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The Switch introduction
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Grid codes

O Grid codes are national minimum technical regulations and

requirements for interconnection that an electrical generating unit
must fulfill

© Purpose of the grid codes is to secure a reliable, safe and efficient
operation, maintenance and functioning of the electrical grid
© The main requirements common to most of the grid codes:
© Voltage and frequency operating range
© Active power control / Frequency control
© Reactive power control / Voltage control

O Fault Ride Through (FRT)
O Low-Voltage Ride-Through (LVRT)
O High-Voltage Ride-Through (HVRT)
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Grid code FRT requirements

Voltage Ride-Through (VRT) Boundaries [2]

Aumtr aty of national faalt fide- through requirerm ents - source [1].
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[1] F. lov et al., Mapping of grid faults and grid codes, Risg-R-1617(EN), Risg National Laboratory, July
2007

[2] The Technical Basis for the New WECC Voltage Ride-Though (VRT) Standard, June 13 2007,
Avallable: http://www.wecc.biz/Standards/Development/
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Grid code FRT requirements

LVRT and HVRT profiles of some national grid codes
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Grid code FRT requirements

Stay connected during the grid faults (VRT boundaries)
Fast active power restoration to pre-fault values
Support network voltages during a fault with reactive current (optional)

Distribute short circuit current during a fault (optional)
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FRT control development of The Switch
Full-Power Converters

— Germany — Denmark ~— Canada — Spain FRT Spec for
Hydro-Québec — The Switch
Full-Power
= lIreland = Great Britain = China GB/T-200 — Mordel Converter
Canada (AESD) (NGET)

All types of faults 1-phase, 2-phase and 3-phase must be
tolerated
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(R
FRT control development of The Switch

Full-Power Converters

O Improved grid converter control to meet the latest FRT
requirements
© Zero or very low voltage level (Ugrid < 15% Un) duration up to 625 ms

© Improved persistence of grid synchronism during low grid voltage levels and
voltage restoration

O Fault type detection

Improved FRT performance and fault type detection is based on

© Feedforward control from measured grid voltage
O Intelligent "flywheel logic” to keep the synchronism during low voltage levels
O Extraction of symmetrical components of grid

Some inbuild FRT functionalities

© Extraction of symmetrical components of grid voltage
© Reactive current injection during LVRT, ZVRT and HVRT
© Selection of operation mode during FRT
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(R
LVRT testing of wind power converter

© Generally four types of voltage dip generator systems:
1. Rotating generator based
2. Shunt (or switched) impedance based
3. Transformer based
4. Full-power converter based

© Shunt impedance based solutions

© Most often used
© Recognized as a standardized (de facto) way to create voltage dips

1) generstor based 7] shunt impedance based C. Wessels et al., Transformer
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Shunt impedance based FRT test system

© Challenges for R&D testing at the manufacturing site
O Full-power grid connection and sufficiently high SCR needed
O Upstream grid disturbance
© Bulky circuit breakers and reactors needed
© Mobile test container solutions are expensive
O
O
O

Setup time for different test cases
In practice, a limited number of voltage dip types can be generated
Special requirement for installation and operation in case of MV level

ﬂ

| 690V / 20kV
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Full-power converter based LVRT test bench

Wind turbine emulator
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Full converter based test bench Equipment under test (EUT)

Table: Main parameters of full-converter test benches

Parameter Down-scaled Full-scale

Line voltage U, [V] 400 690

Power S, [kVA] 8.2 1800

Filter inductance L; [mH] 1.7 0.05
Filter capacitance C, [uF] 1 68
Filter inductance L, [mH] 4.1 0.09
Filter capacitance C, [uF] 2.2 204

Max DC-link voltage U, [V] 750 1100
Switching frequency f,, [kHz] 3.6 3.6
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Full-power converter based LVRT test bench

O Features
© Only partial-power grid connection needed
Negligible upstream grid disturbance
Exactly the same hardware as in EUT can be used
Easy and fast setup of different test cases
Various types of voltage dips can be generated

Arbitrary dip depth (fault factor k), duration and number of
consecutive dips can be generated

HVRT, phase jumps, frequency ramps also possible
No moving parts in the dip generation system

Wind turbine emulator
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Full converter based test bench Equipment under test (EUT)
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Voltage dip classification

Phasors of three-phase voltages before (dashed) and during the fault (solid)

dip type A 5 dip type B dip type C

M. Bongiorno, On Control of Grid-connected Voltage Source Converters — Mitigation of Voltage Dips
and Subsynchronous Resonances, Dissertation, Chalmers University of Technology, Gothenburg,
Sweden, 2007.
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Voltage dip propagation and generation

Fault Dip in HV Dip in MV Dip in LV Generation
level level level (LV)
=(1-k)u

3-phase fault Type A Type A Type A (11 kk);’w

u'=(1-k)u
1-phase fault Type B Type C Type D V'=v+ku/2

w'=w+ku/2

u'=u
phase-to- Type C Type D Type C v=v—Kk{v-w)2
phase w'=w+k(v—w)/2

u'=(1-k)u
2-phase to Type E Type F Type G (C) V=vik(u-v)3
ground Type E Type F w'=w+k (u—-w)/3

Coefficient k = 0...1 is the fault level factor. M
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Voltage dip generation - Examples

VI e

4
=

Fig. 1. Phase-to-phase voltages in dip Fig. 2: Phase-to-phase voltages in dip Fig. 3: Phase-to-phase voltages in dip
of type C. Fault factor k = 0.5. of type D. Fault factor k = 0.5. of type F. Fault factor k = 0.5.
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Full Power Converter Test Facilities
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Some test results with full-scale test bench

Two examples:

1. 50%/250 ms symmetrical voltage dip
(Type A) in 30% load condition

2. 50%/250 ms unsymmetric voltage dip
(Type C) in 30 % load condition

1) Lowest phase-to-phase voltage is 50% of U, and corresponds to MV fault factor k = 0.5.
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Some test results with full-scale test bench

1. 50%/250 ms symmetrical voltage dip (Type A/A) in 30% load
condition
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Some test results with full-scale test bench

2. 50%/250 ms unsymmetric voltage dip (Type B/C) in 30 % load
conditio
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LVRT testing of full power converter

Two examples:

1. 0% /3 s symmetrical voltage dip (Type
A) in 90% load condition (drive train
nominal power is 1.5 MW)

0% / 3 s unsymmetric voltage dip (Type
C) in 90 % load condition (drive train
nominal power is 1.5 MW)
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LVRT testing of full power converter
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Key facts

1. Symmetrical voltage dip

down to 0 % of nominal

voltage

. The dip duration was 3 s

. Additional reactive
power control was
enabled

Active power

. Dynamic electrical brake
was applied

Reactive power

- Voltage sequences
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LVRT testing of full power converter
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1. Asymmetrical voltage
dip down to 0 % of
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. The dip duration was 3 s

. Additional reactive
power control was
enabled

. Dynamic electrical brake
was used
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Conclusions

© Megawatt-scale full-power converter based test bench for low
voltage ride-through testing of wind power converters was
proposed

O All types of practical voltage dips occuring on LV-side of Dyn-
connected WT transformer can be emulated with the test bench

© Arbitrary dip depth (fault factor k), duration and number of
consecutive dips can be generated

O Test bench plays a key role in full-power converter product
development and product verification

© Could this approach be taken advantage of in certification
process of grid code compliance?
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