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The Switch introduction
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Facts & Figures

Finland based, Est. 2006

Annual turnover in 2010 134 M€

280 employees in 7 countries

www.theswitch.com



Grid codes
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Grid codes are national minimum technical regulations and 

requirements for interconnection that an electrical generating unit 

must fulfill

Purpose of the grid codes is to secure a reliable, safe and efficient 

operation, maintenance and functioning of the electrical grid

The main requirements common to most of the grid codes:

Voltage and frequency operating range

Active power control / Frequency control

Reactive power control / Voltage control

Fault Ride Through (FRT)

Low-Voltage Ride-Through (LVRT)

High-Voltage Ride-Through (HVRT)



  

Grid code FRT requirements
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Voltage Ride-Through (VRT) Boundaries [2]

[1] F. Iov et al., Mapping of grid faults and grid codes, Risø-R-1617(EN), Risø National Laboratory, July 

2007

[2] The Technical Basis for the New WECC Voltage Ride-Though (VRT) Standard, June 13  2007, 

Available: http://www.wecc.biz/Standards/Development/



Grid code FRT requirements
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LVRT and HVRT profiles of some national grid codes



Grid code FRT requirements
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1. Stay connected during the grid faults (VRT boundaries)

2. Fast active power restoration to pre-fault values

3. Support network voltages during a fault with reactive current (optional)

4. Distribute short circuit current during a fault (optional)



FRT control development of The Switch

Full-Power Converters
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All types of faults 1-phase, 2-phase and 3-phase must be 
tolerated



FRT control development of The Switch

Full-Power Converters
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Improved grid converter control to meet the latest FRT 
requirements

Zero or very low voltage level (Ugrid < 15% Un) duration up to 625 ms

Improved persistence of grid synchronism during low grid voltage levels and 
voltage restoration

Fault type detection

Improved FRT performance and fault type detection is based on

Feedforward control from measured grid voltage

Intelligent ”flywheel logic” to keep the synchronism during low voltage levels

Extraction of symmetrical components of grid 

Some inbuild FRT functionalities

Extraction of symmetrical components of grid voltage

Reactive current injection during LVRT, ZVRT and HVRT

Selection of operation mode during FRT



LVRT testing of wind power converter

Generally four types of voltage dip generator systems:

1. Rotating generator based

2. Shunt (or switched) impedance based

3. Transformer based

4. Full-power converter based

Shunt impedance based solutions

Most often used

Recognized as a standardized (de facto) way to create voltage dips
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C. Wessels et al., Transformer 

Based Voltage Sag Generator to 

perform LVRT and HVRT Tests in 

the Laboratory, In Proceedings of 

EPE-PEMC 2010, Ohrid, Republic 

of Macedonia.



Shunt impedance based FRT test system
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Challenges for R&D testing at the manufacturing site

Full-power grid connection and sufficiently high SCR needed

Upstream grid disturbance

Bulky circuit breakers and reactors needed

Mobile test container solutions are expensive

Setup time for different test cases

In practice, a limited number of voltage dip types can be generated

Special requirement for installation and operation in case of MV level 

system

MV Grid
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Full-power converter based LVRT test bench
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Parameter Down-scaled Full-scale

Line voltage Un [V] 400 690

Power Sn [kVA] 8.2 1800

Filter inductance L1 [mH] 1.7 0.05

Filter capacitance C1 [μF] 1 68

Filter inductance L2 [mH] 4.1 0.09

Filter capacitance C2 [μF] 2.2 204

Max DC-link voltage Udc [V] 750 1100

Switching frequency fsw [kHz] 3.6 3.6

Table: Main parameters of full-converter test benches



Full-power converter based LVRT test bench
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Features

Only partial-power grid connection needed

Negligible upstream grid disturbance

Exactly the same hardware as in EUT can be used

Easy and fast setup of different test cases

Various types of voltage dips can be generated

Arbitrary dip depth (fault factor k), duration and number of 

consecutive dips can be generated

HVRT, phase jumps, frequency ramps also possible

No moving parts in the dip generation system



Voltage dip classification

Phasors of three-phase voltages before (dashed) and during the fault (solid)
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M. Bongiorno, On Control of Grid-connected Voltage Source Converters – Mitigation of Voltage Dips 

and Subsynchronous Resonances, Dissertation, Chalmers University of Technology, Gothenburg, 

Sweden, 2007.



Voltage dip propagation and generation

Fault Dip in HV 

level

Dip in MV 

level

Dip in LV 

level

Generation 

(LV)

3-phase fault Type A Type A Type A

1-phase fault Type B Type C Type D

phase-to-
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Type C Type D Type C

2-phase to 

ground

Type E Type F
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Type F
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Coefficient k = 0...1 is the fault level factor.



Voltage dip generation - Examples

Fig. 1: Phase-to-phase voltages in dip 

of type C. Fault factor k = 0.5.

Fig. 2: Phase-to-phase voltages in dip 

of type D. Fault factor k = 0.5.

Fig. 3: Phase-to-phase voltages in dip 

of type F. Fault factor k = 0.5.
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Full Power Converter Test Facilities
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Some test results with full-scale test bench

Two examples:

1. 50%/250 ms symmetrical voltage dip 

(Type A) in 30% load condition

2. 50%(1/250 ms unsymmetric voltage dip 

(Type C) in 30 % load condition

1) Lowest phase-to-phase voltage is 50% of Un and corresponds to MV fault factor k = 0.5.
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Some test results with full-scale test bench

1. 50%/250 ms symmetrical voltage dip (Type A/A) in 30% load 

condition

DC voltage

Active current

Reactive current

Grid voltage magnitude

Pos. sequence magnitude
Neg. sequence magnitude
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Some test results with full-scale test bench

2. 50%/250 ms unsymmetric voltage dip (Type B/C) in 30 % load 

condition

DC voltage

Active current

Reactive current

Grid voltage magnitude

Pos. sequence magnitude

Neg. sequence magnitude
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LVRT testing of full power converter
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Two examples:

1. 0% / 3 s symmetrical voltage dip (Type 

A) in 90% load condition (drive train 

nominal power is 1.5 MW)

2. 0% / 3 s unsymmetric voltage dip (Type 

C) in 90 % load condition (drive train 

nominal power is 1.5 MW)



LVRT testing of full power converter
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Key facts

1. Symmetrical voltage dip 

down to 0 % of nominal 

voltage

2. The dip duration was 3 s

3. Additional reactive 

power control was 

enabled

4. Dynamic electrical brake 

was applied



LVRT testing of full power converter
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Key facts

1. Asymmetrical voltage 

dip down to 0 % of 

nominal voltage

2. The dip duration was 3 s

3. Additional reactive 

power control was 

enabled

4. Dynamic electrical brake 

was used



Conclusions

Megawatt-scale full-power converter based test bench for low 

voltage ride-through testing of wind power converters was 

proposed

All types of practical voltage dips occuring on LV-side of Dyn-

connected WT transformer can be emulated with the test bench

Arbitrary dip depth (fault factor k), duration and number of 

consecutive dips can be generated

Test bench plays a key role in full-power converter product 

development and product verification

Could this approach be taken advantage of in certification 

process of grid code compliance?
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