

Island operation in Sweden – experience and studies

Olof Samuelsson

Industrial Electrical Engineering and Automation

Why island operation field test?

- Fault clearing
 - Protection settings
 - Standard methods
- Frequency and voltage control
 - Parameter selection
 - Time simulations
 - Functioning of individual components
 - Limited field tests
 - Hardware-in-the-loop (Solvina)
 - Testing of complete system
 - Full-scale field test

River Ätran

- 50 kV network
 - Along river
 - Single infeed
 - Island operation backup
 - New generator controls
- Hydropower
 - 3+3x2+1 units = 57 MW
- Windpower
 - 8 units = 6 MW
- Customers
 - No interruption
- Sydkraft (E.ON) area
 MV, LV, hydro

Ätran island operation field test – setup

- Monitoring
 - SCADA: event logs and minute/10 s data
 - PC data logger: kV, f, MW (G/T) and Mvar of tested units
 - 3 PMU: kV, generator currents, line currents
- 50 kV network
 - 15 MW load at starting of test an April night at 22.00
- Hydropower
 - 5 units with 30 MW capacity on-line
 - Check for limits in water flows and levels
- Windpower
 - All units on-line delivering 0,9 MW

Ätran island operation field test procedure

- Configure 50 kV network
- Start selected hydro units with some on manual
- Adjust hydro production for zero exchange with external network
- Open circuit breaker
- Run tests to assess f-control of test units G1, G2 and G1+G2
 - Manually change power level of one unit slowly
 - Trip one unit with 1 MW production
 - Trip one unit with 3 MW production
- Synchronize to external network

Ätran island operation: Result summary

- Voltage and frequency OK
- Frequency control at tested G1 and G2
 - Worked fine when fully responsible
 - Poor sharing of MW
- Windpower tripped at 51 Hz
- MW oscillations at reconnection

Ätran island operation: Disconnection

• Frequency drops to 49 Hz at transition to island operation

Ätran island operation: Voltage quality

- Voltage follows frequency at trip of 2,2 MW unit
- Relative voltage drop about half frequency drop

Ätran island operation: MW sharing

- Slow redistribution of MW between units participating in f-control
- Correct sharing between parallel units

Ätran island operation: Windpower trip

• Windpower trip at 51 Hz changes line flow

Ätran island operation: Reconnection

- MW oscillation at reconnection with Δf 0,2 Hz and Δv 0,5 kV
- Phase jump may affect ROCOF relays

EN50160: Frequency

- Greater frequency variation during island operation
- Within limits
 - Only little margin
 - Time of events matters

EN50160: Voltage

Index	Value (V)	Value (%)	Limit
Highest 10-min rms voltage	234.69 V	102%	110%
Lowest 10-min rms voltage	213.03 V	92.6%	85%
Lower limit 95% interval 3-second voltage	212.4 V	92.4%	85%
Upper limit 95% interval 3-second voltage	233.7 V	101.6%	115%
Lower limit 95% interval 1-minute voltage	212.4 V	92.4%	86%
Upper limit 95% interval 1-minute voltage	233.6 V	101.6%	114%
Highest 10-min very-short variation	6.7 V		2.5 V
Highest long-term flicker severity	2	7.2%	100%

- Greatest variations at end of test
- Events have great impact
- No limits on instantaneous value

Protection against extreme V and f

- Conflict in settings range between dependability and robustness
 - <u>Narrow</u> to permit islanding detection
 - <u>Wide</u> to permit grid fault ride-through as required by TSO

Backup generators in cable networks

- Backup generators normally used in OHL networks
 - Reactive power injected to keep voltage high enough
- Rural OHL networks replaced by extensive cable networks
 - Considerable charging capacitance
 - Question is how to keep voltage low enough
- Cable failure infrequent but may be long
 - Clear application of backup generators
 - Backup generators need to absorb reactive power

References

M. Bollen, O. Samuelsson, "Controlled island operation of part of the 50-kV grid in Southern Sweden," IEEE Power Tech 2009, Bucharest, Romania, 28 June-2 July 2009.

M. Bollen, J. Zhong, O. Samuelsson, J. Björnstedt, "Performance indicators for microgrids during grid-connected and island operation," IEEE Power Tech 2009, Bucharest, Romania, 28 June-2 July 2009.

O. Samuelsson, N. Stråth, "Islanding detection and connection requirements", IEEE General Meeting 2007, 24-28 June, Tampa, FL, USA.

H. Sölling, "Reservkraft i mellanspänningsnät" (in Swedish), Report TEIE-5229, www.iea.lth.se/publications/pubmsc.html