3rd Oxyfuel Combustion Conference Ponferrada, Spain, 9th - 13th September 2013

# 3D Modelling of Limestone Reactions in Oxygen Fired CFB

Presented by:Sirpa RahialaCo-authors:Kari Myöhänen, Timo Hyppänen

## **Presentation outline**

- 3D CFB furnace model.
- Limestone reactions in air-fired and oxygen-fired CFB combustion.
- Modelling results at different furnace temperatures.
- Utilization of steady-state model results for transient particle model.
- Modelling results of Oxy-CFB-300 project.
- Discussion and conclusions.

Acknowledgements:

This work was carried out in the Carbon Capture and Storage Program (CCSP) research program coordinated by CLEEN Ltd. with funding from the Finnish Funding Agency for Technology and Innovation, Tekes.

## **Three-dimensional model**

- A steady-state, semi-empirical model, which describes the CFB furnace process (Myöhänen and Hyppänen, 2009).
  - Linked with sub models for separators and external heat exchangers.
- 3D-modelling of furnace based on control volume method.
- Validation based on field tests at pilot scale and full scale units.



Modeled oxygen profile of a large scale CFB combustor

## Limestone reactions in CFB combustion



Above calcination temperature: Calcination  $CaCO_3 \rightarrow CaO + CO_2$ Sulfation  $CaO + SO_2 + \frac{1}{2}O_2 \rightarrow CaSO_4$ 

Below calcination temperature: Carbonation CaO + CO<sub>2</sub>  $\rightarrow$  CaCO<sub>3</sub> Direct sulfation CaCO<sub>3</sub> + SO<sub>2</sub> +  $\frac{1}{2}O_2 \rightarrow$  CaSO<sub>4</sub> + CO<sub>2</sub>

Reducing conditions:

Desulfation (decomposition of sulfate) CaSO<sub>4</sub> + CO  $\rightarrow$  CaO + SO<sub>2</sub> + CO<sub>2</sub>

## Simplified model equations for limestone

Empirical solid concentration fields for particle sizes *i*  

$$\varepsilon_{sorb,i} = (\varepsilon_{btm} - \varepsilon_{top}e^{c_{di}(H)}e^{-c_{tr}h} + \varepsilon_{top}e^{c_{di}(H-h)}$$
  
Continuity equation for sorbent (particle size *i*)
  
 $\int_{A} \varepsilon_{sorb,i}\rho_{sorb}\mathbf{v}_{sorb,i} \cdot d\mathbf{A} = \int_{V} \phi_{sorb,i}^{''} dV + \int_{V} R_{sorb,i}^{''} dV - \int_{V} \sum_{j,j \neq i} k_{C,sorb,i}\rho_{sorb} dV + \int_{V} \sum_{j,j \neq i} k_{C,sorb,j}\rho_{sorb,j}\rho_{sorb} dV$ 
  
convection sources reactions comminution out comminution in
  
Reactivity equations for different reactions
 $k_{car,ci} = 0.0169 \ a_{carbi} \exp\left(-\frac{4026}{T}\right)(p_{eq} - p_{eq})A_{m0,CaO}A_{caCO_2}$ 
  
 $k_{carb,i} = 0.0169 \ a_{carbi} \exp\left(-\frac{2400}{T}\right) \exp(-8 \ X_{casO_4}) C_{SO_2}C_{Q,}A_{m0,CaO}A_{CaCO_3}$ 
  
 $k_{carb,i} = 0.016 \ a_{carbi} \exp\left(-\frac{2400}{T}\right) \exp(-8 \ X_{casO_4}) C_{SO_2}C_{Q,}A_{m0,CaO}A_{CaCO_3}$ 
  
 $k_{carb,i} = 0.016 \ a_{carbi} \exp\left(-\frac{2400}{T}\right) \exp(-8 \ X_{casO_4}) C_{SO_2}C_{Q,}A_{m0,CaO}A_{CaCO_3}$ 
  
 $k_{carb,i} = 0.016 \ a_{carbi} \exp\left(-\frac{2400}{T}\right) \exp(-8 \ X_{casO_4}) C_{SO_2}C_{Q,}A_{m0,CaO}A_{CaCO_3}$ 
  
 $k_{carb,i} = 0.016 \ a_{carbi} \exp\left(-\frac{1000}{T}\right) C_{CO}A_{m0,CaCO_3}M_{CaCO_3}$ 
  
 $k_{carb,i} = 0.016 \ a_{carbi} \exp\left(-\frac{1000}{T}\right) C_{CO}A_{m0,CaCO_3}M_{CaCO_3}$ 
  
 $k_{carb,i} = 0.005 \ a_{desu,i} \exp\left(-\frac{10000}{T}\right) C_{CO}A_{m0,CaCO_3}M_{CaCO_3}$ 
  
 $k_{carb,i} = \sum_{k,reac,i} \varepsilon_{r,i}\rho_r$ 
  
Combined reaction rates for sorbent species  $r$ 
  
 $R_{r,i}^{''} = \sum_{k,reac,i} \varepsilon_{r,i}\rho_r$ 
  
Concentration fields of different species  $W_{r,i}$ 
  
 $k_{carb,i} = 0.005 \ a_{desu,i} \exp\left(-\frac{10000}{T}\right) C_{CO}A_{m0,CaCO_3}M_{CaCO_3}$ 
  
 $k_{carb,i} = \sum_{k,reac,i} \varepsilon_{r,i}\rho_r$ 
  
Concentration fields of different species  $W_{r,i}$ 
  
 $k_{carb,i} = \sum_{k,reac,i} \varepsilon_{r,i}\rho_r$ 

# Modelling the effect of furnace temperature on sulfur capture

- The model cases were based on earlier study, which investigated conversion of Lagisza CFB to oxygen fired mode (Myöhänen, et al., 2009).
- Cases:
  - AirRef: Air-fired reference
  - Oxy\_HighT: Oxygen-fired high temperature
  - Oxy\_LowT: Oxygen-fired low temperature
  - Oxy\_MidT: Oxygen fired middle temperature
- The model cases in this presentation differ from the cases presented in the abstract:
  - Same gas recycle ratio in each oxygen-fired case.
  - No external heat transfer units.
  - Updated reactivity correlations.



## **Operating conditions**

#### **Process data**

| Parameter                      | Unit    | AirRef | Oxy_HighT | Oxy_LowT | Oxy_MidT |
|--------------------------------|---------|--------|-----------|----------|----------|
| Fuel flow rate                 | kg/s    | 13.4   | 13.4      | 13.4     | 13.4     |
| Limestone flow rate            | kg/s    | 1.6    | 1.6       | 1.6      | 1.6      |
| Ca/S-ratio in feed             | mol/mol | 3.1    | 3.1       | 3.1      | 3.1      |
| Furnace gas flow rate          | kg/s    | 116    | 116       | 116      | 116      |
| Recycle gas ratio (wet)        | %       | 0      | 71        | 71       | 71       |
| Primary oxidant O <sub>2</sub> | %-wet   | 20.6   | 23.8      | 23.8     | 23.8     |
| Bed temperature                | °C      | 870    | 963       | 817      | 870      |
| Furnace exit temperature       | °C      | 855    | 945       | 791      | 843      |
| Flue gas O <sub>2</sub>        | %-wet   | 2.3    | 1.9       | 1.9      | 1.9      |
| Flue gas CO <sub>2</sub>       | %-wet   | 15.2   | 62.7      | 62.1     | 62.2     |
| Flue gas H <sub>2</sub> O      | %-wet   | 9.4    | 32.5      | 33.1     | 33.0     |

#### Fuel analysis

| Proximate analysis | Char | Volatiles | Moisture | Ash  |      |
|--------------------|------|-----------|----------|------|------|
| (%, as fired)      | 41.6 | 23.4      | 12.0     | 23.0 |      |
| Ultimate analysis  | С    | Н         | Ν        | S    | 0    |
| (%, daf)           | 80.6 | 5.2       | 0.8      | 1.8  | 11.5 |
|                    |      |           |          |      |      |

HHV (MJ/kg, in d.s.) 23.06

Limestone: Calcitic limestone, 97% CaCO3, 3% inert

### Operating conditions vs. calcination curve



## Calcination and carbonation profiles



## Total sulfur capture and sulfur dioxide profile



Sulfur capture = sulfation + direct sulfation – desulfation

### Indirect and direct sulfation and desulfation in Oxy\_MidT



## Sorbent reactions at lower vs. upper furnace (Oxy\_HighT)



## Molar balance of sulfur dioxide



| Case      | S-retention | Flue gas SO2 |  |
|-----------|-------------|--------------|--|
|           | (%-mol)     | (ppm-wet)    |  |
| AirRef    | 84.9        | 195          |  |
| Oxy_HighT | 93.0        | 368          |  |
| Oxy_LowT  | 82.2        | 1286         |  |
| Oxy_MidT  | 89.1        | 898          |  |

## Utilization of the steady-state 3D-data for a transient single particle model for limestone



Sulfur capture solved by particle model (Rahiala et al., 2013)

## Calculation of Oxy-CFB-300 Compostilla

- Calculation cases:
  - Oxy100 Oxygen-fired 100% load
  - Oxy40 Oxygen-fired 40% load
  - Air90 Air-fired maximum (90% load)
  - Air40 Air-fired 40% load
- Modelled operating conditions:







### Sulfur dioxide and total sulfur capture in Oxy-CFB-300



## Molar balance of sulfur dioxide

| Case   | Ca/S      | S-retention | Flue gas SO <sub>2</sub> |
|--------|-----------|-------------|--------------------------|
|        | (mol/mol) | (%-mol)     | (ppm-wet)                |
| Oxy100 | 2.7       | 97.2        | 327                      |
| Air90  | 3.1       | 96.0        | 97                       |
| Oxy40  | 3.1       | 85.4        | 1966                     |
| Air40  | 3.0       | 96.9        | 64                       |

## **Discussion and conclusions**

- Limestone reactions and sulfur capture in air-fired and oxygen-fired CFB have been studied by three-dimensional modeling of the furnace.
- Based on the model results, the sulfur capture in oxygen-fired mode is highest when the operating temperature is above calcination temperature and the sulfur capture is by indirect sulfation.
- The sulfur retention is better in oxygen-fired than air-fired conditions, because of higher SO<sub>2</sub> concentration inside the furnace.
- At low load operation, the furnace temperature drops below the calcination temperature and the sulfur capture occurs by direct sulfation and the sulfur retention is smaller. This leads to higher SO<sub>2</sub> concentration, which compensates the decrease.
- The sorbent reaction rates are fastest at the bottom of the furnace, where the sorbent concentration is high. The volume share of this region is very small however, thus the largest proportion of the integrated reactions are occurring in the upper furnace, above the dense bed region.

## References

- Myöhänen, K. and Hyppänen, T. (2011). A three-dimensional model frame for modelling combustion and gasification in circulating fluidized bed furnaces. *International Journal of Chemical Reactor Engineering*, 9. Article A25.
- Myöhänen, K., Hyppänen, T., Pikkkarainen, T., Eriksson, T., and Hotta, A. (2009). Near zero CO2 emissions in coal firing with oxy-fuel CFB boiler. Chemical Engineering & Technology, 32(3), pp. 355-363.
- Rahiala, S., Myöhänen ,K., and Hyppänen, T. (2013). Modeling the behavior of limestone particles in oxy-fuel CFB processes. *Fuel*. Article in press.