity to the forecast error differs a lot, it still leaves a question, what is a good and 

bad forecast. Different forecast users have a different sensitivity to the forecast 

error and it is clear that the quality of a forecast is not easy to define, thus it is 

hard to define whether the forecast is good or not. 

 

There are methods to discuss how good the forecast really is. In (Murphy, 1993)  

was showed that there are three kinds of goodness of forecast. Firstly, there is 

correspondence between forecasters‘ judgements and their forecasts, which is 

called consistency. Consistency of a forecasts is that the forecast always repre-

sents the forecasters‘ true intentions. Meaning that the forecasters‘ have the best 

knowledge of the meteorological event, and the consistency measures how 

unanimous the forecasters‘ judgements are with the predictions. For instance, in 
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weather situations that are easier to predict, like big high pressure fronts, the 

consistency in those events is bigger than for weather phenomena that are more 

dynamic like low pressure systems (Lange & Focken, 2005). The second kind of 

goodness is quality, which measures the correspondence between forecasts and 

observations. It is measured with several statistical methods that serve both the 

evaluation assessment of the prediction and with more extent, the decision mak-

ing process. Some of these statistical quality assessment methods are represented 

in the following chapter 3.6.1.1. Finally, the last type of goodness is the fore-

cast‘s value to the people that uses the forecast. The value of the forecast is de-

pending a lot on the application where the forecast is used. Hence, the users may 

give many different kind of requirement to the accuracy of the forecast depend-

ing on the value that they give to the accurate forecast. All these three types of 

goodness has also a dependency of each other, like it was shown in (Murphy, 

1993) that the level consistency depends linearly to the quality and value, but the 

consistency relation to the quality has a non-linear dependency (Murphy, 1993).  

 

Evaluating the accuracy of the forecast requires that the power production obser-

vations at the site of interest are available. Nowadays, SCADA (Supervisory 

Control And Data Acquisition) is quite popular among in collecting data from 

wind turbines. Usually the data is available on wind farm level, but also it is 

common to have information in wind turbine level also. Although, that the data 

is available, it is important to give attention to the data itself: how reliable the 

data seems to be. This phase‘s importance cannot be overestimated in analysing 

the quality of a prediction for obvious reasons, since if the data which is used in 

evaluating model‘s accuracy is incorrect, the conclusions are also incorrect. 

Hence, every analysis of the prediction model accuracy must begin from the 

analysis of the observation data.   

3.6.1 Evaluation of different forecast methods 

The evaluation of the forecast depends greatly on the type of the forecast. Evalu-

ating a point forecast is really straight-forward thing, since the forecast can be 

evaluated to the measurement at the time. The evaluation can also be done 
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against a reference model, which is discussed in the chapter 3.7. As a result of 

evaluating a point forecast it is possible to represent curves, where the different 

error types can be illustrated in function of look-ahead time. Evaluating period is 

typically long, more than a year in order to have preferable results. Then the er-

ror in different look-ahead times is represented as the average errors. 

 

The other way to evaluate forecast is to use probability distributions of predic-

tions and turn them into prediction error distributions. This is the most effective 

way to understand the effect of the power curve to the prediction error, as well as 

influence of the other explanatory variables to the prediction error. This method 

is widely used in state-of-the art prediction methods in decision making process 

as well, since it gives an opportunity to handle the uncertainty of the prediction.  

3.6.1.1 Evaluating point forecasts 

It is important to distinguish different prediction models by their accuracy. There 

are number of different statistical methods to analyse how well the model per-

forms. Hence, it is easier to compare different models by using these measure-

ments of accuracy. Also by measuring accuracy of a model it can be noticed how 

accurate the model actually is. For instance it could be very convenient to say, 

which is the average prediction error at different look-ahead times. The evalua-

tion of the point-forecast starts by defining the error at different look-ahead 

times, which can be formulated as  in Equation (3.5). It can be noticed from the 

Equation (3.5) that if the prediction error is positive then the model underesti-

mate the power production and on the other hand if the error is negative the 

model overestimates the power production. In many cases this prediction error is 

normalised with the nominal power of the turbine, or turbines, depending on the 

interest. 

 

The most obvious way to measure error is to calculate the mean error over the 

whole evaluation period with different look-ahead times. This error measurement 

is called bias and it also represents the systematic part of the error, which is dis-

cussed later. 
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 (3.8) 

 

The other version the bias is to take absolute value of it. It is called mean average 

error, MAE, which represents the average error but do not tell is the model over- 

or underestimating the actual power. In equation (3.9) MAE of the prediction. 

 

 

       
 

 
         

 

   

 (3.9) 

 

It would also be a good idea to give more weight to the bigger error, therefore 

the widely used error measurement is mean square error, MSE, which gives 

more weight to the larger errors. 

 

 

       
 

 
         

 
 

   

 (3.10) 

 

However, MSE is not so used since it is more difficult to represent because the 

units of the actual error differs from the actual error. Hence, the more used error 

measurement is the root mean square error, RMSE, which gives more weight to 

the larger errors and also represents the error in same units as the actual error.  In 

equation (3.11) RMSE of the prediction (Fox et al., 2007) 

 

 

                 
 

 
         

 
 

   

 (3.11) 

 

There is also an alternative method for illustrate squared error type. It is called 

standard deviation of errors, SDE and it is given by 

 



 56  

 

        
 

   
            

 
 

   

 (3.12) 

 

Now that the all typical error types are represented, the prediction error can be 

separated into systematic and random components. Systematic component meas-

ures if the model under- or overestimates the wind power production in different 

look-ahead times. Bias measures only the systematic part of the error, which 

illustrates whether the model systematically predicts the future falsely or not. So 

in the ideal model the systematic part of the error should be zero and there 

should not be any correlation between the errors on different look-ahead times. 

However this is not the case for most of the models. Random part of the error 

should be ideally white noise, which is Gaussian distributed with zero mean. The 

random part of the error is measured by SDE. In contrast, both systematic and 

random parts of the error contribute to the values of MAE and RMSE. (Pinson, 

2006) 

 

The RMSE can also be decomposed for different parts like (Hou et al., 2001) 

showed in their research. This error decomposition could give the real contribu-

tor of the RMSE. Also the decomposition of RMSE showed that there are limits 

in reducing the RMSE by post processing the prediction with MOS, which was 

proved by (Lange & Focken, 2005). They manage to show that the decomposi-

tion of RMSE could give valuable information of the performance of the model 

and see where the actual source of error is.  

3.6.2 Model Output Statistic 

The purpose of  MOS is improve prediction accuracy by removing the system-

atic part of the prediction error. The MOS correction is made by post-processing 

the data. Very straightforward way to implement this post-processing is to use 

linear transformation of the predicted values such that offset of the mean system-

atic error is reduced and thus the accuracy of the prediction is improved.  
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The bias and standard deviation of the bias are very sensitive to a linear manipu-

lations of the time series. In the following equations a linear MOS is presented. 

The linear transformation is based on the following equation where the predicted 

value,       is transformed with the help of two constants   and  . 

 

                 (3.13) 

 

The parameters   and   can be chosen by minimizing the RMSE of the linear 

transformation. In Equation (3.14) 

 

 
                           

 
 (3.14) 

 

The above condition lead to non-ambiguous solutions for   and  , Equations 

(3.15) and (3.16). (Lange & Focken, 2005) 

 

 
  

        

        
                (3.15) 

 

where                is cross correlation coefficient between predicted and 

measured time series. 

                  (3.16) 

  

The implications of this transformation is that the bias becomes zero and since 

the RMSE in minimized the RMSE of the prediction should be lowered.  

 

3.7 Reference prediction models 

The reference prediction models are used to evaluate advanced prediction mod-

els and see whether they could manage to improve prediction accuracy. The ref-

erence models need to grasp the nature of the wind power and also be simple 
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enough to implement. There are two major reference models that are used to 

evaluate other models: first one is the persistence model and the other one is 

mean climatology. Persistence model is based on the assumption that predicted 

power is the same as the last measured value of the power, which can be stated 

as: 

 

             (3.17) 

 

Where         is power prediction for time t+k made at time t and    is measured 

power at time t. Hence, the persistence model is a model that is based on the idea 

that the error for wind speed at infinite short time interval ahead is zero and 

therefore the power output do not change. Also the nature of the wind favours 

this persistence model since the changes in a mesoscale weather phenomena, 

which drives the surface layer winds, are quite slow. For example fronts that 

passes over Europe takes more than one day to pass by. Therefore the persistence 

model is really hard to beat in short look-ahead times up to five hours. The gen-

eral formulation of a persistence model is to take into account not just the last 

measured value of power but the mean value of  N last value, equation (3.18) 

(Pinson, 2006) 

 

 

       
   

 

 
     

   

   

  (3.18) 

 

where        
   is the forecast for the time t+k made at time t. (Pinson, 2006) 

 

The other commonly used reference method is to use mean climatology value, 

which is the average wind speed at the site. It can be calculated by using equa-

tion (3.18) and allow the sample size N to go infinity or at least use all available 

history values of power production. It is not a dynamic model by any reason, so  

it can be rather inaccurate with short look-ahead times. On the other hand it per-
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forms much better with longer look-ahead times than the persistence model. 

(Pinson, 2006) 

 

There are also other reference models, which are more advanced and combines 

the good qualities of the persistence and mean climatology models, so that the 

reference model could perform rather well in all look-ahead times. This is a good 

idea, since it would be more illustrative to compare different advanced models to 

the reference model that performs well. However, many of these advanced refer-

ence models requires a training set to function properly and therefore the they are 

more complicate to implement. Hence, the most used reference model is the per-

sistence model since it is so easy to implement. (Fox et al., 2007)  

 

The most illustrative way to analyse improvement of an advanced prediction 

against reference model is to plot different evaluation criterion on different look-

ahead times. These evaluation criterion, EC could be either MAE, RMSE or 

SDE. The improvement by implementing an advanced prediction model can be 

also calculated by using the equation (Fox et al., 2007) 

 

 
          

   
               

         
 (3.19) 

 

3.8 Uncertainty in wind power forecasting 

The wind power forecasts are traditionally provided in a form of point forecasts. 

Mostly because that they were easy to understand and also they seem to be 

trustworthy enough. The uncertainty estimation in wind power is a rather new 

phenomenon and it is just begun to got stand in forecasting just couple decades 

ago. This come from the forecast users who have noticed the usefulness of the 

uncertainty information.  

 

There are tens of ways to implement the uncertainty information to the forecasts. 

One is to use definitions, which were used in (Pinson & Kariniotakis, 2009) so 
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that the uncertainty can be added to the forecast by either using a skill forecast 

based on risk indices or either using a probabilistic forecast. In the following 

chapters these two complementary methods are shortly illustrated with their 

shortcomings and advantages.  

3.8.1 Foundations of the wind power uncertainty 

In complement to the point forecasts of wind generation in short time frame, say 

for the next 24 hour, uncertainty intervals can provide valuable information 

about the online performance of the given prediction method. Prediction model 

analysis methods that were represented in the previous chapter give information 

about the performance of the model in a long time period, since they average the 

performance of the model. However, if there is a need to know what is the fore-

cast uncertainty of a given forecast in a given time, then the traditional statistical 

evaluation methods are not good enough. The underlying idea in deriving prob-

abilistic predictions is that the uncertainty should be greater on medium power 

range in comparison to the low and high power ranges.  

 

The problem is solved in the state-of-the-art forecast methods by representing the 

interval forecasts. These forecasts can tell in relation to the point forecast, which 

interval the forecasted values lies in pre-defined probability level. Such an inter-

val can give valuable information about the accuracy of the point prediction. In 

order to understand the prediction accuracy, two different intervals can be distin-

guish by (Pinson, 2006): confidence intervals and prediction intervals. Confi-

dence interval measures the confidence of the estimated point forecast from the 

target distribution whereas the prediction interval measures the accuracy of a 

point forecast. In Figure 3.10 these different intervals are illustrated in a prob-

ability density curve, pdf of a prediction. Dark shaded area represents the confi-

dence interval, where the mean is the mean value of the probabilistic distribution 

and prediction is the prediction of that mean. The measured power at that predic-

tion time is measure, which is shown in the figure in black thick vertical line.  
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Figure 3.10 Difference between confidence interval and prediction interval in probabil-

istic prediction. 

3.8.2 Methods deriving the Interval forecast 

As a phenomena, interval forecast are a brand new thing in wind power genera-

tion. Most of the methods that provide probabilistic interval predictions have 

developed in the 21
st
 century. A difficult subject in deriving wind power forecast 

is that the nature of the wind power is non-stationary, nonlinear and also 

bounded. Therefore one cannot make any assumptions how the prediction error 

is distributed as it was mentioned in previous chapters. One of the first state-of-

the-art method in interval prediction designed prediction is based on the fuzzy 

inference model. This model can produce conditional error distributions by using 

help of forecast conditions that are in form of probability distribution. The basis 

of this model is that it evaluates the past performance of the model by analysing 

the error distribution with adapted resampling method, which uses an idea that 

more information can be derived from the data if the sample of data if is cleverly 

ran certain number of times. This method is excellent in a sense of that it could 

be integrated in top of every point forecast method, since it evaluates the past 

performance of the model in creating probabilistic forecasts. Also this method is 

non-parametric, which means that it does not make assumptions how the predic-
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tion error is distributed. Therefore, this method can lead to really good results, 

since it is really hard to say how the wind power prediction error is distributed as 

(Lange & Focken, 2005) showed. The result of the previously mentioned method 

to do interval forecasts is shown in Figure 3.11 

. 

 

Figure 3.11 Typical interval forecast representation 

 

The Interval forecast in Figure 3.11 is created from intervals, which represents 

different nominal coverage rates. It means that in a long run inside 90 % nominal 

coverage rate interval, there should be only 10 % of the time forecasted values 

that lies outside of that interval. Another name for this interval forecast is quan-

tile forecast since the forecast is formulated from probability quantiles, which 

create probability intervals. Therefore, probability interval formulates from the 

upper and lower boundaries and the area between these boundaries. It can be 

seen from the Figure 3.11 that the uncertainty is greater when the forecasted 

power is in its medium range in comparison to the uncertainty when the fore-

casted power is at low level. This comes from the nature of the power curve as it 

was discussed in chapter 3.1.2. Another thing is to notice that the method pro-

duces forecasts that are centred around the median of the predictive distribution 

and not on the median of the probability distribution.   
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3.8.3 Ensemble forecasting 

It is important to remember that not all of the wind prediction error comes from 

the prediction model, but one of the major error sources in wind prediction still 

comes from the NWP system. The error in NWP originates from outcome that 

behaviour of some weather phenomenon are really hard to predict. For instance, 

there is a clear difference in predictability between low pressure system and high 

pressure system. Therefore, the accuracy of NWP is greatly influenced by that 

and by using ensemble forecasting it is possible to know beforehand how pre-

dictable a weather phenomenon really is. Hence, the result of an ensemble fore-

cast analysis is to see how predictable the weather is. In practice there are couple 

commonly used ways to create ensemble forecasts. Of course many of the meth-

ods can only be implemented where the NWP is created, but there are methods to 

do ensemble forecasting without NWP providers help, as it is discussed later in 

this chapter. The most popular methods to provide ensemble forecasts are repre-

sented in the following paragraphs. 

 

Maybe the most popular way to create weather ensembles is to do it where the 

predictions are made – the place where the NWP is created. Such ensemble fore-

cast is made by running NWP models multiple times with different initial condi-

tions and researching how the outcome varies with a different initial conditions. 

Also the NWP provider could change between different NWP runs the numerical 

atmosphere model in order to achieve prediction ensembles. In parallel to the 

ensemble forecast or perturbed forecast, the unperturbed forecast is created with 

the best estimate of the initial conditions and created with the numerical model 

that is usually used in operational use. From the largest NWP providers both 

ECMWF and NCEP provides ensemble forecasts with a different properties. 

ECMWF runs ensemble forecast twice a day with a 50 perturbed members where 

NCEP runs the ensemble forecast with 11 perturbed members (Giebel et al., 

2005). 
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A multi-scheme ensemble forecast is that the model is run with the identical data 

inputs but the data assimilation techniques or numerical integration schemes or 

physical parameterisations are varied. Depending on the choices the ensemble 

members are created (Giebel et al., 2005). 

 

The multi-model ensemble forecast is to use different NWP providers 

(NCEP,EMWF,DW) operational forecasts as an ensemble members to create 

ensemble forecast (Giebel et al., 2005). 

  

The last, but certainly the most simplest way to implement ensemble forecast is 

to use poor man‘s ensemble. It is done by using NWP forecasts with a same lead 

time but issued at different times. Therefore, these forecasts are obtained with 

different initial conditions by using the model. For instance poor man‘s ensemble 

forecast can be implemented to ECMWF, which is run every 24 hours for the 

next 7 days. Therefore there is a 72 hour period where all these 5 different time 

origins forecast overlap each other as it is represented in Figure 3.12 (Giebel et 

al., 2005) (Pinson, 2006). 

 

 

Figure 3.12 Poor man’s ensemble forecast with 5 ensemble (Pinson, 2006) 

 

The evaluation of an ensemble forecast can be done by evaluating the variance of 

the ensemble members and creating a skill index depending on it, as it is done in 

(Pinson, 2006). When the variance is small and the distribution of the ensembles 
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members is tight, it means that the weather phenomena at that time is quite pre-

dictable, see look-ahead times 0-20 h in Figure 3.12. On contrary, if the ensem-

ble members are spread in a wide area it means that there is a great uncertainty in 

the weather phenomena, as it is possible to notice from Figure 3.12 look-ahead 

times 40-72 h. 
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4 Optimal trading of wind power in electricity market 

Trading wind power in the electricity market requires prediction model that pre-

dicts the level of wind power in the delivery hours. The purpose of a prediction 

model is to minimize the prediction error,        by giving the best estimate of 

the variable of interest. In the simplest case the predicted power is assumed to 

stay at the last measured value, this prediction model is also known as the persis-

tence, which properties are more discussed in the chapter 3.7. However, the pre-

diction accuracy of the persistence model is quite poor in prediction horizons 

larger than seven hours ahead, therefore in this thesis some measurements are 

taken to create a model which could provide point forecasts that exceed the accu-

racy of persistence on every look-ahead hours. The proposed prediction model is 

a statistical model, which is divided into two parts: first the power curve part that 

models the wind farm power in function of wind direction and wind speed, as it 

is shown in Figure 3.4, and secondly the regressive part, which takes into ac-

count the persistence nature of wind. 

 

After formulation of the prediction model one could use it for placing the bids to 

the electricity market by using appropriate inputs to the model. This would lead 

to a revenue, which would be gained with the minimum prediction error, since 

the model tries to minimize prediction error. The maximum revenue would be 

then obtained if the balancing energy costs for up and down regulation would be 

the same. However, the balancing energy costs are always imbalanced as it was 

shown in Table 2.2 and Table 2.3 in Finland, which means that the maximum 

revenue will not be gained by minimizing the prediction error but instead placing 

bids with a more carefully and thus minimizing the regulation costs. Therefore, a 

generic way to find the optimum bid is created by taking account the imbalance 

in balancing energy costs and it will be shown that the revenue will be bigger by 

using the optimal bids instead of using point forecast as bids. In Figure 4.1 flow 

diagram of deriving optimal bids is represented. The steps that the flow diagram 

shows are used in the thesis and they will be presented in the following chapters 
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finally ending with the complete forecast model, which can derive forecast error 

minimizing bids and optimal bids. 

 

 

Figure 4.1 Flow diagram of making forecast error minimized bids and optimal bids. 
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4.1 Mathematical methods 

In this chapter the main mathematical methods and tools are briefly represented. 

For more description of the methods one must look for the references.  

4.1.1 Non linear least-squares 

Least squares, LS problems, which tries to model exponential behavior are a bit 

more difficult to model than the linear behavior LS -problems. In this thesis, the 

model is an exponential model, which is required to solve by using nonlinear 

optimization methods. In the thesis, LS- problems are solved by using trust-

region reflective algorithm, which is a powerful yet quite simple optimization 

method. A trust region method formulates a region around the current search 

point, where the quadratic model for the local minimization is trusted to be cor-

rect, and steps are chosen to stay within this region. The size of the region is 

modified during the search. Trust region problem can be formulated with follow-

ing way around the current search point,    (MathWorks, n.d.). 

 

 
                  

   
 

 
       (4.1) 

 

where s is a trial step computed by minimizing the objective function q, which 

reflects the behavior of function f  in a neighborhood N around the point   .    

is a Hessian matrix in the current search point (MathWorks, n.d.). Typically, the 

trust region is assumed to be an ellipse such that       , where D is a di-

agonal scaling matrix and   is the trust region radius. 

4.1.2 Beta distribution 

Beta distribution is in probability theory and statistics a continuous probability 

distribution, which is defined on the interval from zero to one. Beta distribution 

can be formulated by using two shape parameters α and β, and its probability 

density function is: 
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               (4.2) 

 

where        is a beta function, which can be formulated as a following manner 

 

 
                      

 

 

  (4.3) 

 

It is possible to notice that the beta function is the integral of the numerator part 

of density function, which normalizes the pdf on the interval [0,1]. 

 

Cumulative distribution function, CDF of a beta distribution can be formulated 

by using the ratio of an incomplete beta function and a beta function, see equa-

tion (4.4). Incomplete beta function,         differs from the equation (4.3) beta 

function only with its integral limits: it is integrated from 0 to x. 

 

 
           

       

      
 (4.4) 

 

Other distribution‘s properties such as beta distributions mean,   and variance, 

   can be calculated with equations (4.5) and (4.6), respectively. 

 

   
 

   
 (4.5) 

 
   

   

              
 (4.6) 

 

As it is possible to notice from the equations above, both beta distributions mean 

and variance can be explained with the shape parameters, which is a quite con-

venient property of beta distribution.   

 

From Figure 4.2 it is possible to see how the change of shape factors affect the 

shape of the beta distribution pdf. Also it is possible to see how the change of 
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shape factors reflects to the mean and variance of a distribution. One could no-

tice by looking at the distributions in Figure 4.2 that the shape of beta distribu-

tion can vary a lot, thus it can describe many different distributions as uniform 

distribution, Gaussian distribution and exponential distribution. 

  

 

Figure 4.2 Properties of beta distribution with different values of α and β. 

 

4.2 Analysis of the wind farm data 

The wind farm of interest in this thesis is Raahe‘s wind farm in south-west Fin-

land, which consists five 3.2 MW wind turbines. All of the turbines are located at 

the coast, which usually provides the best possible power at a site. The data was 

provided by wind energy organization Hyötytuuli and it consists wind farm data 

from January 2008 to September 2011. The sample frequency of the data is 10 

minutes, which means that the amount of data points is more than 150000. The 

variables that are used in this thesis are wind speed, wind direction and wind 

farm‘s output power. The wind is distributed with the following Weibull distri-

bution at the site, Figure 4.3. The mean wind speed at the site was 6.39 m/s, 

which is a really good mean wind speed for a Finnish site. The maximum wind 

speed is 24.5 m/s, which is really close to the cut-off wind speed of a wind tur-

bine. 
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Figure 4.3 Weibull distribution of wind and the Weibull fit. 

 

Wind rose, which illustrates the distribution of wind direction at the site is repre-

sented in Figure 4.4.  

 

 

Figure 4.4 Distribution of wind direction 

The figures above are merely distributions with mean values. However the winds 

at the site are changing all the time. There are daily variation in wind, especially 
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in the wind speed and also the wind is varying through the seasons. Therefore,  

the wind rose, as well as the histogram of wind speed changes its shape all the 

time. The wind rose also explains that the dominant wind directions are from 

south-east or south-west, which means that the wind turbines are usually turned 

into that direction. The dominant wind direction is important to know since from 

that direction it is possible to harvest more energy than the other directions. Also, 

if possible wind turbines should place in a manner that the dominant wind direc-

tions are obstacle free and thus the flow of wind is undisturbed. In Figure 4.5 the 

energy distribution of the wind farm from different wind directions. 

 

 

Figure 4.5 Energy rose of the site 

 

It can be noticed from the figure above that almost 25 % energy comes from 

south-west, which was the other dominant wind direction and also is the domi-

nant wind direction in Finland (WindAtlas, 2011). The other dominant wind di-

rection on the site was from south-east, see Figure 4.4. However, the turbines are 

sited at the west cost of Finland, which means that the continent is located on the 

south-east. Roughness of the continent is much higher than the ocean‘s and 

therefore the wind that are coming from the continent are much lower than the 

winds, which are blowing from the ocean, which can develop freely. For this 
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reason winds from south contains almost as much as energy than winds from 

south-east. Although, it is more than twice as likely to have wind blowing from 

south-east than from south. 

 

4.3 Hourly and daily correlation of power 

There are many natural phenomena behind the wind, which usually are periodi-

cally since the earth is turning around its axel in constant time and the earth is 

also revolving the sun in a specific time. This causes some dependence to the 

wind on different time windows. For instance, there might be some dependence 

on a daily level or an annual basis. In Figure 4.6 the mean wind speeds in differ-

ent quarters of a years 2009 and 2010 are represented. It can be noticed that on 

average the nights are much windier than the days. It can be seen clearly that 

when the sun rises in the morning, mean power decreases and stays at the lower 

level. There are also some quarterly variations in the wind speed. In 3
rd

 and 4
th

 

quarters wind speeds seem to be much stronger than the other two quarters. This 

means that autumn and early winter seems to be good time for wind power.  

 

 

Figure 4.6 Correlation of hourly power in different quarters of in years 2009 and 2010 
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Although, that the nature of wind is intermittent and the atmospheric boundary 

layer is very turbulent at a time, wind has also a persistent nature. In Figure 4.7 

sample autocorrelation of the wind energy data with different lags. It can be seen 

that there is a strong correlation of wind power lags up to 10 hours. Especially 

lags up to 5 hours the autocorrelation coefficient is more than 0.7, which shows 

how strong the correlation really is. When the lag time is increased the correla-

tion coefficient seem to diminish exponentially approaching zero. 

 

 

Figure 4.7 Autocorrelation of wind power with different lags. The unit of lag is one 

hour. 

By understanding the natural phenomena behind the wind power and wind itself, 

it is possible to draw conclusions of nature of wind power. By understanding 

these phenomena it is possible to use them to model wind power‘s behaviour and 

thus create prediction models, which could predict more accurately to the future.  

 

4.4 Data from FMI 

FMI runs their NWP model several times in a day: 6 a.m., 12 p.m, 18 p.m. and 

12 a.m. UTC time. Nordic electricity market closes at 11 a.m. UTC time, which 

means that the forecast that is made at 6 a.m. must be used in order to use fore-

cast data in the prediction model. 
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The prediction horizon that the FMI provides is 42 hours with a resolution that is 

varying from one hour to three hours. However, in this study hour resolution is 

needed, therefore linear interpolation is used to values, which resolution is three 

hours in order to have prediction data, which resolution is one hour. However, 

the FMI can offer prediction data starting at 6 a.m UTC time and the prediction 

horizon covers every hour of the next day, which is the main purpose. In the Fig-

ure 4.8 wind speed and direction forecast provided by the FMI. 

 

 

Figure 4.8 Prediction of wind speed and wind direction by FMI. Circles represents 

measurement points and the line between them is the linear interpolation curve. 
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where wind farm power value at time t is considered with the prediction of pow-

er curve model.  

4.5.1 Modeling power curve 

Power curve model is created by fitting the power curve model function,       

to the history data of wind speed, wind direction and power production in a hori-

zon of     . Fitting the data to the model creates a relationship between power, 

wind direction and wind speed. The power curve model that is used in this thesis 

is double exponential model, which is shown in equation (4.7) 

 

     
            

       
             

  (4.7) 

 

where constants      ,       and       are model‘s constants in function of 

wind direction   and        is a k-step wind forecast made at time t. The power 

curve model is also known as Gompertz function, which conveniently reminds 

wind turbines power curve. The basic idea is to fit the model to the history data 

of wind speed, direction and power by using nonlinear LS- algorithm in function 

of wind direction. As a result, the LS-fitting will provide best estimates of the 

model parameters, which describe the connection between wind speed, wind 

direction and power. In Matlab it is possible to fit a data, which behaves with a 

nonlinear way by using lsqnonlin- function, which makes a LS- fit by using the 

trust region method that was represented in chapter 4.1.1. 

 

Wind is usually blowing from a dominant wind direction, while other wind di-

rections are much rarer, which means that the amount of fitting point is scare on 

some directions and thus the model cannot create reliable fit. For that reason the 

model is fitted in 30° sectors in order to have more data points to fit the model, 

which leads to a more reliable prediction model. However, if the number of data 

points is scare and the fitted data points are close each other, it is then really dif-

ficult to model the power curve. The difficulty is caused by the fact that reliably 

fitting needs values all over the power curve in order to have a accurate fit. 
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Therefore, fitting horizon,      must be long enough to have sufficient number 

of fitting points, which are hopefully scattered on a wide range of power values. 

One could now ask why not to use all of the history data to model a power curve. 

There is a down side in the long fitting horizon, it does not take into account 

small changes that happens in the wind farm site as: the blades are getting dirty, 

which diminish the power production, wind turbines need to be maintained and 

wind conditions varies through the year. Therefore, the length of fitting horizon 

must be a compromise of a well adaptive model and a accurately fitted model. In 

this thesis a value for      60 days, which equals 7200 ten minutes samples, 

which takes into account the seasonal effects of the wind and some of the 

changes that happens in the wind farm and affects the output power. From the 

Figure 4.6 it can be seen how the wind changes during different seasons. This 

two months history information also provides sufficient number of data points to 

each sector to fit the prediction model. In Figure 4.9 example of fitted power 

curves with measured values in two different 30 degree sector. 

 

 

Figure 4.9 Fitted power cueve model with a red line and measurements with the blue 

dots in two different 30° sectors 

 

It is possible to notice from the figure above that the quality of the fitted power 

curve can vary in comparison to the measured values. On the left hand side of 

the Figure 4.9 the measured power values fits quite well to the model, but on the 

right hand side it is possible to notice that for some reason one of the turbines 

stop producing power when the wind speed grows. Therefore the measured pow-
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er divides into two different branches and the fitted power is a compromise be-

tween these two different branches of power. One could weight last measured 

power values and thus have a better estimate of future power values, but in this 

thesis this was not considered. However, in the both cases the measured power 

values are distributed in a wide power range, which makes it possible to have a 

reliably fit. After the measured power and wind values are fitted to the model 

function to the rest of the 30° sectors, then it is possible to see how the wind 

power varies in function of wind speed and wind direction. In Figure 4.10 3-

dimentional power curve. 

 

 

Figure 4.10 3-dimentional power curve. 

 

It is possible to see from the Figure 4.10 that the power curve varies depending 

where the wind blows. It seems that on some direction there might be some ob-

stacles so that the wind farms power output is decreased in comparison to the 

sectors, which are next to them.    
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The power curve estimation is carried out ones in a day, when the Finnish meteo-

rological institute, FMI provides wind forecast at 6 a.m. UTC time and this fore-

cast data is used as an input in equation (4.7) to have a power curve estimate of 

the wind farm power for each delivery hour.  

 

As a down side, the power curve do not take into account situation when the 

wind speed reaches the cut-off wind speed, which is illustrated in Figure 3.2. 

However, it will not lead to a significant source of error since only 0.05 % of the 

time wind speed exceeds 22 m/s, which is a value when a turbine might shut 

down. 

4.5.2 Estimation of the prediction model’s parameters 

The nature of wind is intermittent but still it has a persistence character. Even 

though there is always a wind to power transformation in wind power forecast-

ing, which amplifies the small changes in wind to the larger deviations in the 

power, but still the persistence forecast model performs well in the short predic-

tion hours. This means that there is a strong correlation between measured power 

at time t and measured power values up to 7 hours ahead as it is possible to see 

from the Figure 4.7. Therefore, it is reasonable to include power values    to the 

prediction model when forecasting k-step ahead. In equation (4.8) the prediction 

model, which includes power values    besides the power curve estimate,     
  

.  

 

                            
  

 (4.8) 

 

The weight of each term is assumed to have a non-linear relationship and the 

constants       and       are solved with adaptive LS- fitting for each predic-

tion horizon separately. The adaptive LS- fitting process with an exponential 

weighting can be expressed as in Equation (4.9). 

 

 
 
     
     

                  
                        

  
               

 
 

   

     

  (4.9) 
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where   is a forgetting factor        . The exponential weighting allows to 

give less weight to older observation and eventually fade them off. Notice that 

the sum is calculated from t + k to 1 + k, where t  > 1. 

 

A proper value for a forgetting factor can be found by varying the   from 0.99 to 

1 and calculating forecasted values for each values of  . Then the squared error 

can be calculated for each values of   and the value, which gives the minimum 

sum of squared error is chosen. The squared error is calculated by calculating the 

mean of RMS prediction errors on each prediction horizon and then calculating 

the sum of those means, see equation (4.10)  

 

 

          
 

 
            

 
 

   

  

   

 (4.10) 

 

In Figure 4.11, where the sum RMSE in function of   is shown, it can be seen 

that the minimum RMSE is obtained when   equals 0.98. This value is therefore 

used in the further study. Forgetting factor could also be solved with a more ro-

bust manner, but again, the point of making this forecast model is not to make a 

state-of-the-art model but rather have a good estimate of the future wind power 

production.  
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Figure 4.11 Sum of RMSE in function of forgetting factor 

 

When the   is chosen then the effective number of past values,    can be calcu-

lated with the following formula: 

 

 
   

 

   
 (4.11) 

 

As a result the effective number of past days is 50, which makes sense since the 

changes in the seasons takes time and the weather can be seen quite similar in 

that time period. 

 

4.6 Analysis of the prediction model 

Prediction model, which is presented in chapter 4.5 must be analyzed in order to 

understand how well it performs in comparison to the persistent model and thus 

the different mean errors (MAE, RMSE, BIAS) on different prediction horizon 

hours must be calculated. Also the MOS corrected model is compared to the 

model without the correction is this study. The MOS correction can be made by 
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using the methodology presented in chapter 3.6.2. It is also studied how the de-

velopment of the constants in equation (4.9) varies in function of the prediction 

horizon. 

 

One of the first main evaluation method is to measure prediction model‘s per-

formance by looking at the normalized MAE and RMSE. MAE is very informa-

tive since it is tells what is the average prediction error in a look-ahead hour. For 

instance, it can be seen from the Figure 4.12, where MAE of the forecast is 

represented alongside with the MAE of persistence forecast and MOS corrected, 

that the MAE in 24 hour ahead forecast is about 11 % of the nominal power for 

the created model. It can be noticed that the model, which is not MOS corrected 

outperforms the model where statistical correction is used on every look-ahead 

hour. 

 

 

Figure 4.12 Mean absolute error for the prediction and the reference model 
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RMSE weights more of the larger prediction errors and therefore it can give val-

uable information how frequently model predicts badly wrong. In electricity 

market large prediction errors are what matters and they must be avoided, since 

the regulation losses are depending linearly to the prediction error. From the Fig-

ure 2.6 one can calculate what would happen if wind power participant have 

large prediction error on one of those price spikes. In Figure 4.13 RMS predic-

tion errors for the studied model, MOS corrected, and the persistence model. It 

can be seen that the squared errors are larger than the MAE on different look-

ahead hours. MOS corrected model is now on some look-ahead hours slightly 

better than the model without correction, which is quite natural since the used 

loss function that MOS minimizes is squared. 

  

 

Figure 4.13 Root Mean Squared Error for the prediction and persistence model 
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power can be seen from the figures, since model is performing really well on the 

prediction hours up to 7 h. The good performance on the later prediction hours 

can be explained with the quality of meteorological forecast. These prediction 

errors depend greatly what kind of terrain the wind farm is located. When the 

terrain is really rough and hilly then the prediction errors are more larger and 

especially the RMSE will grow. Therefore, different MAE and RMSE are not 

directly interpret to each other, and if one must compare different models and 

their prediction errors, then the complexity of the surroundings must be consi-

dered (Pinson, 2006). However, some comparison is made to the site in Ireland 

for 5 different forecast models, which MAE and RMSE are represented in the 

Figure 4.14. One could see that the prediction errors in Figure 4.14 are on same 

magnitude that the prediction errors on Figure 4.12 and Figure 4.13, which 

means that it is possible to assume that the model works with a sufficient man-

ner. 

 

 

Figure 4.14 five different prediction models MAE and RMSE in a site in Ireland 

 

One could also notice directly how this current market system does not favor 

wind power from the figures above, since the delivery hours are look-ahead 

hours from 13 – 36 h (Finnish time) where the MAE error varies between 10 – 

14 %. Thus, if the market structure would allow the wind power participant make 

its bids to the market 3 hours before actual delivery hour and the meteorological 

forecast would be available on that hour, then the MAE would only vary be-

tween 8 – 13 %. 
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As it was discussed in 3.6.1.1 prediction error can be separated into systematic 

and random components. In Figure 4.15 bias of the different prediction horizon 

hours is represented. Bias represents the systematic over- or underestimation of 

the model. As it can be seen from the Figure 4.15 that the model systematically 

underestimates power on every look-ahead hours. The underestimation is quasi-

linearly growing on the function of prediction hour. The MOS corrected bias is 

also represented on the figure below. It is possible to see how the MOS correc-

tion reduces the systematic part of the error and thus the bias is lowered. Ideally 

the bias should be only white noise.  

 

 

Figure 4.15 Mean Error on different look-ahead hours 
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casting methods, which uses physical prediction, where the remove of the syste-

matic part of the error might give more accurate predictions. The MOS corrected 

predictions are therefore not used on later analysis.  

 

The last type of measurement that is studied is cross correlation coefficient of the 

measured and predicted values on different look-ahead hours. The cross correla-

tion coefficient provides information how correlated are the measured and pre-

dicted time series on different prediction hours. Coefficient varies from 1, which 

means perfect correlation to the perfect uncorrelation, -1. One could see that 

from the Figure 4.16 that the coefficient is decreasing while the predictions are 

made to the further to the future. The reason behind this is the increasing uncer-

tainty of predicted wind speed and wind direction. However, on the prediction 

hours lower than 4 h the correlation can be seen as really good since the coeffi-

cient is above 0.88.    

 

Figure 4.16 Cross correlation coefficient on different prediction hours. 
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The most obvious phenomenon, which this figure shows is that the   , which is 

the weight for the last measured power decreases as the prediction horizon grows 

and thus the weight of power curve term,      increases. Of course, this pheno-

menon makes sense since the Figure 4.7 shows that the correlation of power de-

creases exponentially when one is measuring values further to the future. The 

weight of the last measured power reaches its minimum at predictions 18 time 

steps ahead and thus the weight of power curve term obtains the maximum val-

ue. 

 

 

Figure 4.17 Development of the prediction constants in equation (4.8) 
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the-art mathematics. It is based on using beta distribution to obtain probabilistic 

distributions and it is represented thoroughly in (Bludszuweit, 2008).  In the next 

paragraphs the methodic for formulating probabilistic distributions is explained  

 

First of all, forecast data is created by using the methodology represented in 

chapter 4.5. After that the forecast results and corresponding power measure-

ments are sorted into equally sized power bins, by the forecasted data. This step 

must be done for each forecast horizon hour separately. The amount of power 

bins,      must be chosen depending on how much forecast data is available, in 

(Bludszuweit, 2008) there was around one million data points available, and      

was chosen to be 50. In this thesis      was chosen to be 25, when the amount of 

forecast data points is 151072.  

 

Methodology assumes that the distribution of the measured power in each fore-

cast bin follows a beta distribution and the shape factors of beta distribution α 

and β can be linked to the variance,    and mean,   of a forecast bin with the 

relationships which are represented in equations (4.12) and (4.13). It is possible 

to solve those equations in function of   and    and have: 

 

 
  

        

  
   (4.12) 

 
  

   

 
   (4.13) 

 

Thus, it is possible to solve for each forecast bin,        parameter pair         by 

using the pair       
   and hence create a beta pdf for each forecast bin by using  

the equation (4.2). This process is repeated for each look-ahead hour in order to 

consider the increasing uncertainty when forecasting further to the future, which 

shows in the increase of a bin variance.  

 

Mean and variance of a forecast bin        can be calculated in that forecast bin 

by using the measured power data. Notice that the mean and the variance must 
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be calculated from the measured power data and not from the forecasted data. 

Equations for calculating mean and variance are represented in equations (4.14) 

and (4.15) 

 

 

   
 

  
     

    

  

   

 (4.14) 

 

  
  

 

  
      

        
 

  

   

  (4.15) 

 

where    is the size of the forecasted values in bin i and     
     measured power 

value in bin i.  

4.7.1 Results of creating probability distributions 

The main problem of the previously explained method is that it requires massive 

amount of forecast data. FMI provided forecast data, which was provided once in 

a day. The wind farm data was available 3 whole years, which means that the 

amount of forecast data points in the specific look-ahead hour is only 1095. The 

method also divides every prediction hour into      amount of bins, which size 

is 1/    . In this study,      was decided to be 25, which in terms of power is 4 

% of the nominal power of the wind farm (460 kW). One could now notice that 

even if the power data would be distributed evenly to the power curve, which 

means that all the wind speeds are equally likely, then in one bin would only be 

44 values. The reality is that there would not be any values in some bins and on 

some bins there would be more values. Of course, on statistically point of view 

the number of data points is still insufficient.  

 

Therefore, it is necessary to create forecast data with a some other manner. The 

chosen method is a modified persistence forecast. This forecasts method creates 

one step-ahead forecasts, which are then shifted in time, depending on the how 

far to the future the prediction is made. The forecast is made by calculating the 

mean value of the past measured values and then shifting the mean value to the 
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corresponding look-ahead hour. In equation (4.16) the model for previously 

mentioned artificial forecast method. 

 

 

     
 

 
       

 

   

 (4.16) 

 

Since the data is measured with a 10 minutes frequency, and the one hour resolu-

tion is needed since the market functions with a one hour resolution. Thus, the 

―prediction horizon‖, k in equation (4.16) contains 6 times k values, where the 

mean value can be calculated. As a result, instead of 1095 prediction values it is 

possible to have more than 150000 prediction values, for each look-ahead hour. 

 

Now that the predicted values are obtained, it is possible to use methodology 

represented in the chapter 4.7 in order to create probability distributions for each 

and every look-ahead hours. Thus, the beta distribution shape factors   and   are 

obtained for each forecast bin,        for every forecast hour. By doing so, it is 

possible consider the increasing uncertainty of prediction, when looking further 

to the future. However, a power curve that is divided into 25 equally sized bins is 

quite coarse on accuracy point-of view. In order to increase accuracy of these 

probability intervals, mean values and variances of the power bins are analyzed 

in order to create models for mean value and variance, which depend on different 

look-ahead time and predicted power.  

 

The model for mean value is assumed to be a cubic model although that in 

(Bludszuweit, 2008) linear model was used to illustrate the connection between 

the mean forecast and mean measured power. The connection between mean 

forecasted and mean measured power should be quasi-linear but as the shape of 

probability distribution changes depending on what point of power curve it is 

looked, it is natural to assume that the relation is not linear but a bit more com-

plex.  
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          (4.17) 

 

where p is the forecasted power and   ,   ,    and    are the parameters, which 

are approximated. The standard deviation was fitted by using the same approxi-

mation function as in (Bludszuweit, 2008). The function is presented in equation 

(4.16). 

 

                  
         (4.18) 

 

Where    and     are the approximation parameters. The results of fitted and real 

mean measured power and standard deviation are represented in Figure 4.18 and 

Figure 4.19 for couple of look ahead times, respectively. It can be seen from the 

Figure 4.18 that the fitted values, which are represented as solid lines, matches 

the real values (dots) quite well. The quasi-linear nature of the mean measured 

values can be seen also. For larger forecasted power values it seems that the 

measured power values start to scatter to a wider area than for small forecasted 

values. Ideally the shape of measured power values should be quasi-symmetric 

since the wind farm power curve is quite symmetric above and below power val-

ues 0.5 p.u..  



 92  

 

Figure 4.18 polynomial approximation of measured power in relation to the mean fore-

casted power on different look-ahead times. Fitted values marked with solid lines and 

real values marked with dots. 

 

From the Figure 4.19 can be seen how the standard deviation varies on different 

forecasted power values. It can be noticed that the actual values fit quite well to 

the fitted curve, especially forecasted values below 0.5 p.u.. Standard deviation 

reaches its maximum at 0.6 p.u. on different look-ahead times. This is quite natu-

ral since, the variation should be at maximum when the forecasted power is on 

midrange. Also, the standard deviation increases as the forecasts are made fur-

ther to the future, which shows that the uncertainty of forecast increases as the 

look-ahead time grows. Ideally the curvature of the standard deviation should be 

quasi-symmetric since the wind farm power curve is quasi-symmetric. In this 

case the curvature is not symmetric since on different look-ahead times standard 

deviation starts from values below 0.05 p.u and the end values are in range of 

0.01 – 0.2 p.u..     
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Figure 4.19 Standard deviation in relation to the mean forecasted power on different 

look-ahead times. Solid line represents fitted model and the dots are the real values. 

 

Now that the models for mean values and standard deviation are obtained it is 
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Figure 4.20 Probability distributions on prediction horizon 6 hours ahead 
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equation (4.16), but the quantiles accuracy is analysed against the forecast data, 

which was created in chapter 4.5. The left hand side of the Figure 4.21 was cre-

ated without using any modifications to the probability densities and on the right 

hand side of the figure the probability intervals were slightly modified. Coverage 

plots can be made for each look-ahead hour separately, instead of looking all of 

the look-ahead times in a one coverage plot. A closer analysis revealed that on 

look-ahead hours 3-13 the measured quantiles were too accurate, or too tight. 

Therefore, instead of using those quantiles, the quantiles from 7-17 were used in 

order to have a more wider quantiles. The results of this modification are on the 

right hand side of the Figure 4.21, where an improvement of coverages can be 

seen to the situation without any modifications (left hand figure). One could see 

from the right hand side of the Figure 4.21 that the coverages match quite well to 

the theoretical coverages. There is a 5 % offset on the 10 % coverage, which 

means that the 10 % quantile is too wide, or in other words too pessimistic. The 

gap between measured and theoretical quantiles start to diminish and the optimal 

coverage ratio is obtained on 60 % coverage. Gap between measured and theo-

retical coverages begin to increase after the 60 % coverage finally ending up 80 

% coverage while the theoretical coverage should be 90%.  

 

 

Figure 4.21 coverage-coverage presentation. Measured coverage is represented with 

the dashed line and the theoretical coverage is represented as a solid line. 

 

The coverage-coverage diagram can only show information about the appearance 
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it is assumed that the shape of the forecast error pdf is a good approximation, 

although it is mentioned in (Bludszuweit, 2008) that the forecast error pdf is not 

fat-tailed enough on some forecast hours, which leads to underestimation of lar-

ger prediction errors, as one could notice from the Figure 4.21. However, it 

seems that the beta-distributed probability distributions are accurate enough to 

have a better understanding of the uncertainty of a forecast on different look-

ahead times. 

 

4.8 Bidding strategies 

On this chapter some of the assumptions that must be made on simulating market 

participating are presented. Also the idea of using probability information on 

bidding is presented 

4.8.1 Assumptions in making the bids 

When making bidding strategies and simulating market participating one must 

consider some assumptions. Assumptions must be made mostly about of the im-

pact of trading wind generation to the market and its influence on the Spot and 

imbalance prices. It was shown that the large amount of wind power in the mar-

kets will affect the market price by lowering it (Jónsson, 2008). The study, which 

was made in western Denmark, where wind penetration is highest in the Nordic 

countries, shows that there is a clear correlation between system price and wind 

penetration. However, in this thesis where we use Finnish area prices and the 

wind penetration is less than 1 %. Hence it is sufficient to assume that the effects 

of wind generation to the market price can be neglected. Also the unit size of a 

wind farm is relatively small and in Finland the wind farms are spread into a 

wide geographical area. Thus it is safely to assume that the prediction error 

caused by the intermittent nature of wind energy affects a little to the formulation 

of balancing energy prices. Although, that is not entirely true since the volume of 

regulation would be much smaller without wind generation since conventional 

generation is much more controllable and the uncertainty lies only on the con-

sumption estimation. 
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More importantly it is assumed that there is no subsidies on wind energy. Al-

though, that in Finland subsidies are used, but usually the reason of subsidies is 

that subsidies are used for temporarily to lower marginal costs of wind genera-

tion manufacture, in order to increase the willing of market participants to buy 

wind generation. Therefore subsidies are used for a certain amount of time and 

afterwards the wind generation is supposed to function without any subsidies. 

Thus, this thesis is in particular use after the period of subsidies, when all the 

possible gain for wind power is needed.  

4.8.2 Using point prediction 

Using a point prediction as a bid to the electricity trade is the best method for 

market participant, which does not have any other information about the future. 

The point prediction is usually made for each delivery hour at the time, and some 

cases if the prediction model creates predictions with interval that is less than 

one hour, then the power must be averaged to correspond one hour, since in 

Nord Pool electricity trade commodity is one hour energy delivery. Therefore, 

the trade is made with energy not with power, thus the energy delivery in one 

hour can be calculated from the one hour point forecast by using the following 

equation 

 

               (4.19) 

 

where      is the energy of power,      in a time period,   , which is usually 

one hour. Notice that the power delivery is then assumed to be constant in time 

length,    although the power is fluctuating constantly. Then if the point forecast 

is wanted to use as a bid it can be formulated with a following manner:  

 

     
           (4.20) 

 

where     
    is the bid to the electricity market. 
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As mentioned before, point forecasts will minimize the prediction error and thus 

using the point forecasts as bids it will transform the prediction errors to regula-

tion costs. 

4.8.3 Theory based on bidding with probabilistic intervals 

Instead of using point forecast as bids, one could take more probabilistic point of 

view on making bids, which allows to consider the uncertainty of a point fore-

cast. The uncertainty is considered by assuming that around the point forecast 

there is a certain probability to have values around the point forecast, which 

means that there is a certain probability distribution around the point forecast. 

The methodology to create these probability distributions is illustrated in chapter 

4.7. As said before, point forecasts, which aims to minimize prediction error, 

       provides estimates of expectation value,       of the distribution of     . 

Notice, that the      is thus expected to be random variable with a probability 

distribution. It can be denoted that     
  is the pdf of a random variable     , 

which means that the expectation value of that random variable is: 

 

 

             
   

 

 

 (4.21) 

 

Point forecast is thus linked to the expectation value by merely calculating an 

integral in equation (4.21). Now, if the actual energy at time t+k is assumed to be 

    
    then the error between contracted and actual energy is 

 

     
        

        
   

 (4.22) 

 

    
    can be a bid for Elspot or Elbas and or either the Elbas and Elspot bids 

combined. However, in this thesis we concentrate on making bids in only in Els-

pot market since the modeling of bidding in both markets is not a trivial task, as 

it is shown in (Linnet, 2005) and the examination of bidding in one market will 
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give enough information of functionality of the method. Thus the bid can be 

represented as bid for Elspot market 

 

     
        

    
 (4.23) 

 

Notice that if the      is a random variable it will lead that the bid error,     
    is 

also a random variable. In equation (4.24) the bid error. 

 

               
   

 (4.24) 

 

4.9 Formulating the regulation cost function 

By using the theory of probabilistic bidding and assumptions, which are 

represented in chapter 4.8.1, it is now possible to create a regulation cost func-

tion, which is used for to optimize the revenue. It was shown in chapter 2.3 how 

the revenue function is possible to formulate if one wants to participate in Elspot 

markets. The function in equation (2.1) is valid when the regulation costs and 

volumes are known. However when forecasting two days ahead one cannot say, 

which are the regulation costs at that time, and also trading with wind energy 

where the participants have a little influence on how much power the turbines 

produces, it is really uncertain what the power is at the delivery hour. However, 

participant can influence on the sign of bid error if the participant is more sensi-

tive for bid error to one direction than the other. In equation (4.25) loss expecta-

tion function,      for k- step ahead 

 

 
        

    
    

      
    

     
            

    
  

 

 

     
       (4.25) 

 

It is possible to notice that equation (4.25) has an analogy with the equation 

(2.6), where in both equations the regulation energy costs are subtracted from 

maximum possible income. As a difference function in equation (4.25) takes into 
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account the uncertainty of a forecast, which is paramount since we are dealing 

with wind after all. This transform the maximization of revenue to minimization 

of regulation costs, and thus therefore the optimization problem can be written 

as: 

 

 

    
   

    
    
    

         
     

 

 

     
       (4.26) 

 

where         
      is depending on the prediction error with a following man-

ner 

 
         

         
            

         
           

  (4.27) 

 

In Figure 4.22 regulation losses in function of prediction error in January 2010. 

Regulation cost are mean regulation costs from January. Average down regula-

tion cost is 16,44 €/MWh and up regulation cost is 8,92 €/MWh in that month. It 

is possible to see from the figure that down regulation costs are larger than the up 

regulation costs, since the larger the regulation cost is, the steeper the regulation 

loss curve will be. 

 

 

Figure 4.22 Regulation cost function. in the x-axis relative deviation from real power 

production and in the y- axis regulation losses in function of deviation. 
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It is possible to create other kind of regulation cost functions if the participant for 

instance wants to emphasise large or small prediction errors. However, the opti-

mization process is not so straight forward and very likely it must be carried out 

with iterative numerical methods. In the next chapter optimization process for 

function in equation (4.26) is represented. 

 

4.9.1 Optimal bid in day ahead market 

In order to find the optimal bid equation (4.26) is needed to be solved in respect 

of optimal bid,     
   

. It is shown that there is a global solution for the optimum 

bid by solving equation (4.26) (Linnet, 2005). The optimum bid can be written as 

 

 
    
        

   
 

    
    

    
         

      (4.28) 

 

where     
  is the cumulative probability distribution function of random varia-

ble      and regulation costs     
     and     

     are estimates of real regulation 

costs. Therefore, it is necessary to predict regulation costs for about 36 hours 

ahead. Prediction of regulation costs is not a trivial task since it includes predic-

tion of direction regulation need and its volume, also the prediction of market 

price is needed. However, the prediction of regulation cost is paramount in using 

this methodology since the only inputs to derive optimal bids are the regulation 

cost and methodology to derive probabilistic intervals.  

 

It is possible to deduce form the equation (4.28) that if the regulation costs are 

equal, then the optimum bid can be found from the inverse of CDF function in 

value 0.5, which is in other words is the median of the random variable     . 

Therefore, if the regulation costs are equal there is no need for adjust the bid and 

point forecast must be used instead. However, this leads to a problem since the 

methodology, which was represented in chapter 4.7 creates probabilistic intervals 
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centered around the distribution‘s mean, which differs from the distribution‘s 

median, since most of the distributions are fat tailed and thus non symmetric. 

Probabilistic distributions are centered around the mean value and since there is 

no closed form solution for beta distribution‘s median, some measures must be 

taken in order to create median centered distributions. 

 

The problem is solved by dividing the power range into 100 equally sized power 

bins and creating probability intervals to each bins. Also for the each power bin 

the median of the probability density must be calculated. Then if the point fore-

cast at time t is assumed to be      the absolute deviation for forecast bin i can 

be calculated with equation (4.29) 

 

       
                   

        (4.29) 

 

Deviations for each forecast bin from the point forecast must be calculated and 

find the minimum of the deviations,       
          

. Thus, the probability interval 

of this median centered forecast can be found from the same bin, i as the mini-

mum of deviation is located. This forecast bin and the corresponding pdf is then 

the median centered pdf for point forecast     . Afterwards the optimal bid can 

be calculated by using equation (4.28). This previously illustrated method allows 

one to use optimal bid without median centered probability intervals.  

 

It can be seen from equation (4.28) that the optimal bid can be found from a cer-

tain quantile of the predictive distribution. The optimal quantile depends on the 

ratio of regulation costs. For instance in 2009 and 2010 optimal monthly and 

quarterly optimal bidding ratios are represented in Table 4.1. The ratios are cal-

culated by calculating average up- and down regulation costs at the correspond-

ing time windows.  
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Table 4.1 Optimal bidding ratios from CDF.  

 

2009 2010 

month     
          

          
          

      
1 

 

0.549 

 

0.352 

2 0.324 0.227 0.191 0.095 

3 

 

0.179 

 

0.090 

4 

 

0.122 

 

0.171 

5 0.359 0.378 0.355 0.420 

6 

 

0.599 

 

0.489 

7 

 

0.301 

 

0.713 

8 0.454 0.724 0.626 0.518 

9 

 

0.241 

 

0.588 

10 

 

0.625 

 

0.696 

11 0.384 0.312 0.574 0.803 

12 

 

0.324 

 

0.382 

 

It can be noticed from the table above that the results are consistent with regula-

tion cost presented in Table 2.2 and Table 2.3. Optimal ratios that are under 0.5 

indicates that the optimal bid can be found underestimating the power produc-

tion, since the down regulation cost prices are larger than the up regulation cost 

prices. In example June in 2009 when regulation prices ratio is 0.67, which indi-

cates that up regulation is more expensive than the down regulation. By deducing 

from the price ratio the optimal bid must be found by overestimating the point 

forecast, since the ratio is larger than 0.5.  

 

One could now also see from the Table 4.1, which are the most important prob-

ability quantiles from the bidding point of view. One could see that most of the 

ratios are close to the median 0.5, which means that the probability quantlies 

close to the point forecast must be accurate. The Figure 4.23 also confirms this 

fact, where the deviation between optimal monthly and quarterly bidding ratios 

is taken from the median (ratio 0.5). In the figure quantiles can be seen as the 

area between negative and positive ratios, for example 20 % quantile is from 0.1 

to -0.1 and 50 % quantile is from 0.25 to -0.25 and so on.  
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Figure 4.23 Deviation of the optimal bidding ratios from the median 

 

The negative sign on the optimal bidding ratio tells that at that time it is more 

suitable to bid more than the point forecast and on positive sign, it is the con-

trary. It can be noticed that on months one to 12 the bidding ratios are clearly 

negative all the time, which suggest to bid more than the point-forecast suggests. 

However, on months six to 12 it is not so clear should one bid more or less than 

the point-forecast, since the data from 2009 and 2010 demand different kind of 

behavior. It is still clear that on summer months the point forecast might be a 

good compromise if one do not know certain what are the tomorrows regulation 

costs. One could also see that the most of the optimal bidding ratios are inside of 

the ratios ±0.3, which is the 60 % quantile. Therefore, the accuracy of quantiles, 

which are below 60 % is crucial in order to have accurate bids. The accuracy of 

those quantiles can be seen from the Figure 4.21 where the measured and theo-

retical coverage is presented. From the coverage point of view those quantilies 

are actually accurate enough to trust them. 
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4.10 Simulation of optimal bidding in Nord Pool 

In this chapter some simulations are made with the real power and real market 

data. The simulations are made with a simulation model, which tries to represent 

a real life wind power participant behavior in Nord Pool. Thus, the idea is that 

only history data and the forecasted wind speed and direction made by FMI can 

be used. The assumption is that the participant will only participate in Elspot 

market and all of the imbalances will be dealt in the balance settlement. Forecast 

model that is represented in chapter 4.5 is used and the methodology to derive 

probability distributions can be found from the chapter 4.7. Some information of 

the characteristics of Nord Pool can be found from the chapter 0. The simula-

tions are made for years 2009 and 2010 by using Finland‘s area prices and regu-

lation prices. 

 

The simulations are made every day as the participating to the Nord Pool re-

quires – bids must be given to the market before 1 p.m., when the day-ahead 

market closes. Also the simulations are made with the same available informa-

tion as the owner of Raahe‘s wind park has at that time. In order to compare dif-

ferent simulation result some indices must be used. In equation (4.30) the ratio 

between the maximum revenue and bid revenue.  

 

 
    

         

    

     
    
    

     
        

    
    
            

    

    
    

     
   

  

   

     

   

 (4.30) 

 

Main properties of the equation above is that it is bounded from        and if 

the difference between maximum revenue and bid revenue is zero then the   is 

one and the other limit is   , which is not so likely outcome. In reality the low-

er limit is more likely zero. It is also possible that the index can be over 1 if par-

ticipant is gaining money from the markets (negative regulation costs). 

 

The main point of the simulation is to see whether the optimal bidding method 

give any extra profit compared to the point-forecast as a source of bid and what 

is the potential of this method. 
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4.10.1 Simulation using created forecast model 

In this chapter the simulation is run by using persistence model and the created 

forecast model. The results are compared to the scenario where prediction errors 

are zero, perfect forecast. The simulation results are represented in the Table 4.2. 

The simulation starts first day of the January 2009 and ends on the 30.12.2010. 

In this simulation it assumed that the bid is simply the point-forecast, which the 

created forecast model can provide. Therefore, the results do not add any ‗intel-

ligence‘ to the bidding by considering the special characteristics of the Nord 

Pool.  

 

Table 4.2 Simulation results for the persistence model, created forecast model and the 

perfect forecast 

  Persist. 
created for.  
model perfect 

Bid energy in Elspot [GWh] 47.33 40.76 46.04 

Total up regulation [GWh] 21.28 14.51 0.00 

Total down regulation [GWh] 22.56 9.23 0.00 

Total regulation [GWh] 43.84 23.40 0.00 

Down regulation cost [k€] 135.2 41.23 0.00 

Up regulation cost [k€] 64.75 50.57 0.00 

Total regulation losses [k€] 200.0 91.80 0.00 

Av. down regulation cost unit [€/MWh] 4.84 5.72 0.00 

Av. up regulation cost unit [€/MWh] 3.30 3.72 0.00 

Average energy price [€/MWh] 42.20 44.55 46.54 

Revenue [mil. €] 1.94 2.05 2.14 

Revenue ratio, γ 0.91 0.96 1.00 

 

First of all, it can be noticed from the table above that the need of regulation is 

nearly halved by using the advanced forecast model. Although, in advanced 

forecast model almost half of the energy flow goes via balance settlement as it is 

possible to see by comparing the rows ‗Total regulation‘ and ‗Bid energy in Els-

pot‘. The up and down regulation need for advanced model is a bit biased to the 

up regulation, which means that the model underestimates the power production. 

This same conclusion can be seen from the Figure 4.15, where the systematic 

error is shown. The simulation was run with the bias corrected forecast but it did 
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not show any improvements. The linear bias correction might not be the suitable 

method for this particular application.  

 

In the persistence forecast the up and down regulation need is about an equal. 

However, an equal regulation need do not mean that the regulation costs are dis-

tributed evenly since the regulation prices are biased in Nord Pool, as it was 

shown in the Table 2.2 and Table 2.3. It is possible to see from the persistence 

model‘s up and down regulation costs that the down regulation costs are twice 

the size of down regulation costs, although the regulation need to both directions 

is equal. On the case of advanced prediction model there is not a similar behavior 

on the relations of regulation need and regulation cost. The up regulation costs 

are 50.57 k€ and the down regulation costs are 41.23 k€. The total regulation 

losses are thus 91 k€, which is more than two times lower than the persistence 

model‘s regulation losses. One conclusion in this point can be drawn that if one 

is using persistence model as a primary forecast model, the created forecast 

model saves in two years more than 100 k€. The average regulation costs unit 

describes the average regulation loss unit [€/MWh] what the participant has paid 

extra on the regulation compared to the Elspot price. It can be noticed that aver-

age regulation unit costs are slightly lower on the persistence forecast than the 

case of advanced forecast model. The real regulation costs in years 2009 and 

2010 are represented in Table 2.2 and Table 2.3. The average regulation unit 

costs are quite similar in the case of created forecast model than the mean prices 

in on the tables. The average down regulation unit cost is 2 €/MW more expen-

sive than the average up regulation unit cost. 

 

The interesting fact is that if the if the average price of the produced energy is 

calculated, which can be seen from the Table 4.2, it shows how the regulation 

losses transfers directly to the price of wind energy what the participant gets, by 

lowering it. The average electricity price in Finland was 46.81 €/MWh in the 

simulation‘s time period, which means that even the perfect forecast cannot pro-

vide the mean electricity price as it is possible to see from the Table 4.2. This 

can be explained by the fluctuating nature of wind power - more power is sold 
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when the price is low and less power is sold when the price is high ending up 

with a lower mean energy price. Even for the advanced prediction model the 

energy price is 2 €/MWh lover than it could be. This is an extra cost only for the 

energy sources, which are by nature intermittent. This is one of the reasons how 

the current market structure penalizes renewable sources, since they are difficult 

to control. The conventional generations, i.e. gas power are easy to control in the 

delivery hour thus these costs, which are caused by imbalances are diminished. 

This kind of cost will affect the profitability of wind power and thus difficult its 

position in electricity market. Of course, it is natural to allocate the costs of im-

balances to the sources, but one could ask is 2 €/MWh difference too much.  

 

The revenue by using the advanced model would give 96 % of the maximum 

revenue, which is quite good improvement if the revenue is compared to the rev-

enue from persistence model, which is only 91 % what it could be. However 

there is still room for improvements, since the 4 % point improvement in reve-

nue mean in actual revenue almost 100 k€ in two years.          

4.10.2 Simulation using optimal bidding ratios 

In this chapter simulation of wind power participant is studied by using the op-

timal bidding ratios on hourly, daily, monthly or quarterly level. The optimal 

bidding ratios are calculated by using two different scenarios. In the first scena-

rio, the mean optimal bidding ratios are calculated by calculating first the mean 

of regulating costs and then using the results to calculate optimal bidding ratios 

with equation (4.28). Second scenario is that the mean optimal bidding ratios are 

calculated by using the hourly regulating costs and then taking the mean of the 

hourly regulation costs. In Figure 4.24 mean optimal bidding ratios are shown 

for quarterly and monthly bidding. It can be noticed that by using the optimal 

bidding ratios with mean regulation costs as an input suggests one to bid more 

aggressively than using the mean bidding ratios. 
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Figure 4.24 Optimal bidding ratios on monthly or quarterly level by using mean regula-

tion costs as an input or mean optimal bidding ratio. 

 

The both of the scenarios required that the regulation costs are known. There-

fore, this simulation assumes that the participant have a perfect regulation costs 

prediction model and thus the simulation results are best possible scenarios, 

which is, like always, too optimistic. This simulation will give some valuable 

knowledge what is the potential of optimal bidding, or in other words, how much 

the revenue can be increased if the up and down regulation unit costs are known. 

In the Table 4.3 and Table 4.4 simulation results are represented by using the 

two previously mentioned scenarios.  
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Table 4.3 Scenario one: Simulation results by using optimal bidding ratios by calculat-

ing first the mean regulation costs and then the mean bidding ratios 

  Daily Monthly Quarterly 

Bid energy in Elspot [GWh] 9.73 35.11 33.22 

Total up regulation [GWh] 36.72 20.24 19.37 

Total down regulation [GWh] 4.211 9.31 6.55 

Total regulation [GWh] 37.15 29.55 25.92 

Down regulation cost [k€] 2.12 34.35 24.36 

Up regulation cost [k€] 117.42 56.36 64.66 

Total regulation losses [k€] 119.54 91.80 89.02 

Av. down regulation cost unit [€/MWh] 5.72 4.69 4.97 

Av. up regulation cost unit [€/MWh] 3.86 3.88 3.38 

Average energy price [€/MWh] 43.95 44.57 44.61 

Revenue [mil. €] 2.04 2.05 2.05 

Revenue ratio, γ 0.94 0.96 0.96 

 

 

It is possible to see from the Table 4.3 that the revenue is surprisingly low when 

the daily optimal ratios were used. The revenue is even lower than the revenue 

by using the advanced forecast model. The reason behind this is that the optimal 

bidding ratios by using daily mean prices suggest a participant to bid more ag-

gressively than using mean bidding ratios. Therefore, if there is a regulation hour 

to another direction than the mean daily bidding ratio suggest it is possible to end 

up with huge losses. By comparing the simulation results from Table 4.3 and 

Table 4.4 one could see that using the mean bidding ratios, without calculating 

them from the mean regulation costs provide a better revenue on every time ho-

rizon.  
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Table 4.4 Scenario two: Simulation results by using optimal bidding ratios by calculat-

ing the optimal bidding ratios on hourly  

  Hourly Daily Monthly Quarterly 

Bid energy in Elspot [GWh] 77.22 41.12 37.32 36.90 

Total up regulation [GWh] 23.46 19.29 16.70 16.67 

Total down regulation [GWh] 54.64 14.37 7.98 7.53 

Total regulation [GWh] 78.10 33.66 24.68 24.20 

Down regulation cost [k€] -41.35 18.40 31..79 31.23 

Up regulation cost [k€] -30.20 24.98 52.95 56.62 

Total regulation losses [k€] -71.54 43.37 84.74 87.91 

Av. down regulation cost unit [€/MWh] 0.99 4.31 5.66 5.71 

Av. up regulation cost unit [€/MWh] 0.95 2.45 3.60 3.54 

Average energy price [€/MWh] 48.10 45.55 44.70 44.63 

Revenue [mil. €] 2.14 2.10 2.06 2.06 

Revenue ratio, γ 1.03 0.98 0.96 0.96 

 

The interesting thing by using the hourly regulation costs is that one could ac-

tually get more revenue than the perfect forecasting can yield. The reason behind 

his is quite natural since the regulation costs can sometimes be negative, which 

means that the participant can actually gain money from the imbalances. Ideally 

market is not constructed with a manner, which allows one to gain from imbal-

ances but is not a rare phenomenon in the market, as it was mentioned in the 

chapter 2.2.1. Using of the hourly optimal bidding ratios is not recommended for 

the electricity market point of view since if the up or down regulation cost are 

negative or really close to zero it causes a situation where market participant 

must bid all or nothing to the market. One could have already noticed from the 

equation (4.28) that if the up regulation cost is zero, from the optimization point 

of view participant should not bid anything and buy all of the energy via balanc-

ing settlement thus avoiding the risk of down regulation costs. On the contrary, if 

the down regulation cost is zero then the participant must bid as much as the no-

minal power of the wind farm is. This behavior causes a binary choice to the 

electricity grid, which would definitely affect to the regulation prizes. However, 

in the simulation it is assumed that the behavior of the participant do not affect to 

the regulation prizes and thus this kind of behavior is allowed.       
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One could see from the tables above how the different time horizon reflects to 

the need of regulation. While the time horizon is increased, where the optimal 

bidding ratio is calculated, more stable the bidding becomes. From the Figure 

4.24 one could see that monthly bidding ratios varies from 0.1 – 0.8, whereas the 

quarterly bidding ratios varies between 0.25 – 0.65. This directly transfers to the 

need of regulation since the bid, since the bid which minimizes the need of regu-

lation can be found from the bidding ratio of 0.5. For the scenario two, one could 

see how the average energy price is decreased when the averaged time horizon is 

increased, which suggest to use bidding ratios, hourly or daily level. The regula-

tion losses will nearly double (37 k€ ->85 k€) when using the optimal monthly 

bidding ratio instead of daily bidding ratio.  

 

However, the scenario two can provide an improved revenue in every time hori-

zon than the advanced prediction model. Even the bidding ratio that is averaged 

on quarterly basis provided a better revenue than the advanced prediction model. 

If one is comparing those revenues to the revenue from persistence model, the 

different on regulation losses is 112 k€ by using the quarterly bidding ratios, 

which is the worst revenue from the studied optimal bidding ratios.  

 

As the results from using mean optimal bidding ratios shows that the revenue can 

be increased by considering the special characteristics of the Nord Pool. Thus, 

the creation of probability intervals is not vain if the gain from imbalances of 

regulation costs are exploited to the fullest. The remaining question is now how 

to predict regulation costs or optimal bidding ratios, since the model needs as an 

input a bidding ratio.  

4.10.3 Simulations with different bidding strategies  

Now that the capability of using probability information as a base of bidding is 

proved, couple of real life bidding scenarios are simulated. In this study no ad-

vanced regulation cost prediction model were used, which could improve the 

results by far. However, it is possible to see from the Figure 4.24 that there is 

clearly some periodically in the optimal bidding ratios on monthly and yearly 
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level. Therefore, simulation was made for year 2010 by using bidding ratios 

from year 2009.  

 

The balance settlement usually takes time, which means that the regulation pric-

es of day before the bidding day are unknown. Thus the market participant can-

not use the day before information as an aid for making the bids today. In this 

simulation optimal bidding ratios were used on monthly and quarterly basis. In 

the Table 4.5 simulation results by using the optimal bidding ratios of 2009 on 

2010 

 

Table 4.5 Simulation results on year 2010 by using optimal bidding ratios of year 2010  

  

Adv. 
Pred. 

model Monthly Quarterly 
Perf. 

prediction 

Bid energy in Elspot [GWh] 20.19 18.53 18.32 22.81 

Total up regulation [GWh] 7.29 8.54 8.31 0 

Total down regulation [GWh] 4.67 4.26 3.82 0 

Total regulation [GWh] 11.96 12.80 12.13 0 

Down regulation cost [k€] 26.74 22.44 19.98 0 

Up regulation cost [k€] 30.48 35.40 32.97 0 

Total regulation losses [k€] 56.96 55.72 52.95 0 

Av. down regulation cost unit [€/MWh] 7.20 7.32 7.16 0 

Av. up regulation cost unit [€/MWh] 4.83 4.87 4.71 0 

Average energy price [€/MWh] 52.06 52.12 52.24 54.56 

Revenue [mil. €] 1.19 1.19 1.19 1.24 

Revenue ratio, γ 0.95 0.95 0.96 1.00 

 

It can be seen from the table above that by using the previously year optimal 

bidding ratios, it is possible to decrease the costs of regulation by a little. The 

biggest revenue can be obtained by using the quarterly bidding ratios of 2009. 

The regulation losses are diminished with 4 k€ if the revenue is compared to the 

advanced prediction model. The difference is not a big, but by using the quarter-

ly averaged optimal bidding ratios it makes it possible to distribute the regulation 

risk, since the regulation costs behaves in a same manner on quarterly basis. The 

variation within the years on monthly averaged optimal bidding ratios is much 

greater, as it is possible to see from the Figure 4.24, and the revenue is not as big 
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as on quarterly averaged bidding ratios. The average regulation costs units are 

lowered by using the quarterly averaged bidding ratios, as it is possible to see 

from the Table 4.5.  

 

The main idea is still valid by using a real life solution: The best possible reve-

nue cannot be obtained by minimizing the regulating power, but instead mini-

mizing the regulation costs. In Table 4.5 it can be seen that the minimum of re-

gulating power is obtained by using the advanced prediction model, but still the 

revenue is smallest of the three simulated scenarios. By using this method with 

more advanced regulation cost prediction model, the benefits would be even 

greater. The Figure 4.25 can be seen as an example of quantile forecast, where 

the different probability quantlies can be seen as different colors of green. It can 

be noticed that the probability intervals varies depending what is the forecasted 

power and what is the look-ahead hour.  

 

Figure 4.25 Quantile forecast. White line is the optimal bidding forecast, red line is the 

actual power, blue line is the point forecast. The different colours of green are the prob-

ability quantiles from 10 % to 90 % 
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5 Conclusion 

The purpose of this thesis was to show that there is a way to reduce the regula-

tion losses by adjusting the bids in the electricity market. In order to prove the 

previous statement a simple forecast model was created. The created forecast 

model‘s performance was analyzed against the reference model, which was per-

sistence model, and it was showed that the forecast model outperforms the refer-

ence model in every look-ahead hour. The created forecast model also performed 

rather well against the five different forecast models, which performance was 

studied in (Pinson, 2006), although the performances of the created model and 

the five different forecast models are not straightly interpret, since the perfor-

mance of a forecast model depend on the location where the forecast is made. 

However, as a result the created forecast model‘s performance was seen to fulfill 

the requirements, which were given to it.     

 

The theory behind the optimal bidding method was studied in (Linnet, 2005) and 

the results of that study worked as a foundation to derive optimal bids in this 

thesis. The theory requires that the optimal bid can be found from a certain prob-

ability quantile of a probability distribution. Therefore, probability distributions 

of forecast error was created. The probability distributions were created with the 

method introduced in (Bludszuweit, 2008). It assumes that the forecast error dis-

tribution is beta distributed, which provides forecast error distributions with a 

sufficient accuracy, as it was shown in the thesis. However, there are better ways 

to create probabilistic distributions and since the accuracy of probability is the 

most important input in the optimal bidding, by using more advanced methods to 

derive probability distribution the method would function more accurately and 

thus the market participant‘s revenue would increase. 

 

In order to see whether the optimal bidding method really improve the wind 

power participant‘s revenue and does the created forecast model and probability 

error distribution function in a real life case, some simulations were made from a 

Finnish market participant perspective. The simulations proved that there is a 
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huge potential in optimal bidding method, which improves the market partici-

pant‘s revenue instead of using a point-forecast as a bid. Simulations were made 

by using the optimal regulation costs, which are the inputs to the model, and also 

using the history of regulation costs. The optimal regulation cost ratios were cal-

culated on hourly, daily, monthly and quarterly basis, which means that the ac-

tual regulation prices and Elspot-prices were know at the bidding moment. Of 

course, a perfect regulation price and Elspot-price model is hard to create, but 

using these optimal regulation costs it was possible to analyze the potential of 

optimal bidding method. 

 

In this thesis the weight was more given to the potential of optimal bidding and 

to see is there any potential for a market participant to use it. Therefore, ad-

vanced forecast model for regulation prices and Elspot-prices was not studied, 

although the method only needs up and down regulation costs as an input, and by 

using the ratio between those prices the optimum quantile can be found. Howev-

er,  it was important to see how the method would work in a real life situation. It 

was noticed that there were correlation in regulation cost ratios on yearly level 

and thus the simulations were made on 2010 by using the regulation cost ratios 

lagged with one year. Surprisingly, without having a forecast model for regula-

tion cost ratios, the revenue was higher than just using point forecasts as bids. 

 

The ratio between regulation costs and Elspot prices is quite low in Nord Pool, 

which means that the electricity price is much higher than the cost that the im-

balances induces to the market participant. This leads to the situation that the 

regulation losses are relatively much smaller than the revenue from Spot trade. 

Of course, from a market participant point of view this does not matter since the 

losses are always taken from the market participant‘s pocket. However, the bene-

fits of optimal bidding would be much clearer if the cost of regulation and Els-

pot-prices would be closer to each other. Therefore, making this study for other 

electricity market could lead to different results. For instance, a similar study in a 

Dutch electricity market resulted much clearer gain by using the optimal bidding 

method instead of using point forecast as a bid (Pinson, 2006). 
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The most important areas of further study would be to create a forecast model for 

regulation price and Elspot price, or if it would be possible to create a model to 

forecast directly optimal bidding ratios. Also it would be important to create 

more accurate probability intervals, which would improve the accuracy of op-

timal bids. In this thesis it was only studied bidding in day ahead market, Elspot. 

In real world it would be possible to bid also in Elbas market, which could also 

reduce the regulation costs. Therefore, bidding in the day ahead market and the 

intraday market would be a interesting step forward from this study.  
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