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Abstract 

Supplying uninterrupted and high quality electric power to the customer is a priority in the 

current power systems. Electricity, as a commodity, represents the motive force of modern society and 

its deprivation causes costly losses for essential parts of the economy in any region.   

This thesis performs a reliability study on a fictional test network, employing several 

techniques to control fault current and power flow in meshed 110-kV subtransmission systems. More 

specifically, this work tests traditional and recent alternatives applied to cases in which underground 

cables (UGC) and overhead lines (OHL) are installed in parallel circuits for optimized performance. 

Economic assessment is handled in order to provide the most inexpensive and reliable solutions, 

accrediting load growth prediction for a review time of 40 years.     

Moreover, fault analysis and power flow simulations are implemented to confirm efficacy 

and operational viability under contingency conditions of the chosen techniques and technologies. It is 

imperative to realize that the simulations and reliability studies were conducted in a simple 4-bar 

network. However, this simplified model can be adapted to any 110-kV urban subtransmission network 

without major alterations.   
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Tiivistelmä 

Tärkeintä nykyaikaisessa sähköverkossa on taata asiakkaille keskeytymätön ja 

korkealaatuinen sähkönjakelu. Nyky-yhteiskunnassa sähköllä on merkittävä rooli kulutushyödykkeenä ja 

sähkön jakeluongelmat voivat aiheuttaa taloudellisia tappioita mille talouden osa-alueelle tahansa ja 

millä maantieteellisellä alueella tahansa.   

Tässä diplomityössä luotettavuustutkimus suoritettiin kuvitteellisessa koeverkossa 

hyödyntämällä useita tekniikoita, joiden avulla kontrolloitiin vikavirtaa ja tehonhallintaa 110 kV 

silmukkaverkoissa. Lisäksi tässä tutkimuksessa testattiin perinteisiä sekä nykyaikaisempia vaihtoehtoja, 

joita sovellettiin tapauksiin, missä maakaapelit ja ilmajohdot on asennettu rinnakkaisiin piireihin 

toiminnan optimoimiseksi. Taloudellinen tarkastelu on tehty siitä näkökulmasta, että löydettäisiin 

kustannustehokkain ja luotettavin ratkaisu, jossa on otettu huomioon kuorman kasvuennuste 40 vuoden 

aikavälillä.  

Vikavirta-analyysi- sekä tehonhallinta simulointeja on toteutettu, jotta voitaisiin taata 

tehokkuus ja toiminnallinen toteutuskelpoisuus muuttuvissa olosuhteissa valittujen toimintatapojen ja 

teknisten ratkaisujen puitteissa. On syytä huomata, että simuloinnit ja luotettavuustarkastelu 

suoritettiin yksinkertaisessa neljän sähköaseman verkossa. Tätä yksinkertaistettua mallia voidaan 

kuitenkin ilman suuria muutoksia soveltaa kaikille 110-kV taajamien jakeluverkoille. 
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Chapter 1: Introduction 

 

 

1.1.  The Power System 

 

Power systems behold major importance to support human welfare in modern 

society. Electricity, which is transmitted through power systems, is nowadays replaced in tasks 

formerly accomplished by wood, natural gas, coal, oil, animal and human power.1 This is a 

reasonable statement, for electricity presents interesting features in face to other commodities. 

Electricity is not storable; hence, it requires a physical transmission system that permits 

uninterruptable flow of energy.2 Consequently, several considerations must prevail in order to 

permit continuous flow from supply points till load areas.  

Presently, the power system represents a very complex arrangement of 

interconnected networks compound by loads, busbars, generators, compensation equipment, 

transmission lines, transformers and ancillary equipment. The purpose of any electrical power 

system is to generate, transmit and distribute electricity to the customer. Similarly, this 

electricity delivery must meet satisfactory levels regarding to availability, cost, quality and 

reliability, as well as afford safety to third parties and low environmental impact. The current 

model for the power system adopted world-wide is typically segmented in generation, 

transmission, distribution and commercialization.3 In the context of this thesis, power system is 

denominated as the Finnish power system (distribution, subtransmission, transmission and 

generation networks at the respective voltage levels) and the terms “network” and “system” 

are employed as synonyms.  

The topology in power systems varies in size, design and operation. Hospitals, 

residential blocks, commercial buildings, ships and factories are examples of smaller power 

systems. Power systems often rely upon the three-phase alternate current (AC) power, which is 
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a globally accepted standard. However, more specific systems, such as electrified railway 

systems, work by the usage of direct-current (DC) power.  

The voltage level is the feature used to ramify power systems in distinct parts. This 

level classification incorporates very broad meaning and thereby there is not a universally 

consummated definition for it. It depends on the context to which it is applied. For instance, 

the International Electromechanical Commission (IEC) divides AC three-phase systems in 

groups,4 according to Table 1. In addition, other organizations, such as the Institute of Electrical 

and Electronics Engineers (IEEE), establish that medium voltage range from 1 to 35 kV for 

devices and rated values over than this is regarded as high voltage.5  

 

Table 1: Nomenclatures used to represent different voltage levels.
6
 

System Nominal Voltage V [kV] 

LV V ≤ 1 

MV 1 < V ≤ 35 

HV 35 < V ≤ 230 

EHV 230 < V ≤ 800 

UHV 
V = 1050 or 1200 

(practiced in the USA) 

Notes: 

 - For voltages over LV, it is used HV unless        
when voltage range is specified; 

- For transformers: low-voltage side (LV); 

and high-voltage side (HV).   

 

 

In order to keep optimum usage of the power system, extra-high and high voltage 

levels are used in transmission; medium voltage, in generation; and medium and low voltages, 

in distribution systems. This hierarchical structure has been developed throughout the last 

century, proving to be the most efficient mean to transport electricity from generation sites to 

unevenly distributed customers.  
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In Finnish reality, 400 kV and 220 kV are employed in transmission; 110 kV, in 

subtransmission; and 20 kV and 0,4 kV, in distribution of electricity.7-9 Furthermore, 

transmission and subtransmission systems in Finland are characterized to be typically meshed 

or looped, while distribution relies on radial configuration.9 

 

 

Figure 1: An example of a typical power system (from generation to consumers).
10

 

 

 

Figure 1 schematizes a simplified example of an electric power system from 

generation to residential customer. It is imperative to recollect that customers are present at 

different voltage levels, not only at the “end point”. For this reason, transmission, 
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subtransmission, primary and secondary customers are classified according to the part of the 

power system that they are connected.      

 

 

1.2.  The Subtransmission Network 

 

The subtransmission network is the area in which this thesis mainly presides. More 

specifically, a fictional generalized 110-kV subtransmission network, depicted in Figure 2, is the 

focused case study. This subtransmission system consists of four HV substations, two 

subsystems (feeding bar I and feeding bar II); additionally, overhead lines (OHL), and 

underground cables (UGC) are used as connectors. For detailed information of the depicted 

network, vide Chapter 5 and Appendices sections.  

 

 

Figure 2: The test network studied (110-kV subtransmission system). 
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It is defined that transmission lines whose main function is to inject power into 

distribution substations are referred as subtransmission lines.11 The subtransmission network 

connects transmission to distribution substations. It also connects specific customers, 

denominated subtransmission customers, to the transmission substation. These customers are 

generally major industrial facilities that receive power at subtransmission voltage levels (from 

34,5 kV to 230 kV).10 

The distinction between transmission and subtransmission networks might be 

tenuous, for transmission lines can also link transmission to distribution substations. 

Nevertheless, the voltage levels and the length of lines are features that distinguish these 

systems. Another feature is that the capacity of subtransmission lines range from 30 MVA to 

500 MVA, whereas in transmission lines it can reach over 2000 MVA (in the case of HVDC links, 

the capacity could reach as high as 7200 MW).11,12   

Subtransmission circuits may be constructed in radial, in loop (open or closed) or in 

grid (meshed) topology. Figures 3 and 4 present some examples of configuration in the 

subtransmission circuit. In some instances, these circuits are used as ties between two or more 

power sources. Two or more subtransmission feeders (or sections of feeder) are routed along in 

order to provide greater adequacy and security for the system. However, the complexity of the 

protective relaying scheme in the subtransmission network, particularly for the meshed 

scheme, and the number of circuit breakers employed could represent a major disadvantage.13  

The redundant nature of meshed networks supports reliability of the network, 

particularly during the loss of a feeder in the case of fault, nonetheless. In other words, the 

chosen topology presents a major impact on the total costs of the subtransmission network.  

Furthermore, a number of criteria should be respected to assess the reliability of 

subtransmission systems, extending to the well-functioning of the entire power system. As an 

example, probabilistic methods respond well to the stochastic complexion of power demand 

and component failures due to contingencies in the system. 
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Figure 3: Common subtransmission network configurations: a) radial; b) improved radial (the black circuit breakers 
are normally open and interlocked with a second breaker automatically); and c) looped. 

 

 

 

Figure 4: Meshed or grid configuration of subtransmission networks. Number of circuit breakers and complexity of 
protection may represent a barrier for fault level and power flow controls. 

 

 

In spite of the shorter length, the fault frequency in subtransmission lines is higher 

than in the transmission network. On the other hand, in comparison with the distribution 
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networks, it is significantly smaller. For instance, the fault occurrence in MV overhead lines can 

be remarkably high, reaching over 30 faults per 100 km per year.14 Intrinsically voltage sags 

originated by faults are propagated; further, because of the meshed nature and depending on 

the position and magnitude of the fault in the subtransmission and transmission networks, as 

well as the type of earthing engaged, these sags affect a larger area than if originated from the 

MV side.15 

 

Table 2: Fault frequencies and shares of different fault types for Finnish transmission systems.
15

  

Voltage 
[kV] 

Fault 
Frequency 

[per year per 
100 km] 

Share of Different Fault Types [%] 

1-
phase  
earth  
faults 

2-
phase  
short-

circuits 

3-
phase  
short-

circuits 

2- or 3-phase  
earth  
faults 

110 3,50 81 3 2 14 

220 0,72 78 2 3 17 

400 0,28 80 2 3 15 

 

 

1.3. Research Problem  

 

The zone at which this thesis is presented represents great importance to the 

continuity of the electricity supply. For this reason, there is an urge to confront the existing 

bottlenecks in the subtransmission system in order to maintain its well-functioning. One of 

these issues is the optimal operation of OHLs and UGCs in parallel paths under contingency 

conditions.   

Due to exogenous factors, particularly by meteorology phenomena, faults in OHLs 

occur much more frequently than in UGCs. As that happens, the loss of OHLs during fault 

conditions might overload parallel UGCs in a destructive level leading to interruption of the 

electricity supply and damage to the cable insulation. This can be explained by the significantly 

lower impedance values per kilometer and the diminished ampacity in UGC (for thermal 
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limitation) comparing to OHL. The latter possesses intrinsically larger resistance and inductance 

per kilometer as well as higher ampacity than the previous. In some cases, depending on the 

network configuration, several parallel feeders, in special the ones compound by UGCs, are 

isolated from the network as a result of the activation of protection subsequent to fault. 

Consequently, a larger number of customers are not supplied, thus setting the regional 

operator under legal jurisdiction by the form of fine.  

Available techniques for fault current limitation and power flow control involving 

traditional and novel solutions are depicted and analyzed in the form of reliability study on the 

purpose to frame flexibility for the considered grid. Moreover, inspection of technical and 

economical performances for each chosen technology and configuration is described to yield to 

optimum parallel operation of underground lines and overhead cables.      

 In the context of this thesis, the analysis of fault levels and power flow control are 

accomplished in two parts: the case networks; and the test network. In the first, the analysis is 

evaluated individually in different network configurations utilizing the same four-busbar 

structure of the test network. In the second, the most straightforward techniques are applied 

to the test network, depicted in Figure 2, to provide comparison at same network.   

 

 

1.4. Main Contribution of the Thesis  

 

In this thesis, the main contributions are: 

  Investigation of fault current and power flow control techniques and technologies 

currently available for meshed subtransmission systems; 

  Study of technically and economically viable alternatives for optimal parallel 

operation of underground cables and overhead lines in existing 110-kV networks in order to 

increase system capacity avoiding expansion;  
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  Cost-based optimization of several network configurations and comparison of 

fault current and power flow solutions; 

  Economical assessment of selected technologies in a general four-busbar 110-kV 

network, providing input to possible usage of these alternatives in real urban subtransmission 

networks. 
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Chapter 2: Cables & Lines in Subtransmission Networks 

 

 

2.1. Overhead Line 

 

Overhead lines (OHL) are widely employed in the transportation of electricity by 

suspending bare-wire conductors whose insulation is mainly provided by the air. Since early 

stages of the development of distribution and transmission networks, adequate insulation 

technology for higher voltages has favored the dominance of overhead lines.  

Suspended lines are constructed over supporting structures, towers (also known as 

pylons), which are distant from each other according to several factors. Namely, the voltage 

level, the weight of the conductors (directly related to the cross-section and material utilized), 

wind loadings and weather conditions are some of the determinant variables when specifying 

towers and lines. 

Currently, OHLs are present in diverse areas, including limitedly accessible and 

extreme environments of the planet, such as rainforest, deserts, subpolar, urban and 

mountainous areas. For environmental and security purposes (to both networks and 

human/animal integrity), design and project of OHLs involve important technical 

considerations. Areas in the corridors formed by the lines must be cleaned from trees and other 

obstacles as well as be isolated by a pre-determined distance from public access.  

Public awareness of environmental impact and restricted availability of natural 

resources draw constant research from the side of engineers and companies providing 

optimized networks.16 Consequently, the material and technology employed represent 

deterministic features in the composition of the total cost of the lines. 
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2.1.1. Physical Structures 

 

In OHLs, structures present a variety of forms according to project specifications. 

Phase spacing, height of average conductor, number of subconductors and their separation in 

bundle configuration are part of the considered parameters.16 Accordingly, the main three 

components of overhead lines are portrayed: conductor, insulation and towers.  

 

 

I. Conductors: 

 

The live part of OHLs functions as the central part of transmission and distribution 

of electricity. As a consequence, conductors must be isolated and carefully installed to avoid 

contact between each other and the supporting towers. Conductors of overhead lines are 

distinguished for not presenting any insulation coatings, i.e., they are actually bare-wire 

conductors. These conductors are flexible and present uniform cross-sectional geometry and 

weight per unit of distance. Additionally, the distance between the highest and the lowest 

points of the curve, when placed on pylons, varies according to the surrounding temperature 

and to the conductor weight. 

The most used materials for conductors are copper, for low voltages and grounding 

wiring, and aluminum, for medium and high voltage systems. The latter is widely employed, for 

its enhanced electrical properties, such as lower resistance per unit of weight of material, as 

well as its lower price in comparison to copper cables.  

There are different types of alloys employed with aluminum for conductors, such as 

aluminum conductor steel-reinforced (ACSR) – which is the most widely employed type – all 

aluminum alloy conductor (AAAC) and aluminum conductor alloy reinforced (ACAR). Also, all 

aluminum conductor (AAC) is available. The presence of a stranded-steel core comprises 

mechanical strength to the conductor. These conductors can present deposited zinc-coated 

(galvanized) layers to provide anti-corrosive protection.  
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A code name (e.g. duck, finch and ibis) is attributed to identify the diameter, the 

rate of aluminum-steel strands and the physical-electrical properties attributed to each type of 

conductor. Conductors based on aluminum or aluminum alloys are frequently described in 

terms of copper equivalent, i.e., the equivalent cross-sectional area of copper conductor 

presenting the same value of DC resistance of the featured aluminum line.  

 

 

 

Figure 5: Bare overhead ACSR conductors: concentrically-stranded conductor with 3 layers of wires around a steel 
core (left); concentrically-stranded conductor with trapezoidal layers of wires around a steel core (right), this type 

of conductor provides 20% extra ampacity for the same given diameter.
17

 

 

 

The wire shape that compose the geometry of the conductor, vide Figure 5, can 

present circular or trapezoidal cross-sectional area. The latter type is engaged in order to 

maximize ampacity given a diameter of a cross-section.18  

One other technique used to optimize operation is to assemble the conductors in 

bundles. This solution is necessary to minimize the corona effect in extra-high voltages lines. 

The corona effect occurs when the dielectric strength of surrounding air is broken by the 

surface potential gradient of a conductor. This effect induces ionization of the region around 

the conductor, producing power losses as consequence. Similarly, it causes radio interference in 

communication channels and it produces a continuum buzz as well as discharges ozone into the 

surrounding area.19 The surface potential gradient is considerably reduced by allocating 2 to 4-



13 
 

conductor bundles per phase by regular distances. Spacers are inserted between the bundled 

conductors to avoid touch during wind gusts. This is a practice introduced in systems operating 

over 200 kV. 

 

 

II. Insulators: 

 

Good performance of electrical networks largely depends on well-insulated 

protection schemes. Insulation is provided by parts notably designed to support conductors on 

towers under whichever possible situation. Insulators must withstand lines mechanically and 

electrically, namely when a lightning strikes the network, during strong storms or surges 

(caused by switching maneuvers).  

Insulators are manufactured in different shapes and materials. Traditionally, 

ceramics and toughened glass have been used; however, polymers and other synthetic 

materials with optimized dielectric properties have been increasingly implemented in extra-

high voltage systems. Examples of widely utilized types of insulators are the disk, pin, shackle, 

pot and Longrod types.20 Altogether, a good insulator must provide good hydrophobic nature 

(intrinsic to dielectric materials), low weight of its spare parts and low moist and dirt 

accumulation over its surface.    

 

 

III. Towers: 

 

Towers represent an expensive part of any project of overhead lines. Not only when 

speculating the shortest and most economical path, but also selecting the least 

environmentally-harmful way portrays the most important factors considered in the project 

design. In many cases, lines need to be supported over different terrains, demanding earth-rock 

excavation and provoking soil erosion.21 
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Towers in power systems behave as suspension, tension or transposition agent, 

according to the working principles of the employed structure. In the case of transposition 

towers, the phase cables are transposed alternately in order to equalize cable impedance in 

relation to the ground and to minimize mutual interference between the phases.  

Furthermore, towers are designed to support lines despite weather conditions and 

even to more violent cataclysms, such as earthquakes. As a result, depending on the availability 

of the material and the mechanical load which towers must withstand, they can be fabricated in 

steel, concrete, wood or a combination of these. Electro-mechanical assembly details of towers 

and overhead lines are out of the scope of this thesis. 

 

Table 3: Average height (H) and average span (S) of towers in Figure 6, from left to right. 

 

115 kV 230 kV 500 kV 

H [m]  19,8 27,5  22,9  25,9  36,6  33,6  35,0  41,2  38,0  51,9  51,9  

S [m] 228,8  274,5  350,8  350,8  350,8  274,5  274,5  350,8  350,8  350,8  350,8  

 

 

Figure 6: Examples of design of transmission towers at 115 kV, 230 kV and 500 kV.
22 
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The size and format of towers and the number of circuits per network vary 

significantly according to the voltage level and the power rate of the system. Defined distances 

between conductors and between conductors and soil exist to maintain enough insulation and 

to avoid interference or contact between different phases. Two or more circuits are added to 

balance weight at HV and EHV levels. In addition, it is also possible to accommodate parallel 

circuits (circuits at different voltage levels) in the same towers. Likewise, overhead power lines 

are equipped with ground wires placed on the topmost part of the tower to minimize the 

incidence of lightning strikes directly to the live conductors. 

Generally, the maximum potential gradient is localized in the center phase and is 

given by the equation: 

 

 (eq. 1) 

 

: OHL surface potential gradient [kVRMS/m]; 

: phase-to-ground voltage [kV]; 

: height from the center of the conductor to ground [m]; 

: conductor radius [m]. 

 

 

A survey held in transmission lines stated that maximum potential gradients vary 

from 12,4 to 21,4 kVRMS/cm.16   

In recent years, it been has shown negative response from the public to 

transmission towers and OHLs on account of the increasing awareness of environmental impact 

and also the collective feeling that these constructions represent visual pollution in urban 

areas. Additionally, controversies about electromagnetic fields from OHLs and safety issues 

have concerned population living in surrounding areas. One initiative, for instance, is to install 

aesthetically appreciable towers away from densely populated area, as the designed ones 
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depicted in Figure 7. One other alternative is to introduce underground cables. However, this 

might not represent an economically nor technically feasible solution. 

 

 

 

 

Figure 7: Salmisaari-Meilahti transmission lines in Helsinki. These are 60-meter landscape towers, designed by 

Antti Nurmesniemi.
23

 

 

  

2.2. Underground Cable 

 

During the past decades, underground cables (UGC) have acquired significant 

importance in high-voltage transmission systems. This was the result of several technological 

improvements, particularly in materials applied to cable insulation and shielding, fomented by 

the necessity of supplying electricity through over-congested highly-populated urban areas. 

These regions frequently comprise of very high real estate value and do not offer enough space 
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to accommodate overhead lines and tower structures. In addition to this, UGCs are very 

effective in applications, such as under-water power transmission. 

   A general structural schematic of a UGC is described in Figure 8. Conversely, the 

number of layers might differ depending on the manufacturer technology and the insulating 

material employed. In the same way as in OHLs, the conductor utilized in UGCs is usually found 

in stranded aluminum (steel core is not used), for its electrical and physical properties, and 

copper.  

 

 

 

Figure 8: Typical construction of XLPE cables.
24,25

 

 

 

1- Aluminum conductor; 

2- Inner semi-conductive layer; 

3- Cross-linked polyethylene insulation; 

4- Outer semi-conductive layer; 

5- Conductive swelling tape; 

6- Metallic shield (aluminum); 

7- Conductive swelling tape; 

8- Coated aluminum tape 

9- Protective outer sheath. 

 

 

In the schematic depicted, the cross-linked polyethylene (XLPE) insulation provides 

efficient insulation at 90°C, under steady-state operation, and 105°C under overload.24 It also 

assures protection under lightning and switching overvoltage situations. The inner and outer 

semi-conductive layers (layers 2 and 4) prevent concentration of electric field at the interfaces 

between the adjacent layers by ensuring physical contact with the insulation (layer 3). The 

metallic shield introduces electric screen, thus not allowing leakage of electric field to outside 
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the cable, radial waterproofing to the insulation layer and behaves as active conductor for 

capacitive and zero-sequence currents. And finally, the outer sheath confers robust mechanical 

protection against external stress (e.g. when digging a tunnel and accidentally striking a UGC) 

and reduces fire propagation. 

Altogether, the layered insulation arrangement is intended to provide flexibility and 

avoid depredation, since damaging the cable structures implies substitution for a new cable, 

and to grant diminished electric field stressing the insulating layer. Moreover, there is physical 

limitation caused by the conductor weight, limiting ampacity and cross-sectional area of 

conductors (for aluminum conductors, one of the largest cross-sections available is 2500 mm2).     

Underground cables, as suggested, are laid under the soil through three main laying 

techniques: in ducts, in troughs and burial. As result, the thermal factor involves direct effect on 

the operational performance of UGCs. Certain burial dimensions and practices, including not 

burying power cables with other types of cables, must be accomplished in order to assure good 

functioning of the system.26  

By applying any of these techniques, two major components are considered: the 

cable and its accessories; and the underground installations to which the cable is laid. The 

conditions to which cables are installed directly influence the overall costs. Existing 

underground facilities, such as subway systems, can be utilized, discarding the necessity of 

building new ones.27  

UGCs present important accessories that facilitate installation and interface with 

other systems. Cable terminations and joints must be able to keep electric fields within 

tolerable values. Sharp ends and joints are avoided to prevent accumulation of electric charges 

and control of equipotential lines.  

Test specifications consist of an important part of the development of cable 

technologies and accessories. IEC 60840 and IEC 62067 are examples of tests recommended by 

the International Council on Large Electric Systems (CIGRE).28 The first includes tests on HV 

extruded cables and accessories and the second, EHV extruded cable systems. 
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2.2.1. Available Technology 

 

Cable technologies have been developed since the 19th century for several 

purposes. They have been employed in cables, in telephony, telegraphy, public lighting systems, 

electricity distribution and transmission, among others. However, in high voltage and extra-high 

voltage, cable technology involves an additional level of concern on the material used for the 

insulation structures and it accounts even more deeply the thermal behavior within steady-

state operation.  

Three major categories of HV UGCs can be listed: high-pressure oil-filled paper-

insulated cables, cables with extruded insulation and high-pressure gas-insulated lines. 

 

 

I. High-pressure oil-filled (HPOF) paper-insulated cables: 

 

Paper-insulated cables present low dielectric losses and high dielectric strength.29,30 

The electrical insulation in this category consists of liquid, paper-lapped, material, including 

polypropylene laminated paper (PPLP). In this method, the three phases of a circuit are placed 

inside a pipe filled with pressurized oil.  

This technology in high voltage level has been popular since the middle of the 20th 

century, although it has been replaced by extruded cabling systems facing gas and oil leakage. 

Since then, design and constructional improvements have effectively increased while 

diminishing environmental risks. Lately, cables with PPLP have employed in submarine EHV DC 

cables.30    

 

 

II. Cables with extruded insulation: 

 

This category includes solid insulating materials, such as cross-linked polyethylene 

(XLPE) and ethylene propylene rubber (EPR). The first is a polymer developed in the first half of 
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the 20th century that exhibits excellent thermal strength and dielectric properties, such as low 

dissipation factor. For that, XLPE cables are used in EHV networks.31,32 The latter type provides 

very good flexibility representing perfect solution in installations that offers limited 

maneuverability. These extruded cables in XPLE and EPR are lighter in weight, present reduced 

risk of flammability and provide larger current capacity than paper-insulated cables.  

 

 

III. High-pressure gas-insulated lines (GIL): 

 

This is not a cable in the strict sense of the word; it is described as an alternative to 

OHLs and UGCs, nevertheless. It actually is an underground line insulated with inert gas (sulfur 

hexafluoride, SF6, or nitrogen gas, N2). It is similar to UGC in the fact that it has to be buried 

underground. GILs are employed in short distances to interconnect power plants to overhead 

lines or between gas-insulated substations (GIS).33  

GIL operates with recent technology, being the first line commissioned in 1975.34 It 

is outlined as an expensive system network and might represent danger to the environment, for 

the most used gas as insulation mean, SF6, is a greenhouse gas. However, GILs involve very low 

power losses and capacitive loads in the lines are in the same order as OHLs due to the gas 

insulation. Given that, GILs can reach longer length than UGC.35  

 

 

Several researches are held to develop enhanced materials, providing sufficient 

insulation without damage to the UGCs as well as to minimize the thermal effect to keep high 

capacity rates in UGC systems. The XLPE-insulated cable technology performs continuous 

improvements in the quality of insulation, permitting reduction in the insulation coating 

thickness, lowering investment costs.  
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The maximum stress in UGC is given by: 

 

 

 (eq. 2) 

 

: UGC surface potential gradient [kVRMS/m]; 

: sheath (insulator + conductor) radius [m]; 

: conductor radius [m]. 

 

 

As inferred from the Equations 1 e 2, the maximum values for potential occurs in 

the inner semi-conducting layer. 

Also, hazardous discharge mechanisms, including partial discharge (PD), which occur 

when dielectric breakdown caused by the stress of overvoltages degrades insulating parts of 

cables or any other large electrical equipment, compromise UGCs. Techniques to identify and 

localize PDs are under development and represent major contribution to the well-functioning 

of HV systems.36-38 

 

 

2.2.2. Thermal Behavior in UGC 

 

More than in overhead lines, thermal transfer in underground cables is a critical 

factor. UGCs are protected by layers of insulating material and, in addition to that, these cables 

are buried underground keeping the thermal dissipation more difficult, depending on the type 

of burial and thermal conductivity of surrounding environment.  

In UGCs, heat is generated from conductor and sheath losses which are current-

dependent factor, as well as from dielectric losses which are a voltage-dependent factor. Heat 

is transmitted by thermal mechanisms (e.g., conduction, between conductor and insulation; 
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and convection, radiation or/and conduction, between cable and the surrounding environment 

depending on the employed laying technique).39 As consequence, cable nominal power rating is 

diminished in comparison to lines, given a conductor nominal cross-sectional area using the 

same material.  

 

 

2.3. Modeling of OHLs and UGCs in Power Systems 

 

For the circuit analysis held in this thesis, line resistance, inductance and 

capacitance are the most representative parameters of interest. Underground cables are 

modeled by the same parameters as overhead lines. However, some considerations have to be 

acknowledged for both cases. 

 

 

I. Resistance: 

 

Any material used to construct wires brings a resistive component to the circuit. The 

resistive component causes power losses, consequently heating in the conductors. In addition, 

as the material specific resistance is function of the ambient temperature, power transfer 

capacity in transmission lines is reduced, as temperature is increased. Resistance has also 

effects on the attenuation of propagating waves in lines during switching and lightning events. 

As a result of the skin effect, conductors consist of smaller effective cross-sectional 

area. For this reason, AC resistance measurement is supplied.  

The resistance of stranded conductors is: 

 

 

 (eq. 3) 
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: resistance of stranded conductors per unit of distance [W/m]; 

: electrical resistivity [W.m]; 

: strand diameter [m]; 

: number of strands. 

 

 

Equation 3 is valid for both cables and lines in different conductor material. Both 

resistivity of the material (rAl = 2,82.10-8 Ω·m and rCu = 1,68.10-8 ,at 20°C) and the number of 

stranded conductors have to be accounted in the case which copper or aluminum is used. 

Likewise, for UGCs, the insulation resistance is also computed and renders information about 

how effective is the insulating material. In catalogues, it is common to observe values for DC 

resistance at 20°C and AC resistance at 50°C and 50/60 Hz.40 

 

 

II. Capacitance and Inductance: 

 

For load flow and balanced-fault analysis in three-phase systems, phase-to-neutral 

(hypothetical neutral conductor) voltage is used. The analysis is performed in only one phase 

and for the other two phases, the correct angular adjustment is inserted. Since phase-to-

neutral voltage values are used, capacitance and inductance, also phase-to-neutral, are 

respectively: 

 

 
(eq. 4) 

 

: single-phase capacitance [F/m]; 

: vacuum permittivity [F/m]; 

: equivalent distance between phases [m]. 
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And:  

 

 (eq. 5) 

 

: single-phase inductance [H/m]. 

 

 

In which: 

 

 (eq. 6) 

 

, , : distances between phases [m]. 

 

 

These equations are valid for isolated three-phase circuits. However, in the case of 

two or more parallel circuits allocated on the same towers, magnetic interaction exists and this 

phenomenon must be considered in the quantification of these parameters.   

In UGCs, the capacitance and inductance are respectively: 

 

 (eq. 7) 

 

: relative permittivity. 

 

 

And 
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 (eq. 8) 

 

: sheath (insulator + conductor) diameter [m]. 

 

 

From Equation 7, it is possible to conclude that materials presenting higher relative 

permittivity yield to higher charging power. Consequently, plastic materials, such as XLPE (er = 

2,3) and PPLP (er = 2,75), are more reliable than oil-filled paper insulation (er = 3,5).40 The best 

insulating materials to be engaged are consequently the ones with low relative permittivity and 

high dielectric strength.  

 

 

2.4. Fault Level and Power Flow Controls 

 

Representing some of the major constraints in the electrical power systems, as well 

as being powerful instrument in important fields of research in electrical engineering, the fault 

level and the power flow controls are accounted since the initial design stage of any power 

plant, substation or other electrical systems.  

While at initial stage calculations are initially resolved to accommodate certain 

operational practices ensured by appropriate switchgear and interlocking arrangements, 

considering expansion and changes in the configuration of the system, later modifications in 

the networks and unexpected load growth, including new connections and power plants, affect 

the short-circuit rates and the power flow harmony of the system throughout its lifespan. 
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2.4.1. Fault Level Control in Meshed High-Voltage Systems 

 

Short-circuit levels raise as the installation of new generation, particularly of 

distributed generation, new feeders, transmission lines and compensation schemes are 

implemented in the network. Not only the high expenses of the possible refurbishment in the 

present system or even the construction of additional substations, but also the redesign and 

test of equipment can extend to a larger portion of the power transmission grid to secure 

admissible fault levels for the system.41,42 As result of this, excessively high short-circuit levels 

can occur to the existing network causing permanent damage (thermal stress) to the UGC 

insulation. This induces to the replacement of UGCs.       

In the depicted test network, underground cables and overhead lines are both 

employed together and in most occasions as parallel circuits, reflecting the current situation in 

the typical Finnish urban 110-kV subtransmission networks.43 Chapters 3 and 6 describe and 

debate over the efficiency of the chosen fault current limiting techniques in the technical and 

economical spheres in the network in study.  

 

 

2.4.2. Power Flow Control in Meshed High-Voltage Systems 

 

Concomitantly, power flow control involves installed devices to enhance the 

performance of networks. It is another solution to increase the capacity and eliminate some of 

the bottlenecks in a network excluding further expansion in the system. Given the topological 

nature of a network, a variety of strategies are used to reorganize the flow of power, increasing 

efficiency and capacity of the power grid. 

Shifting from the traditionally employed radial structure to the meshed multilateral 

power grids, the plurality in which the power systems have developed has introduced problems 

that had not previously been a major issue. One example is the concept of the Smart Grids 
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(Figure 9). The presence of distributed generation, combined heat and power and distributed 

storage systems (e.g., batteries) in different locations of the network represents a larger degree 

complexity to the power flow control.44  

 

 

Figure 9: Schematic of a smart grid. It is distinguished by the presence of DG, CHP, distributed storage and 

enhanced control technologies along the network.
45

 

 

In these new scenarios, it is dramatically more arduous to maintain constant 

balance between generation and demand to support the integrity of the electricity grid. 
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Uncontrolled power flow causes overload of lines and transformers, unbalances the delivered 

power (hence violating contractual power exchange), reduces the security margins in the 

system as well as increases the fault level. In addition, these inefficiencies lead to greater 

system losses (such as the cascade feeder tripping), reduced power transfer capacity and 

opposite reactive power flows.  

Power flow is diametrically related to the supply and demand balance. By voltage 

regulation and control of power in a network, governor mechanisms and voltage regulators 

depict examples of controlling systems in generation. Further, the division of load between 

generators determines output power of each machine according economical and operational 

considerations.  

Similarly, on the load side, the correction of power factor suppresses fluctuations 

from non-linear dynamic loads and maximizes transference of real power from source to load.  

At transmission and distribution levels, as a way to improve power quality and 

increase the network capacity, power flow control is based on voltage support and reactive 

power compensation, which are intrinsically related. Robust voltage support along the multiple 

paths of high-voltage systems is mandatory to minimize voltage variations in its terminals, while 

power compensation sustains optimal efficiency of the grid.  

The power transfer through a conductor is represented by these simplified 

equations: 

  

 

 

 

Figure 10: Simplified line diagram. 

 



29 
 

 (eq. 9) 

 

 

 (eq. 10) 

 

: active power [W]; 

: reactive power [VAr]; 

: voltage at sending terminal [V]; 

: voltage at receiving terminal [V]; 

: line reactance [W]; 

: angle [rad]. 

 

 

Through Equations 9 and 10, it is possible to infer that varying the line reactance 

and the system voltages alter the active and reactive powers through a network. Similarly, 

power control is also performed by voltage regulation (Us and Ur) and angle variation (δ) using 

different devices and solutions.  

Conventional technology, using mechanically-switched devices, has been 

traditionally used to compensate long overhead lines (air-core reactors and static bank of 

capacitors are classical examples). These lines when fully loaded absorb reactive power. Under 

light loads, longer lines may present predominantly higher values of shunt capacitance, 

resulting in generation of reactive power.46 For this reason, compensation schemes can be 

classified in two configurations: shunt and series compensation.  

The first is employed to modify the equivalent impedance in the terminals of a 

circuit and the latter is mainly destined to balance load between parallel lines. More complete 

compensation techniques present both shunt and series compensation. Additionally, most of 

these traditional devices possess fixed reactance values, representing limited alternatives for 

subtransmission systems.  
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More recent technologies, involving consolidated electrical apparatus associated to 

electronic-based controllers, introduce compensation in a broader sense both in steady-state 

and dynamic operation. They respond faster and present no moving parts, such as mechanical 

switches, to perform controllability (due to the static nature of these devices).47 The term 

Flexible AC Transmission Systems (FACTS) is attributed to these devices. This topic is further 

developed in Chapter 3.  
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Chapter 3: Technologies & Techniques under Focus 

 

 

3.1. Fault Current Limiting Techniques 

 

Mitigating solutions to support fault current limitation have been a plentiful 

resource of ideas for research and development of techniques and technologies in the power 

systems. The calculation of the maximum permissible fault current represents economy in the 

total cost of equipment and material employed in a network as well as possibility of greater 

penetration of distributed generation. Notwithstanding these operational benefits, limiting 

fault currents increases main equipment lifespan, such as transformers, cables and lines, as 

consequence of limited let-through currents.    

It is possible to classify these alternatives in two main categories: the short-term, 

which includes temporary solutions, related to the protection coordination; and the long-term, 

which comprises modifications in the network that will change its nature and will last for longer 

period. Some of them are:48-55 

  

 

3.1.1. Short-Term Solutions 

 

I. Remote disconnections:  

 

It is the sequential disconnection of transmission lines, loads or synchronous 

compensators. This maneuver limits the contribution of these sources, thus limiting current 
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levels. Despite of that, the sequential network tripping (SNT) might represent complex control 

strategies. 

 

 

II. Radialization of the network:  

 

By operating strategic circuit breakers during faults by fast-switching mode, the 

system can shift from meshed or looped to radial configuration. The short-circuit contribution 

from different sources upstream the fault is limited as a result. This maneuver is operated by 

fast-switching schemes.   

 

 

3.1.2. Long-Term Solutions 

 

I. Network topology:  

 

It consists in the alteration of the topology of the targeted system. Splitting the 

network in different points, such as dividing busbars in one or more points, and opening loops 

are typical examples.  

The utilization of more traditional and less costly solutions, such as this technique, 

may suit well in some cases; however, reliability analysis, aligned with impact study on the 

network, represents a powerful tool to identify the efficiency of this alternative. 

 

 

II. Change in the earthing scheme of transformers:  

 

Inserting or eliminating impedance from the earthing of transformers change the 

zero-sequence equivalent network, hence decreasing the effects of single-phase faults. This 
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change might not be welcomed in many situations, as in different countries, including Finland, 

for earthing in different parts of the network is standardized (e.g. MV is either neutral isolated 

or coil earthed). 

 

 

III. Upgrade or replacement of equipment:  

 

To be adequate to new higher fault current levels in a network, one alternative is to 

upgrade switchgears, circuit breakers and other equipments to higher ratings. This is frequently 

resumed as costly and laborious task and is taken into consideration in simpler network 

topologies, for it avoids more complex coordination schemes. 

 

In contrast, promising technologies – particularly involving fault current limiting 

devices, such as the fault current limiter (FCL) – have exhibited interesting features to the 

current needs of modern grids. The concept of unilateral power flow (generation-consumer) is 

gradually been replaced by more flexible networks with larger capacity, including distributed 

generation (DG) as well as combined heat & power (CHP) units, covering continental areas.  

 

 

3.1.3. Fault Current Limiter (FCL)  

 

Another long-term solution is the installation of the fault current limiter. The FCL is 

the device that operates immediately after a contingency in the grid, such as faults or downed 

power lines, limiting or reducing unanticipated electrical surges. Depending on the employed 

technology, FCLs can withstand 20 times the designed steady-state current.56 Moreover, the 

operation time of FCLs is smaller than half-cycle, i.e., quick enough to avoid the first current 

peak.57 This characterizes the most interesting feature provided by this device, since by limiting 

short-circuit capacity, mechanical and thermal strain is limited, thus protecting equipment and 

installations from major damage.58    
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The FCL concept is not new to the power sector. Nonetheless, with the advance of 

superconducting materials and power electronics, two main classes of FCLs are under 

development and test: the superconducting (presence of superconducting materials, including 

high-temperature superconducting technology, HTS) and the non-superconducting (presence of 

power-electronics-based solid-state components).  

In addition to these two classes, older technologies of fault current limiters are also 

in use, such as Is-limiters and high-voltage current limiting fuses. These are overcurrent 

sacrificial devices that must be replaced after operation. The Is-limiter presents low-resistance 

and is placed in series with the circuit, frequently it is used as coupling of parallel operation of 

systems as the short-circuit level at this point increases. In this situation, it segregates the two 

systems. This device is not considered in this study.59 

 

 

I. Superconducting Technology:60-65 

 

As inferred from the name, this technology is based in superconducting materials, 

such as stainless steel and Bi-2212 composite. The idea of high-temperature superconductor 

(HTS) technology, in which Tc = 100 K, is also employed to differ from the low-temperature 

superconductor (LTS), in which Tc ranges in a few kelvins. The superconducting fault current 

limiter (SCFCL) can present resistive or inductive state concepts. 

The operational principle is very similar for both types of FCLs. SCFCLs under normal 

network conditions operate as a low-loss resistive (or inductive) load, negligible to the network. 

Under contingency conditions, after a specified onset current is overlapped, an increasing load 

(inductive or resistive) is reflected to the network in order to limit the excessive current 

magnitude from the fault. This transition is often referred as superconductive-to-normal 

transition (SN) or quench.  
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After operation, the fault must be isolated and the device experiences a recovery 

time to cool down and recover after the fault. For that, the device must be equipped with a 

cryogenic system with liquid N2 to bring temperature below the system requirement (Tc).  

The constructive aspects of resistive SCFCLs are based on wires made of 

superconducting material that present sharp SN transition behavior. In Figure 11 (left), the 

presence of resistance Rp in parallel protects the superconductor from excessive heating during 

the SN transition, so it is placed along the superconducting material. It is also meant to avoid 

overvoltages across the device.   

The inductive saturable-core FCL consists of two coils, its electric schematic is 

depicted in Figure 11 (right). These two coils are placed so that a non-linear reactance is 

supplied to the network during contingency situation. Under normal operation, one iron coil is 

kept in saturation by a second superconducting coil. During fault, both coils will be dislocated 

out of saturation by the high fault currents, hence drastically increasing the apparent coil 

inductance. During normal operation, the device apparent impedance incorporates low 

resistance and frequency-dependant inductive reactance.  

 

 

 

Figure 11: Single-phase diagram of resistive SCFCL (left) and saturated core (inductive) SCFCL (right).
63

 

 

 

The overall cost of the FCL using superconducting technology can be roughly 

calculated as the cost of the employed material and varies according the technology in focus. 
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Further, the cryogenic system and the construction costs must be acknowledged in the 

estimation for more realistic figure.   

 

 

II. Solid-State Technology:66-70  

 

The solid-state fault current limiter (SSFCL) consists of current limiting bypass 

impedance (e.g., series reactor), voltage limiting component (such as a metal-oxide varistor, 

MOV) and a fast power-electronic-based switch, depending on the used technology. Under 

normal network conditions, current flows through the FCL and under fault conditions, the GTO 

element switches off, consequently diverting current through the reactor branch.  

Additionally, several other technologies are employed in the fault current limitation 

devices, such as the magnetic fault current limiter (MFCL), superconducting fault current 

limiting transformers (SFCLT) and so on. 

 

 

 

Figure 12: Typical fault current wave shape and date: a) FCL without fault current interruption; and b) FCL with 
fault current interruption.

71
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The typical behavior of FCLs is shown in Figure 12. It is characterized by three 

operating modes: normal operation, fault condition and recovery. When fault occurs, prior to 

the first half-cycle, the device is triggered by control schemes or by the SN-transition, injecting 

the limiting impedance (first cycle). During the fault condition, i.e., the time between the 

operation of attributed protection in order to sectionalize the circuit and the fault interception, 

the current is significantly reduced compared to the situation without the device. Alternatively, 

the system has to be recovered because of the thermal stress, leading to isolation from the 

system after the fault is cleared.72 Depending on the superconductive material employed, this 

recovery time range from seconds to few minutes.62  

 

 

 

Figure 13: Possible locations of FCLs are, for example, bus-ties, feeders, distributed generation and between 
substations.

73
 

 

 

Fault current limiters can be installed at several locations of a network, in which 

applications represent major advantages (vide Figure 13). The most suitable zone to apply the 
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FCL is between the largest source and load, as it is straightforward strategy in purely radial 

networks. Likewise, this device can be installed at ring-bus and double-bus topology as well.74 

FCL can also be introduced in a system as the increasing integration of distributed generation to 

the existing network.75,76 In distributed generation, when new generation units are integrated 

to the system, short-circuit levels in the connection points raise significantly.77  

By allocating FCL in bus-ties and in the coupling of two systems, system flexibility is 

increased and equipment upgrading (such as transformers and circuit breakers) can be avoided, 

thereby, decreasing costs. Also, coupling adjacent networks foment higher power quality, 

smaller voltage sags and lower system losses, as paralleled transformers could operate at 

lighter load.78  

According to the review published in 2009 by Neumann,78 and in 2010, by Kirsten,73 

at high voltage levels, American Electric Power is testing a 138-kV 1300-ARMS FCL based on 

superconducting material in Tidd substation, in Steubenville (USA). In this project, the fault 

level is reduced by 50% and recovery happens under load. 

Despite utilization of FCL within a network, still protection coordination schemes 

and devices are mandatory in order to ensure proper selectivity to the system. Appropriate 

coordination and pick-up values are indispensable to distinguish load current from contingency 

situations.57   

It is wise to express, whatsoever, that given an existing network the short-circuit 

rates in buses are altered when the network configuration is modified and when generation is 

changed (in case of growth of demand). This is represented by installation or deactivation of 

power unities (as for the example of urban areas in Europe, many obsolete CHPs will be 

probably deactivated, replaced or repowered by more modern facilities in the next few 

decades), topology changes or alteration of load types (installation of synchronous machines to 

the network).  

Installing FCLs only limit temporarily the fault levels during contingency in order to 

protect equipment from thermal and mechanical stress while fault is not cleared or 

sectionalized. It does not eliminate faults, but softens effects under different fault types 

(unsymmetrical and symmetrical). This feature is advantageous to networks and enlarges 
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lifespan of associated line equipment. It is also imperative to accredit that, as any equipment, 

its reliability rate is not absolute, being susceptible to failure and unavailability (maintenance, 

technical issues and so on), and the FCL must be properly integrated with the network 

protection system.  

 

 

3.2. Power Flow Control Techniques 

 

In urban subtransmission systems, such as the considered in this thesis, lines and 

cables present relatively short length and meshed topology. Acknowledging this environment, 

compensation aims to provide optimal parallel operation of UGC and OHL to achieve minimal 

losses and balance impedance.  

In some cases depending on network design, after line interruption, feeders might 

suffer cascading line tripping due to line congestion, leading to generalized system loss. In order 

to balance this problem, compensation enacts as a solution to improve underutilized and 

congested lines. Some examples of compensation methods used in subtransmission networks 

are:    

 

 

3.2.1. Conventional Technologies  

 

I. Phase-shift transformer (PST):79  

 

The PST is type of transformer that alters the active power flow between two 

systems. It can be interpreted as modification in the power angle of Equations 9 and 10 

(Chapter 2), i.e., by inserting a phase-shift. There are mainly three types of PSTs: direct, indirect 

and asymmetrical.  
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The first type includes one three-phase core by which the phase shift is obtained 

from the appropriate winding connections. The second type of PST is compound by two 

transformers, one shunt tap exciter to control voltage and other in series to inject voltage. 

Finally the third, the asymmetrical PST induces angle and amplitude altered values of voltage in 

its terminals. This transformer is allocated in parallel circuits with different capacities (e.g. OHL 

and UGC). By manipulating the phase angle, currents through conductors are rearranged to 

more favorable paths to relieve overloads in the system. This technology was not considered in 

this simulation. 

 

 

II. Passive compensation:80,81  

 

This method introduces passive electrical components (reactor and capacitor bank) 

in the system to provide voltage control and reactive compensation. These elements can be 

placed either in series or in parallel with a circuit.  

Shunt reactors (inductor) are inserted permanently to EHV busbar to compensate 

the capacitive effects of long transmission lines, usually over 200 km. Shunt capacitors are 

utilized throughout the system to supply reactive power (boosting local voltage) during heavy 

loading conditions. This represents a wide-spread alternative as a consequence of its low cost 

and flexibility of installation and operation.  

In series, capacitors are connected to conductors to compensate inductive 

reactance. This is mainly introduced to improve system stability and to acquire balanced load 

division between parallel lines. And finally, series reactors are commonly installed in high 

voltage systems to limit fault current levels and to distribute power more homogeneously in 

the case of parallel UGC and OHL. This happens by increasing equivalent reactance in a circuit. 

It is the most economically viable of the compensation techniques, costing between 10 and 20 

dollars per kVAr; however, power losses are high owing to the resistive components of coil and 

voltage drop across the reactor can be considerably high.       
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3.2.2. Flexible AC Transmission System Devices (FACTS)  

 

FACTS device is defined by the IEEE as "a power electronic based system and other 

static equipment that provide control of one or more AC transmission system parameters to 

enhance controllability and increase power transfer capability".82 FACTS controllers steer 

current in a line through fast controlling of the voltage or modifying the impedance of the 

system. Power flow control in an under-utilized line happens by enhancing voltage locally, and 

as a consequence, allowing additional current to be injected into this line.  

 

Table 4: Overview of conventional and recent technologies applied to AC systems.
47

 

 

 

 

In congested networks, FACTS devices increment impedance in the problematic line, 

thereby pushing excess of current into adjacent paths. These controllers provide rapid 

operation and can continuously inject reactive power into the system. Altogether, these effects 
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lead to the growth of the system capacity and line utilization. The major FACTS devices are 

related in Table 4 that compares different FACTS with conventional switched technologies in 

three possible configurations.  

FACTS controllers insert larger degree of freedom to the present power systems 

operation and management by being able to adjust parameters independently so as to control 

power flow.83 These devices, notwithstanding the technology employed, permit a wide 

spectrum of impacts on a network, most related to voltage support and optimized power flow. 

In addition, FACTS devices can minimize power damp oscillations, enhance transfer capacity of 

power and provide stability and power quality improvements.  

The correct dimensioning of these devices and most effective positioning in the 

system must be evaluated to achieve optimal operation. This is subject of study for several 

researches investigating equipment reliability, developing algorithms for optimized 

transmission capacity and best allocation point using different FACTS technology as well as 

other compensation techniques.84-91  

 

 

I. Thyristor-Controlled Series Capacitor:  

 

The FACTS controller utilized in this work is the thyristor-controlled series capacitor 

(TCSC).92-94 This class of FACTS consists in a controlled inductor positioned in parallel with a 

capacitor bank (Figure 14). In this configuration, it is permissible to rapidly control the degree of 

compensation and to tune the fundamental frequency of the capacitor bank. Decreasing the 

equivalent reactance in the line leads to mitigation of power oscillation damping (POD), 

subsynchronous resonance (SSR) and mitigation of voltage sags.95 It has been investigated the 

usage of TCSC as fault current limiter.92  

The main structure of a TCSC is based on a compensating capacitor, a bypass 

inductance, thyristor valve and a MOV connected across the capacitor. The operation of the 



43 
 

device is divided in four modes: blocking, bypass, capacitive boost and inductive boost. In 

bypass mode, the thyristorized valve is not triggered, so the TCSC operates as a fixed series 

capacitor. During the referred mode, the valve is triggered activating the inductor and the 

result is an inductor and capacitor in parallel. In capacitor boost mode (or the normal mode), 

the capacitor discharges proportionally increasing the fundamental voltage. And finally, the 

inductive boost mode is characterized by the increase of the circulating current and the voltage 

distorted waveform. This creates increase of the line inductance. 

 

 

Figure 14: Typical series compensation: series capacitor (left) and TCSC (right).
96

 

  

 

It is practice that for series capacitors the compensation factor, the ratio between 

compensation capacitive reactance and the line inductive capacitance is between 30% and 70%. 

In addition, it is usual that from 70% to 90% of compensation is introduced by fixed series 

capacitor and from 10% to 30% by TCSC. In this way, the cost of compensation arrangement is 

decreased without commit performance and flexibility in the system. 

According to Khederzadeh,92 keeping constant all parameters and inserting 50% of 

compensation, steady-state transferred power doubles, for 75% of compensation, power 

transfer increases fourfold in series capacitive compensation. Furthermore, typical location of 

series capacitors is on the mid-point of the HV line or in both extremes of the line.97 The 
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location directly affects the effectiveness of compensation and the voltage profile along the 

line. 

 

Several considerations ought to be accounted when it comes to the choice of the 

utilized techniques. The costs attributed to these solutions represent a major driving factor. 

FACTS devices, as a new technology and presenting expensive components, are drastically more 

expensive than traditional alternatives; on the other hand, older technologies, such as capacitor 

banks and series reactors, have been under operation for the last decades possessing well-

known drawbacks and relatively low operational costs.  

The most suitable locations for the installation of the above mentioned 

compensation techniques has to be determined, considering accessibility, power transfer 

effectiveness (choice of the “weakest” bar in the network, generated by power flow 

simulations) and fault levels. Additionally, technical and operational aspects are determinative 

in the choice of the most suitable device. Compatibility with other equipment and protection 

philosophy has to be ascertained before installation of any compensation device.      

 

 

3.3.  Upgrading Feeders 

 

Upgrade existing cables and lines can be a realistic alternative to modernize, 

improve system capacity and provide better compatibility with existing network. By the end of 

a network lifespan, systems with obsolete technology have to be substituted by more recent 

technology and replaced by more robust conductors, for example, underground cables 

presenting improved insulation and better ampacity.  

In some situations, upgrading a feeder with all associated equipment and ancillary 

systems might be as costly as building new feeders. The access to the network in underground 

tunnels or in densely populated areas can result in huge operational obstacles for the 



45 
 

installation. However, particularly in congested metropolitan areas, this comprises the only 

alternative to expand and improve capacity of a network. 

In this current study, the upgrade of underground cables is assessed and compared 

with the other described solutions. Simplifications were assumed in order to quantify costs and 

maintenance services. Further explanation is detailed in Chapter 4.     
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Chapter 4: Reliability Analysis & Cost Functions 

 

 

4.1. Reliability Analysis 

 

Reliability is a commonly attributed term in the power systems to define the 

continuity of service to the end customers. Further, it is one essential element in the analysis of 

power supplied to a network. In order to be a reliable system (i.e., the one that provides 

electricity without interruptions), it is mandatory that the utility offer sufficient power, 

satisfactory quality (robust voltage, frequency and active/reactive power profiles) under 

continuous availability. This is a practically impossible task; however, to assure a 100% secure 

supply, as in hospitals or data centers, own backup generation has to be installed to support the 

system against loss of supplies.98    

The failure of part of a network is termed outage. This can be caused by a 

unexpected event (contingency), such as rough weather conditions, faults, or predicted and 

planned circumstances. The relationship between equipment failure and service interruptions 

caused by outage is identified as a central issue to be dealt in the reliability analysis. In addition, 

outages cause interruptions to the end customers and these interruptions are characterized by 

the frequency (how often) and the duration (for how long) that they happen, as the result of 

service problems in the system.  

Outage can be classified in 3 different types: expected, anticipated equipment or 

conductor failure; forced, not predicted equipment or conductor failure as a consequence of 

damage or accident, therefore inducing forced withdrawn from network; and scheduled, 

scheduled outage for the matters of maintenance or substitution of equipment. Similarly, 

interruptions are grouped as: instantaneous, restored instantly by automatic equipment, 

typically lasting less than 15 seconds; momentary, restored by automatic or manual switching in 
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site, typically less than 3 minutes; temporary, restored by manual switching when operator is 

not available, typically 30 minutes; and sustained, longer lasting interruptions taking longer 

than one hour.99    

In this thesis, the studied subtransmission network is evaluated according to the 

qualitative (N-1)-criterion. To accomplish this criterion, a network must, in whatsoever 

technically possible scenario, support failure of part of the system without suspending or 

restricting power supply.100 This is followed so that a high level of reliability of the system is 

achieved to benefit the customer. Moreover, the focused network presents redundancy in the 

number of transformers and double circuits and double busbars in case of failure.101  

Consequently, larger investments from the utility party must be introduced to avoid 

low level of reliability that causes costs to the customer party. In addition, different network 

topologies are investigated given short-circuit levels, reactive balance, voltage profile, power 

losses and economical feasibility. Comparisons at distribution levels have been exploited to 

support this study.102,103   

 

 

4.1.1. Reliability Factors 

 

In a network, all equipment and components are susceptible to failure due to 

technical problems, accidents due to third parties, weather conditions and so on. For that, the 

main factors employed to assess network reliability are:2,98,99,101-113 

 

I. Radially Operated Networks: 

 

Average outage rate: 

 

 
 

(eq.11) 
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Annual outage time: 

 

 
 

(eq.12) 

 

 

Average outage duration: 

 

 
(eq.13) 

 

Non-distributed energy (NDE): 

 

 (eq.14) 

 

: average failure rate for load j [failure/a]; 

: number of feeder sections; 

: annual unavailability for load j [h]; 

: outage time at load point j caused by failure in component i [h]; 

: average outage duration for load j [h]; 

: non-distributed energy to load j [kWh]. 

 

 

II. Parallel Networks (Two Circuits in Parallel): 

 

 Average outage rate: 

 

  (eq.15) 
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Annual outage time: 

 

 (eq.16) 

 

Average outage duration: 

 

 (eq.17) 

 

Index “p”, “1” and “2” meaning, respectively, “parallel”, “circuit 1” and “circuit 2”. 

 

 

In addition to these equations, it is possible to derive relations for the situations 

when a permanent interruption overlaps maintenance interruption, a temporary interruption 

overlaps maintenance, a permanent interruption overlaps temporary and vice-versa.  

 

 

4.1.2. Reliability Indices 

 

Some indices are broadly employed in reliability analysis, representing a statistical 

aggregation, given determined value of load or consumers. SAIDI (system average interruption 

duration index), SAIFI (system average interruption frequency index), CAIDI (customer average 

interruption duration index) and CAIFI (customer average interruption frequency index) are 

examples of them.98,99,114-116  

These parameters do not classify connected loads by peak demand, size or sales. 

Alternatively, “n” interruptions throughout a period of time, usually per year, to a single 

customer, or “n” simultaneous interruptions to different customers are considered as “n” 

interruptions of service. These customer-based indices regard small consumers to be as 

important as large ones.  
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Analytically:  

 

  (eq.18) 

 

  (eq.19) 

 

 
(eq.20) 

 

  (eq.21) 

 

: number of customers interrupted; 

: total number of customers; 

: restoration time for interruption event [h]; 

: total number of customers experiencing interruption. 

 

 

4.2. Cost Composition 

 

Returning the total cost of a project, a general function can be expressed as: 

 

 =  

 

(eq. 22) 

 

: total network cost *€+; 

: investment cost *€+; 

: loss cost *€+; 

: operation and maintenance cost *€+; 

: outage cost *€+. 



51 
 

 

 

This function is typically employed to transmission and distribution components, 

lines, substations and switches. Additionally, the total cost of a component in the network 

under focus is a function dependent on the lifespan, load type, load growth rate and interests 

over the revision time. Values utilized are exhibited in Appendices B, C and D. 

The cost components, in this current reliability investigation, include capital 

expenditure (Capex), losses, operational expenditure (Opex) and outage cost, as described 

below:    

 

 

I. Capital Expenditure (Capex):2,117,118  

 

Capex comprises the funds utilized to purchase or upgrade physical fixed assets (e.g. 

equipment). This value is integrally capitalized in the year of the expense as investment. 

Alternatively, it can, as well, be amortized over a time period. The construction (earthwork, 

cable channels and pipes, erection of towers and materials) and conductor price were 

considered in underground cables and overhead lines investment. For other equipment, such as 

circuit breakers and compensation schemes, estimative was held, accounting main device price 

and station or price per kVA or unit. In the case of the FCL, the price considers the cost of the 

amount of material employed in its design.      

 

 

II. Losses:2  

 

This component is included within the running cost category. It is the value that 

considers market price for energy and marginal price at different voltage levels (in the case of 

this study, subtransmission level).  
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III. Operational Expenditure (Opex):2,117 

 

Also computed as running costs or maintenance costs in the considered systems, it 

is small compared to the investment of equipment, ranging 0,1% to 0,8% in primary equipment 

(transformers, conductors) and from 1,5% to 2,5% in secondary equipment (automation and 

ancillary services).  

 

 

IV. Outage cost: 15,119 

 

This consists of the cost of outage, regarding the customer interruption cost (CIC) 

and repair costs. Further, it accounts the energy not supplied to the load. The outage cost 

component is significantly higher compared to electricity prices, augmenting the necessity of a 

robust and more reliable network. In this study, the effect of faults at transmission level was 

kept aside, since it might cause lack of supply to the totality of the load comprising an absurdly 

high value. In addition, faults at transmission level are considerably fewer than at 

subtransmission and distribution levels, particularly three-phase faults. 

 

 

4.2.1. Comprehensive Cost Function in this Model 

 

It is practical to model a network in this type of study considering a lifetime 

between 30 to 40 years. Further, primary components, such as transformers, can have a 

lifespan from 30 to 50 years.2 Load is identified by load growth rate, electric characteristics of 

load, peak utilization time in the first year and type of customers connected. In several cases, 

the load growth and interests are considered either homogeneous through the considered 

revision time or constant during the first half of the considered revision time and invariable 

during the second half.     
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In this thesis, the cost function is based exclusively on the feeder cost and 

attributed equipment and protection failure effects, to try to quantify and compare the event 

of changes in compensation schemes and fault current limiting techniques on the cost of each 

feeder section.  

The total cost calculated accredits conductor choice, 2 circuit breakers per feeder, 

maintenance or circuit breakers and conductors, compensation scheme costs (when present), 

equipment failure rate (busbars, conductor, circuit breakers and transformers) and outage 

(fault-repair and customer interruption costs). From Equation 22, it can be developed to the 

following equation for the network under consideration: 

 

 

 

 

(eq.23) 

: total cost per feeder section *€+; 

: conductor (and attributed services) cost *€+; 

: circuit breaker cost *€+; 

: compensation scheme (in case it is used) cost *€+; 

: conductor repair cost *€+; 

: equipment (busbar, transformer & circuit breaker) repair cost *€+; 

: customer interruption cost *€+. 

 

 

In which: 

 

 (eq.24) 
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And: 

 

 (eq.25) 

 

: discount factor for loss-related costs; 

: load loss price *€/kWh+; 

: annual peak utilization time [h/a]; 

: power loss [kW]; 

: discount factor for load-related costs; 

: average failure rate [failure/a]; 

: cost per unit of power not supplied per interruption *€/kW+; 

: cost per unit of energy not supplied per interruption *€/kWh+; 

: average outage time per equipment/line section [h]; 

: power not supplied [kW]. 

 

 

4.2.2. Discount Factors 

 

In order to evaluate cash flow at different moments attributing time value of 

money, the economic assessment must include time as a dependent variable. As a 

consequence, the idea of present value – or present worth – is introduced and is the sum of 

cash produced by an invested capital given an interest rate (per year) at a given time (in years). 

It is quantified in accordance to: 

 

 (eq.26) 

 

Similarly: 

 

 (eq.27) 
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And: 

 

  

 

: present value *€+; 

: initial value (investment) *€+; 

: annual interest rate [%]; 

: year posterior to investment; 

: present worth factor; 

 

 

The first discount factor ( ) is the averaged annual value over the load growth 

time. The second (  or ) is employed in situations that there must be linear connection 

with load growth (e.g., outage costs). And the third (  or ) is attributed to situations in 

which quadratic relation is demanded (e.g., losses calculations of cost, for copper losses are 

quadratically proportional to current).  

These 3 figures are represented as, respectively (formulation is developed in 

Appendix E): 

 

 (eq.28) 

 

 (eq.29) 

 

 (eq.30) 
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In which: 

 

  

  

 
 

  

 
 

 

: discount factor for constant relation with load growth; 

: discount factor for linear relation with load growth; 

: discount factor for quadratic relation with load growth; 

: annual load growth [%]; 

: load growth period; 

: review year. 

      

 

4.3. Approximations and Considerations 

 

It is imperative to assume approximations for the model in order to assess the 

network under focus. Firstly, there must be linear approximations of the cost curves for 

underground cables and overhead lines (presented in Appendix F). This simplification is 

necessary, so that load can be placed at any point of the network, owing quadratic relation to 

the loss-load.114 

Secondly, the two loads are identical, as well as the two 110/20 kV transformers 

and the two 400/110 kV transformers. In case of interruption originated by overload, the loads 

are not disconnected from the grid in totality. Each load (equivalent model) is evenly divided 
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into ten feeders. Under this circumstance, these feeders are disconnected one-by-one until the 

system is relieved and overload is suppressed.  

Thirdly, as previously mentioned, faults originating in transmission networks are 

considered separately. This occurs because interruption at this part of the power systems 

causes total interruption of supply to consumers, inserting very high costs to the network. As 

the focus of this work is to analyze different techniques and since in whichever case under test, 

they will be connected to the same modeled transmission network, the frequency of 

contingencies and result of outage (total power interruption) will be the same for all simulated 

cases. 

In addition to short-circuit levels at busbars and power flows in the test-network, 

other factors are also considered, such as aging mechanisms in the network infrastructure, 

thermal effect in equipment, voltage drop and voltage sags.      

 

 

4.3.1. Aging Infrastructure 

 

Issues related to aging infrastructure in the power systems introduce critical factors 

in terms of reliability and damage. For this reason, more thorough analysis and considerations 

must be accounted for, such as increasing likelihood of failure, increase of maintenance costs 

and problems with spare replaceable parts.  

Similarly, as different equipment is installed to the system through a wide span of 

time, old equipment that might be technologically obsolete presents problems related to 

compatibility with newer technologies, thus causing additional costs to the overall project.114   

 

 

4.3.2. Thermal Effect 

 

Insulation of electrical equipment, such as transformers and cables, is subject to 

exponentially increasing failure rates as a result of thermal effects caused by insufficient 
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mechanical and electrical insulation strength.114 This conclusion was empirically determined 

through experimental tests and by the acquisition of equipment age profiles, summarizing the 

situation.  

In UGC and transformer insulation, the most important thermal aging factors that 

accelerate the process are temperature and the presence of water vapor (in some 

environments, such as nuclear power plants, radiation performs strong factor).120,121 

Conversely, the thermal effect and aging mechanisms do not affect overhead lines at the same 

degree of intensity as in underground cables, despite the possibility of conductor corrosion. 

 

 

4.3.3. Voltage Drop and Voltage Sag 

 

Voltage and frequency profiles are standardized as warranty of power quality 

provided to consumers.122 Voltage drop depends on load currents and conductor and 

transformer impedances. Acceptable values for voltage drops from voltage source to 

connection point must be within 10%-limit.  

Voltage drop is obtained from the following formula (for lagging power factor, i.e., 

): 

 

 

(eq.31) 

 

: voltage drop [kV]; 

: line current [A]; 

: resistance [W]; 

: reactance [W]; 

: angle from power factor [degree]. 
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According to regulation,123 a 10-minute voltage variation should be within 10% (0,9 

to 1,1 pu) of tolerance in 95% of a week and within 85 and 110% of tolerance all the time. 

Following this, the maximum voltage drop allowed in this simulation is 2% for the 

subtransmission network in this simulation.  

 

 

Figure 15: Voltage tolerance profile.
107,124

 

 

 

Voltage sag is typically caused by faults at all power system levels and is propagated 

through the power system.15 It is characterized as a sudden reduction of the supply voltage to a 

value between 1% and 90% followed by recovery after a short period (0,5 cycle to 1 

minute).123,124 Further, in Figure 15, a voltage tolerance envelope can be identified, in which the 

region above the upper curve is denominated “prohibited region”, under the lower curve is the 

“no damage region” and between both curves is attributed as the “no interruption region”. 
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Chapter 5: Network Simulation 

 

 

5.1. Simulations  

 

The design of networks, from the electrical engineering point of view, includes 

studies of voltage level selection, power flow requirements, system stability performance, 

voltage and power flow control at the selected voltage level, conductor selection, loss 

simulation, short-circuit simulations, corona-related performance, electromagnetic fields 

effects, insulation design, appropriate switching and protective arrangements. Concomitantly, 

economic inspection and viability of the project are investigated in order to provide the best 

solution, acknowledging the previously mentioned factors. Furthermore, several different 

studies and factors must be regarded involving different fields and competencies, such as 

environmental and logistic factors.  

In this simulation, given the subtransmission voltage level, technical and operational 

aspects of this network, the economic assessment, power flow and short-circuit level analysis 

are interpreted as vehicles to provide the most plausible alternative for existing 110-kV meshed 

networks. Therefore, reliability and operational advantages, economic viability (the least 

expensive solutions), least number of interruptions to customers and most straightforward 

modifications in the existing network were the four pivotal factors regarded in this study.  

It is important to highlight that this study does not intend to judge or criticize any 

technology in its focus, whatsoever. In fact, it intends to offer input in order to compare a 

variety of cases; in each case, these techniques have either been extensively employed in 

power systems over the decades, presenting a substantial number of advantages in a variety of 

applications, or are under improvement/test.  
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The simulations were held in two sets of tests: first, the network cases (depicted in 

Figures 16 and 17); and second, the test network (depicted in Figure 2).  

 

 

5.1.1. Simulation, Part I - The Network Cases 

   

Accordingly, several cases, utilizing the previously described techniques and 

technologies, were analyzed in comparison to “base cases”. The base case is the one from 

which all other cases derive. For instance, the “radial base case” is the existing fictional network 

to be compared to the other radial network cases (with various combinations of conductors). 

The analysis of different alternatives can be accomplished by direct comparison. Naturally, the 

existence of more conductors represents higher investment costs as well as the presence of 

increasing length of underground cables in the network.  

52 different networks were investigated in this study. They were divided into two 

test groups: network configuration, the first 25 simulation cases; and installed 

equipment/device, the following 27 simulation cases. The first group comprises of different 

networks, according to topology (radial, looped and meshed). The latter includes installation of 

devices, equipment or modification in the base cases (split busbars and upgrading existing 

underground cables).  

In this part of the simulation, the used parameters were selected to create a limit 

situation in which cables and lines within the load-growth time of 40 years are close to their 

maximum capacity (in some cases, overload condition was introduced intentionally within this 

period to verify effectiveness of the employed techniques). The transformer ratings, network 

impedance and chosen bases (power and voltage) were chosen in a way that they do not 

represent any limiting factor in the analysis of the power flow behavior in the conductors of the 

network cases. Also, the number of conductor sections varied between four and eight in the 
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tested cases. For that, normalized values given in €/km were obtained to provide feasible tool 

of comparison between the fifty two networks.  

This first simulation was performed as the following: 

 

 

Figure 16: Network cases: a) radial; b) looped; c) meshed; and d) FCL. 

 

 

I. Radial Network Configuration (cases #1, #4 - #7):  

 

(Figure 16a)  Several combinations of UGCs and OHLs are tested in this subgroup on 

radial topology and they are compared to base-case #1. It was inspected the effect of different 
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numbers of parallel conductors (from 1 to 4 conductors connecting two busbars) in the network 

power flow distribution; 

 

 

II. Looped Network Configuration (cases #2, #8 - #15):  

 

(Figure 16b) Combinations of UGCs and OHLs in looped configurations are 

employed in this subgroup (base-case #2). Open-loop and close-loop topologies were simulated 

by varying the number of parallel conductors.  

It is imperative to recognize the fact that this configuration places the HV 

transformers in parallel (parallel operation of transformers T1 and T2). In this case, for 

satisfactory operation, avoiding circulation of currents between them and their subsequent 

damage, parallel operation requires: identical voltage ratio, identical per-unit impedance, same 

polarity, same phase sequence and identical zero relative phase displacement; 

 

 

III. Meshed Network Configuration (cases #3, #16 - #25):  

 

(Figure 16c) In this simulation group, UGCs and OHLs are employed in several 

meshed configurations (base-case #3) using six to eight conductor sections; 

 

 

IV.  Installed FCL (cases #26 - #29):  

 

(Figure 16d) In these four cases, FCLs are installed in different parts of network, 

both in the 110-kV and 20-kV side (base case is #22, for it has the same configuration except 

the presence of this device). The FCL employed is a resistive 110-kV SCFCL (as a similar model in 
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138 kV in the United States has been developed and is under testing phase) and the equivalent 

equipment for 20 kV. Four different values of resistance were used in the calculations at 110 kV 

(cases #26 and #27): 5 W, 10 W, 20 W and 50 W. Additionally, the equivalent values were 

simulated at the voltage level of 20 kV (cases #28 and #29). In Figure 16d, it is possible to 

identify the employed allocation of the FCLs. 

The device locations were: between busbar I and the 400/110-kV transformer TI 

(case #26); between busbar II and the 400/110-kV transformer TII (case #27); between the 

110/20-kV transformer T1 (case #28) and the busbar to which the load L1 is attached; and 

between the 110/20-kV transformer T2 (case #29) and the busbar to which the load L2 is 

attached. Whereas, in the two latter cases, the results were not analyzed, since techniques 

employed at distribution voltage levels were out of the scope of this work. 

 

 

Figure 17: Network cases: a) TCSC; b) series reactor; c) split busbars; and d) upgraded UGC. 
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V. Installed TCSC (cases #30 - #34):  

 

(Figure 17a) The chosen FACTS device, the TCSC, was connected to various parts of 

line sections in the network (base-case #30). The degree of compensation was 39%, 73%, 61% 

and 36%, respectively, for cases #31 to #34, in the lower and upper limits of what is generally 

used (40% and 70%).  

Differently from what is commonly accomplished when this device is installed, the 

TSCS was not installed in association with fixed capacitor banks. This happened in order to 

investigate the direct effect of this compensation device costs on the tested networks in 

comparison to the other simulated technologies. Moreover, this alternative, as well as 

installation of capacitors, is introduced to long lines to compensate their equivalent inductive 

load and provide voltage support in the substation; 

 

 

VI. Installed Series Reactor (cases #35 - #42):  

 

(Figure 17b) Series reactors were introduced to one or two underground cables in 

several strategic points of the network (base-case #35), particularly in the cases in which OHLs 

are connected between the same busbars as UGCs (i.e., receiving power from the same source 

and distributing to the same substation).  

The reactance employed to simulate the reactors were oils of: 1,75W (#36); 1,75W 

(#37); 1,75W (#38); 2,75W (#39); 3W (#40); 2,25W (#31); and 3W (#42). 

This technique is often introduced to cables when they are over than 20 km in 

length. Also, in the cases OHLs and UGCs are built in parallel; 
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VII. Split Busbar (cases #43 - #49):  

 

(Figure 17c) In this subgroup, the busbars III and IV were divided into two new ones 

(IIIa and IIIb, IVa and IVb). This was performed, so that half of the load was kept in the new 

busbars (base-case #43). For that, the reserve transformer in each substation was sent to 

operation, eliminating, thus, the reserve circuit assuring the fulfillment of the (N-1) criterion. 

However, these new busbars are stil linked and under faulty situation, both transformers and 

upstream conductors are able to support the temporary (i.e., during the repair and recovery of 

duplication of load.   

 

 

VIII. UGC Upgrade (cases #50 - #52):  

 

(Figure 17d) In these last cases, it is conducted the upgrade of UGC to larger 

capacity in order to increase power flow capacity (base-case #50). One UGC (model Al 800) in 

each case was replaced to another UGC (model Cu 1200), presenting larger ampacity. 

 

The specification of the network cases and load values are presented in Appendices 

A.1 and G.1. 

 

 

5.1.2. Simulation, Part II - The Test Network 

 

In this second part of the simulations, the most eligible techniques employed in the 

previous network analysis were tested in the fictional test network. In this network (identical to 
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Figure 2), nine cases numbered from T1 (base case) to T9 cover the effect of FCL, series reactor, 

busbar split and cable upgrade in two different locations. 

The parameters selected were smaller than the ones in the network cases and the 

load considered was significantly smaller. The specification of the network cases and load 

values are presented in Appendices A.2 and G.2. 

 

Moreover, the types of overhead lines used in all simulated cases were single circuit 

Al/Fe 205/33 and double circuit Al/Fe 205/33, according to network needs. In the case of 

underground cables, Al 800 cables were employed with the exception of two the UGC upgrade 

cases, in which Cu 1200 cables were selected to upgrade the network. Conductors are 

thoroughly described in Appendices B and F.    

 

 

5.2. Considerations 

 

5.2.1. Power Flow in the Network 

 

The first stage of the simulation is the establishment of the electrical values in the 

network. Initially, having all components and conductors defined in the case network, the 

electrical parameters must be calculated in order to offer input to the reliability study and fault 

level analysis. These parameters are conductor current and power through each conductor 

(active, reactive and apparent) at the base year. With these, power losses and voltage drops are 

accounted in the calculation.  

Secondly, all electrical parameters are shifted to the end of the load-growth period 

(40 years), at the given interest and load-growth rates, to specify the overloads across the 

lifespan of conductors and equipment. At this point, it is possible to analyze the reliability of a 
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network, for current values must be within the tolerable range supported by cables and lines 

after the 40 years. Further, the (N-1) criterion could not be fulfilled in all the network cases to 

provide a higher degree of reliability.  

In UGC, where insulation is more sensitive to thermal stress, originated by 

overcurrents, higher caution about steady-state currents and power flows is considered and 

likewise the design of the enhanced network cases accredits the best, i.e., most egalitarian, 

distribution of currents throughout the network. As a consequence, this represents the idea of 

optimal parallel operation of underground cables and overhead lines.   

Altogether, voltage drops in conductor sections must be under 2% of nominal 

voltage and current value under normal system operation. Besides, there must be less than the 

rated current for the chosen conductor.     

 

 

5.2.2. Fault Levels in the Substations 

 

As the second stage of this study, given all demanding parameters and considering 

the topological nature of each network case, fault levels are computed at the four 110-kV 

busbars. The three-phase fault on each of them was simulated and short-circuit and peak short-

circuit values were calculated for the purpose of obtaining the maximum current level achieved 

during contingency.  

The short-circuit current is computed from: 

 

 (eq. 32) 
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And the peak short-circuit current can be acquired from: 

 

 (eq. 33) 

 

 

In which the factor  is:  

 

 (eq. 34) 

 

: short-circuit current [kA]; 

: system base current [kA]; 

: peak short-circuit current [kA]; 

: Thévenin impedance [pu]; 

: Thévenin resistance [pu]; 

: Thévenin reactance [pu]. 

 

 

In complement to the short-circuit levels, the peak short-circuit value is calculated, 

which is the highest magnitude of current occurring at the first half cycle, and has direct effect 

on equipment integrity during fault. The behavior of both parameters is calculated in all 

network cases, with particular attention in the second group of simulated cases. 

Moreover, the usage of more complex mathematical tools to compute these values 

is unnecessary. In the case of radial networks, calculations are straightforward and can be 

accomplished by direct use of the above mentioned equations. At a more laborious level, yet 

reasonably manageable, other network topologies in a four-busbar network can be computed 

without the assistance of complex algorithms.  
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5.2.3. Reliability Analysis & Cost 

 

The third stage of this simulation is the reliability study and estimation of total 

network costs. In this phase, an investigation of load related costs due to interruptions is 

carried out in each network case and an estimated customer interruption cost over the end of 

the review period is returned in the cases presenting outage. In addition, computation of the 

four different components of the cost functions are calculated and attributed to all networks.  

The reliability analysis and cost estimation were undertaken utilizing parameters 

from Appendices C, D, E and F as well as the theoretical and analytical methodologies 

presented in Chapter 4. For the purpose of identifying interruption costs, only one outage was 

accounted per time, i.e., no simultaneous interruptions happened. This was considered, for the 

test network is relatively small and the sum of all conductor lengths is below 100 km in all 

cases. Even though the chances are quite diminished, there is the possibility of simultaneous 

outage events in real networks.  

The cost estimation was performed employing as many real values and data as 

possible, as the ones attributed in Appendix C. However, the insertion of estimated costs and 

attributed values for services and device installation were required to fill in the blanks and to 

converge to a real network value. 

 

5.3. Results 

 

The results from simulations undertaken in the reliability and fault level studies are: 

presented as total cost; cost share in percentage; cost per kilometer of conductor; attributed 

cost to equipment/technique introduced to network; and short-circuit and peak levels. 

The values obtained the two simulations (network cases and test network) are 

placed separately.   
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5.3.1. Total Cost 

 

 

Chart 1: Total cost (base networks). 

 

 

Chart 2: Total cost (radial networks). 
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Chart 3: Total cost (looped networks). 

 

 

Chart 4: Total cost (meshed networks). 

 

 

0

10

20

30

40

50

60

70

80

#2
Base

#8 #9 #10 #11 #12 #13 #14 #15

C
o

st
 [

in
 m

ill
io

n
s 

o
f 

e
u

ro
s]

Looped Networks

outage

loss

o&m

inv

0

10

20

30

40

50

60

70

80

#3
Base

#16 #17 #18 #19 #20 #21 #22 #23 #24 #25

C
o

st
 [

in
 m

ill
io

n
s 

o
f 

e
u

ro
s]

Meshed Networks

outage

loss

o&m

inv



73 
 

 

 

 

Chart 5: Total cost (FCL installed) 

 

 

Chart 6: Total cost (TCSC installed). 
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Chart 7: Total cost (series reactor installed). 

 

 

Chart 8: Total cost (split busbars). 
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Chart 9: Total cost (upgraded UGC). 

 

 

Chart 10: Total cost (Test Network). 
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Table 5: Cost comparison between employed techniques. 

Case Equipment installed 
Comp./Equip. 

Cost [€] 
Cost related  
 to total cost 

    
#26 FCL (between TI and busbar I) A 1 056 451 3,08 % 

#27 FCL (between TII and busbar II) B 1 056 451 3,08 % 

#28 FCL (T1 MV side) C 1 056 451 3,08 % 

#29 FCL (T2 MV side) D 1 056 451 3,08 % 

    
#31 TCSC A 9 822 663 18,22 % 

#32 TCSC B 8 192 422 18,99 % 

#33 TCSC C 12 648 440 21,30 % 

#34 TCSC D 3 134 369 7,94 % 

    
#36 Reactor A 626 698 1,28 % 

#37 Reactor B 1 272 170 2,59 % 

#38 Reactor C 487 150 1,01 % 

#39 Reactor D 1 120 955 2,30 % 

#40 Reactor E 2 491 067 5,19 % 

#41 Reactor F 1 432 221 2,98 % 

#42 Reactor G 1 006 923 2,37 % 

    
#44 Split A (busbar III) 156 226 0,80 % 

#45 Split B (busbars III & IV) 312 451 1,59 % 

#46 Split C (busbar III) 156 226 0,30 % 

#47 Split D (busbars III & IV) 312 451 0,59 % 

#48 Split E (busbar III) 156 226 0,36 % 

#49 Split F (busbars III & IV) 312 451 0,72 % 

#51 Upgrade A 9 910 671 20,48 % 

#52 Upgrade B 13 671 145 27,92 % 

 

 

Table 6: Cost comparison between employed techniques in the test network. 

Case Equipment installed 
Comp./Equip. 

Cost [€] 
Cost related 
to total cost 

    T2      FCL I (between TI and busbar I) 1 056 451 1,90 % 

T3      FCL II (between TII and busbar II) 1 056 451 1,90 % 

T4      Reactor I 673 341 1,42 % 

T5      Reactor II 712 338 1,51 % 

T6      Split (Bar III) 146 226 0,31 % 

T7      Split (Bar III & IV) 292 451 0,62 % 

T8      Upgrade I 9 647 696 20,17 % 

T9      Upgrade II 13 476 659 27,82 % 
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Chart 11: Total cost per km of conductor. 

 

 

Chart 12: Total cost per km of conductor. 

 

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

#1
 …

#4 #5 #6 #7 #2
…

#8 #9

#1
0

#1
1

#1
2

#1
3

#1
4

#1
5 #3

…

#1
6

#1
7

#1
8

#1
9

#2
0

#2
1

#2
2

#2
3

#2
4

#2
5

Case Number

Cost per km of conductor [€/km]

0

200 000

400 000

600 000

800 000

1 000 000

1 200 000

B

#2
6

#2
7

#2
8

#2
9

#3
0

…

#3
1

#3
2

#3
3

#3
4

#3
5

…

#3
6

#3
7

#3
8

#3
9

#4
0

#4
1

#4
2

#4
3

…

#4
4

#4
5

#4
6

#4
7

#4
8

#4
9

#5
0

…

#5
1

#5
2

Case Number

Cost per km of conductor [€/km] 



78 
 

 

5.3.2. Cost Composition in Percentage 

 

 

Chart 13: Cost composition (base networks). 

 

 

Chart 14: Cost composition (radial networks). 
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Chart 15: Cost composition (looped networks). 

 

 

Chart 16: Cost composition (meshed networks). 
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Chart 17: Cost composition (FCL installed). 

 

 

Chart 18: Cost composition (TCSC installed). 
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Chart 19: Cost composition (series reactor installed). 

 

 

Chart 20: Cost composition (split busbars). 
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Chart 21: Cost composition (upgraded UGC). 

 

 

 

Chart 22: Cost Composition (Test Network). 
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5.3.3. Short-Circuit and Peak Levels at the Busbars 

 

I. Network Cases (Simulation, Part I): 

 

 

Chart 23: Fault levels at busbars I & III (base networks). 

 

 

Chart 24: Fault levels at busbars II & IV (base networks). 
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Chart 25: Fault levels at busbars I & III (radial networks). 

 

 

Chart 26: Fault levels at busbars II & IV (radial networks). 
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Chart 27: Fault levels at busbars I & III (looped networks). 

 

 

Chart 28: Fault levels at busbars II & IV (looped networks). 
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Chart 29: Fault levels at busbars I & III (meshed networks). 

 

 

Chart 30: Fault levels at busbars II & IV (meshed networks). 
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Chart 31: Fault levels at busbars I & III (FCL installed at HV side). 

 

 

Chart 32: Fault levels at busbars II & IV (FCL installed at HV side). 
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Chart 33: Fault levels at busbars I & III (FCL installed at MV side). 

 

 

Chart 34: Fault levels at busbars II & IV (FCL installed at MV side). 
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Chart 35: Fault levels at busbar III for FCL installed at MV side. 

 

 

Chart 36: Fault levels at busbar IV for FCL installed at MV side. 
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Chart 37: Fault levels at busbars I, IIIa & IIIb (split busbars). 

 

 

Chart 38: Fault levels at busbars II, IVa & IVb (split busbars). 
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Chart 39: Fault levels at busbars I & III (TCSC, series reactors and upgraded UGC). 

 

 

Chart 40: Fault levels at busbars II & IV (TCSC, series reactors and upgraded UGC). 
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II. Test Network (Simulation, Part II): 

 

 

Chart 41: Fault levels at busbars I & III (reactor, T4 and T5; upgrade, T8 and T9). 

 

 

Chart 42: Fault levels at busbars II & IV (reactor, T4 and T5; upgrade, T8 and T9). 

 

0

10

20

30

40

50

60

T1
Base 

T4 T5 T8 T9

Sh
o

rt
-C

ir
cu

it
 a

n
d

 P
e

ak
 L

e
ve

ls
 [

kA
]

Test Network

Isc (bar I)

Isc (bar III)

Ip (bar I)

Ip (bar III)

0

10

20

30

40

50

60

T1
Base 

T4 T5 T8 T9Sh
o

rt
-C

ir
cu

it
 a

n
d

 P
e

ak
 L

e
ve

ls
 [

kA
]

Test Network

Isc (bar II)

Isc (bar IV)

Ip (bar II)

Ip (bar IV)



93 
 

 

 

Chart 43: Fault levels at busbars I & III (FCL, T2). 

 

 

Chart 44: Fault levels at busbars II & IV (FCL, T2). 
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Chart 45: Fault levels at busbars I & III (FCL, T3). 

 

 

Chart 46: Fault levels at busbars II & IV (FCL, T3). 
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Chart 47: Fault levels at busbars I, IIIa & IIIb (split busbars, T6 and T7). 

 

 

Chart 48: Fault levels at busbars II, IVa & IVb (split busbars, T6 and T7). 

 

In Charts 47 and 48, note that for the base case (busbars were not divided) and for 
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Chapter 6: Discussion & Conclusions 

 

 

6.1. Discussion  

 

As an attempt to pursuit the most eligible techniques to implement fault current 

limitation and power flow control in parallel operation of underground cables and overhead 

lines, reliability and operational advantages, allied with network costs, must present high 

degree of correlation in comparison to the other cases. The simplicity of modifications in the 

network and how technically laborious and expensive they can be in order to provide the 

foremost performance have relevant importance in the choice. Moreover, the fulfillment of the 

(N-1) criterion and the elimination of interruptions to customers, thus optimized level of 

reliability, are priority in this study. Consequently, all cases that present interruption costs, due 

to power not supplied to customers, are not considered as eligible candidates, since only one 

fault were simulated per time.  

 

 

6.1.1. Cost & Network Reliability 

 

In part I, Network Cases (#1 to #52), it is inferred from Charts 1 to 9 that the least 

costly networks were cases involving some level of redundancy in the configuration, such as 

looped or meshed systems. In fact, for the value of load considered, the presence of branches 

providing power from a second subsystem is enough to provide uninterrupted electricity from 

generation to load. Radial networks would not provide an uninterruptible path for power 
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transfer in the cases of contingencies upstream to the subtransmission network, i.e., in the 

transmission system. Under this situation, if one of the loads is not supplied, the costumer 

interruption cost for the event would be approximately 172,8 million euros. Alternatively, this 

value does not reflect the reality as an honest proposition and, therefore, is not presented in 

the results, for it considers subtransmission parameters. 

Moreover, it is possible to identify that the networks with higher number of UGCs 

also present the most expensive investment and maintenance costs, drawing total network cost 

to higher levels. In Chart 4, for instance, comparing cases #22 and #23, integrally composed by 

OHLs and UGCs, respectively, it is possible to conclude how expensive UGC feeders can be, 

being roughly a threefold value more costly than to install only OHLs. In urban areas, utilization 

of UGCs represents several non-quantitative advantages and is assuredly more accepted by 

public opinion, nonetheless. Furthermore, losses cost in case #23 (UGCs) is only 3,93% of the 

total network cost, the smallest value in percentage of all network cases, while in case #22 

(OHLs), this value is 32,01%. 

In Table 5, it is possible to observe the comparison between the employed 

techniques (the cases comprising installation of devices or structural change of the base 

network).  These values include all costs associated to the employed technique (running costs, 

equipment/technology and related ancillary equipment, such as circuit breakers, investment, 

equipment maintenance and loss). The least expensive cases were the ones using FCLs and 

series reactors. 

In the upgrade cases (#51 and #52), it was considered the total cost of the 

conductor sections. On the other hand, fairer comparison would be the difference between the 

commonly employed UGC (Al800) and the upgraded UGC (Cu 1200). Therefore, the total 

attributed cost would be, for case #51, € 9 million (using Al 800) and € 9,91 million (using 

Cu1200); and for case # 52, € 12,05 million (Al800) and € 13,67 million (Cu1200).    

In part II of the simulation, Test Network (T1 to T9), the total cost did not fluctuate 

much, being the difference of the most costly and the base case of about € 1,88 million. 

However, the investment related to the employed technologies and techniques varied 
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significantly. The investment costs of the installed technology in each case were approximately: 

€ 0,90 million (T2); € 0,90 million (T3); € 0,51 million (T4); € 0,55 million (T5); € 0,08 million (T6); 

€ 0,16 million (T7); € 9,14 million (T8, UGC Cu 1200); and € 12,86 million (T9, UGC Cu 1200). 

Perhaps the investment cost represents a major factor in the choice of which technology or 

technique to install. 

In terms of network reliability, the test network presents backup power supply 

(meshed configuration and transformers in reserve), thus fulfilling the (N-1) criterion. In this 

simulation, in which only one fault per time was introduced to the system (sustained faults, 

depending where in the network the fault happens, different repair times were considered, as 

described in Appendix C), the network responded well, providing power supply without 

compromising the thermal limits of UGCs even after the life cycle time when each of the two 

loads will be grown from 25 MVA each to 37,22 MVA.  

For the considered loads, in the left part of the network (Figure 2, subsystem I, i.e., 

the corridor linking transformer TI to the load L1), the presence of OHLs and 5 conductors 

feeding the busbar III creates redundant and robust supply. On the other hand, in the right part 

of the network (subsystem II, linking transformer TII to load L2), busbar IV is supplied by only 

two UGCs. In the case of losing one of these cables, due to routine equipment maintenance or 

contingency, only one of these cables withstands supply to the whole load. For the employed 

cable Al 800, it is within its themal and ampacity limits. Additionally, in the case of cable 

upgrade, the substitution of one of these two cables connected to busbar IV would represent 

the most advantageous contribution to the system. Or, similarly, by directly connecting this 

busbar to a second source point, for instance, coming from a third subsystem, could be a 

sensible alternative on the grounds of supporting a higher degree of reliability.  

It is important to acknowledge the fact that by ramifying a network and introducing 

connections to more power sources increases short-circuit levels in busbars. In the case of this 

test network, that is an unwanted network side-effect.  

From Charts 13 to 22, from both parts of the simulation, it is possible to verify 

normalized values in percentage. Running cost (i.e., loss) in OHLs is major component of the 
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total network cost. UGCs present much lower loss, since impedance is significantly smaller than 

in OHLs. On the other hand, in UGCs maintenance and investment costs, mostly originated from 

conductor installation, costs are typically threefold higher and, altogether, constitute over than 

95% of the total feeder cost. From Charts 11 and 12, the cost per kilometer of conductor is 

targeted. Similarly, network cases with lower length of UGCs and presenting backup from a 

second subsystem is the most economically feasible alternative.         

   

 

6.1.2. Power Flow & Parallel Operation of UGCs and OHLs 

 

Despite the more attractive cost of the network configuration cases (cases #1 to 

#25), they do not solve the power flow problem in parallel operation of OHL and UGC. Indeed, 

by increasing the number of parallel feeders the distribution of currents is assured in a way that 

there will be less current passing through these feeders. Alternatively, on the case when one of 

these feeders is taken out of service, the share of load between them, particularly in the 

presence of UGCs and OHLs in parallel, can be dangerously uneven leading to cascade tripping.  

When a UGC (Al 800) and a single circuit of OHL (Al/Fe 205/33) are operating in 

parallel, under normal network conditions, the current rate is 3,3 times larger in the UGC than 

in the OHL. Cascade tripping, caused by larger disturbances in the system, can also be caused by 

overload in feeders (gradual increase of power flow though a conductor). This is more 

susceptible to happen in the presence of parallel OHLs and UGCs. As a consequence of 

overloading, conductor thermal limits are surpassed activating protection. Consequently, all 

adjacent feeders trip leading to complete interruption of power supply. 

To avoid that, reactive compensation has to be introduced to the network. Another 

choice is to create a network entirely compound of OHLs and UGCs, identical in impedance, 

which is not the case of the existing urban subtransmission networks. Series reactors were 

investigated in cases #31 to #42, in part I. The installation of series reactors in UGCs in parallel 

with OHLs were very effective bringing power flows to a more even level, thus limiting the 
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possibility of cascade tripping due to overload. The level of compensation can bring cable 

reactance to the same level as line reactance.  

Series reactors were installed to one single cable or to two parallel cables. This way, 

it is possible to compensate more than one cable and also diminish locally the short-circuit 

levels. However, this was observed at a small level, as seen in busbars III and IV from Charts 39 

and 40.    

Moreover, the usage of the TCSC in OHLs as reactive compensation also brought 

dynamic equalization of power flow between cables and lines. The presence of compensation 

harmonizes distribution of currents according to the real-time situation of the network. This is 

the major advantage of FACTS devices over non-compensated networks. Also, TCSC behaves as 

voltage regulator and provides flexibility to the compensated line (this happens by changing the 

degree of compensation provided by the power-electronic-based devices associated to this 

equipment). Also, local voltage boost was verified in busbars in TCSC-employed network cases. 

Alternatively, TCSC investment is quite high in face with series reactors. The price 

per kVAr observed in TCSC is over than US$ 100, depending on the equipment power rate (in 

this theses, the value of € 80 was considered). For passive compensation, including series 

reactor and bank of capacitors, the value is of US$ 10 (€ 8, in this thesis). Further, the 

advantages of TCSC are more praiseworthy to longer high-voltage lines requiring voltage 

regulation than to subtransmission networks.  

In the test network (part II), series reactors did not present as good balance of load 

as in the network cases. The compensation caused better current distribution only to the 

parallel UGCs to which the reactor was installed. For example, in the case T4, where a reactor 

was installed at the UGC connecting busbars II and IV, it is possible to select a compensation 

value at which the reactance of the compensated cable reaches similar value to the equivalent 

adjacent feeder supplying load L2. Conversely, in case T3, where a reactor was installed in the 

two UGCs linking busbars II and III, the presence of this reactor increased the power flow 

through the UGC between busbars II and IV in over 20%. This case was discarded as eligible 

alternative to the test network. 
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Power flows in UGCs were beneficial in the split busbars cases (T5 and T6). Splitting 

busbar III in one point, first case, brought same values as splitting busbars III and IV in one 

point, creating evenly distributed current values in all UGCs (for UGCs between busbars I and 

IIIa-IIIb and between II and IVa and IVb, the passing current was identical). Not only the benefit 

of reducing short-circuit level in the split busbars, but also this technique distributed the power 

flow in the considered network more evenly.       

 

 

6.1.3. Effect in Short-Circuit Levels at 110-kV Busbars 

 

For the first part of the simulation, which is identifying the impact on short-circuit 

levels at busbars, it is possible to observe from Charts 23 to 40 that a huge difference can be 

accomplished using different techniques. Radial networks present intrinsically lower short-

circuit levels compared to other configurations, for the busbars are connected to one single 

feeder from transmission network. Looped and meshed networks present similar short-circuit 

levels, but different for peak short-circuit levels, once these numbers depend on the nature of 

network (strictly related to the Thévenin equivalent resistance and impedance ratio). This 

behavior can also be extended to the reactive compensated networks (TCSC and series reactor) 

in which fault levels are slightly smaller than the base-case networks that present no 

compensation. 

The most effective alterations were experienced in the FCL and split busbar cases. In 

the first solution, short-circuit levels were decreased to nearly half of the base-case level using 

50 Ω devices (resistive FCL). It is verified, as well, that after in these networks the value of 50 Ω, 

the short-circuit values stabilize; however, the equivalent Thévenin resistance at the short-

circuit point (i.e., in the busbars) causes the exponential decay, as in Equation 34, significantly 

faster. This effect can also be investigated using the equivalent of Thévenin using RFCL equals to 

5 Ω, 10 Ω, 20 Ω and 50 Ω. The decay happens abruptly faster for higher RFCL values. When 

installed in the MV level, there is no significant effect on the subtransmission network, 



102 
 

whatsoever, therefore not considered as viable solution in this thesis. Nonetheless, the short-

circuit levels at MV busbars (Charts 35 and 36) for FCL installed at MV level – between 

transformers T1 and T2 and MV busbars – were decreased from 45 kA to about 3 kA using a 66-

Ohm 20-kV device.   

In the second part of the simulation, using different base values (vide Appendix A), 

the results obtained from the installation of FCL between busbar I and transformer TI (T2) and 

busbar II and transformer TII (T3) were very effective, presenting reduction in short-circuit levels 

up to 45%, as depicted in Charts 43 to 46. One other major advantage of employing this device 

is that it avoids the first cycle, i.e. the peak short-circuit value. Nonetheless the increase of the 

device cost by usage of larger amount of material (directly proportional to device price), the 

insertion of higher resistance values returns small decrease in the short-circuit levels. From the 

same graphics, values up to 1000 W were analyzed and it is possible to notice that there was 

minimal difference for device resistance values over than 50 W in all cases. On the other hand, 

this varies in different networks, since topology and short-circuit location affect current levels.     

Recalling the fact that FCL devices avoid the first half-cycle peak (thus the peak 

short-circuit level) during a fault and withstand these currents during faulty conditions, this 

technology represents an outstanding advantage in face to other employed equipment and 

techniques. This technology, at high-voltage levels, is under development. However, it is worth 

develop further study to analyze the benefits of this device at subtransmission networks and 

the best allocation for optimal benefits.     

In both parts of simulation, splitting busbars brought considerable reduction on 

short-circuit and peak levels on busbars III and IV (Charts 37 and 38), though no major changes 

on busbars I and II, as verified in Charts 33 and 34. Similarly in the test network (cases T6 and 

T7), the most significant differences were observed in busbars III and IV, from Charts 46 and 48. 

Additionally, higher reduction in short-circuit level was verified in case T6, in which only busbar 

III was modified. In busbar IV, there was no major change. This happens due to the meshed 

configuration of the particular test network.  
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As previously mentioned, in the test network, splitting busbars introduced a good 

level of power flow balance, giving to this alternative complete fulfillment of the three analyzed 

factors. Allied to the installation of a FCL, the association of these two techniques would bring a 

battery of benefits, at reasonably low cost (investment cost is floating, once it depends on how 

much a HV FCL will be available in the market), to the tested network.   

Finally, shifting the base-case network to radial configuration by fast switching 

schemes, during faults, diminishes source contribution, thus decreasing short-circuit levels. 

Under normal operation, the meshed configuration is re-established providing lighter current 

values on UGCs. For that, substation automation and relaying apparatus must be prepared to 

operate under such situation and the presence of fast circuit breakers should be accounted to 

this change of network topology.   

 

 

6.2. Conclusions 

 

As conclusion, a wide set of interesting advantages is observed from different 

employed techniques. In urban areas where underground cables are more commonly employed 

than in less densely inhabited regions, UGCs in parallel with OHLs must be utilized introducing 

some restrictions to high voltage networks, particularly concerning thermal conditions and 

operational procedures.  

A good solution to the test network (Figure 2) is the one that best fulfills the three 

following technical/operational constraints: diminution of short-circuit levels, low cost 

(extending to low investment) and even distribution power flow through the network. For that, 

splitting busbar – particularly for busbar III – or this technique in association with installation of 

FCL represent the most economically and technically viable solutions according to this study.   

Splitting busbars achieves desirable results and is attractive because of its simplicity 

and interesting technique cost. It diminishes short-circuit level (only the changed busbars 

connected to distribution level, i.e., downstream to the busbar, experienced significant 
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changes), it offers the possibility to operate the network in different configurations, as for 

instance radially operated under contingency and meshed network under normal conditions by 

operational maneuvers from fast switching schemes. 

The installation of FCL devices has presented large drop of short-circuit level, in 

average drops of 40%, and elimination of peak current. In addition, if equipment offers close to 

optimal reliability level, there is the possibility to decrease transformer impedance, therefore 

reducing loss in the circuit. On the other hand, this technology is under development and test 

phase for high voltage systems. Moreover, in the case of this study the equipment reliability 

was considered to be optimal (further description from Chapter 3 and related references).  

Consummately, all employed techniques, as for instance series reactors, are not 

exclusively interesting to the tested network, since no significant reduction on short-circuit 

level is provided to the busbars connected upstream the equipment (connected to the 

transmission network). On the busbars connected to the distribution network, there is 

insignificant reduction, not as distinct as the values uphold by FCLs and splitting busbars. 

Conversely, reactive compensation alternatives, such as series reactors and FACTS devices, 

provide better management of power flow locally and in the specific case of OHLs and UGCs 

operating in parallel circuits, these technologies are the main solutions, notwithstanding high 

investment and running costs.    
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Appendices 
 

 

Appendix A: Network Electrical Parameters 

 

Appendix A.1: Network Cases (Part I, #1 - #52) 

 

 

Bases: Sb = 1000 ; Vb = 110 kV; 

 

I. Transmission Network (400 kV): 

Transformer TI: 500 MVA, 400/110 kV, j.0,15 pu 

Transformer TII: 500 MVA, 400/110 kV, j.0,15 pu  

 

II. Subtransmission Network (110 kV): 

Transformer T1: 200 MVA, 110/20 kV, j.0,06 pu 

Transformer T2: 200 MVA, 110/20 kV, j.0,06 pu 

 

III. Distribution Network (20 kV): 

Load L1: 100 MVA, 20 kV, pf = 0,95  

Load L2: 100 MVA, 20 kV, pf = 0,95 
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Appendix A.2: Test Network (Part II, T1 - T9) 

 

 

Bases: Sb = 1000 MVA; Vb = 110 kV; 

 

IV. Transmission Network (400 kV): 

Transformer TI: 100 MVA, 400/110 kV, j.0,03 pu 

Transformer TII: 100 MVA, 400/110 kV, j.0,03 pu  

 

V. Subtransmission Network (110 kV): 

Transformer T1: 40 MVA, 110/20 kV, j.0,03 pu 

Transformer T2: 40 MVA, 110/20 kV, j.0,03 pu 

 

VI. Distribution Network (20 kV): 

Load L1: 25 MVA, 20 kV, pf = 0,95  

Load L2: 25 MVA, 20 kV, pf = 0,95 
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Appendix B: Conductor Component Data* 

 

110-kV Conductors 
Conductor 

Cost 
 [€/km] 

Construction 
Cost1 

[€/km] 

Total 
Price 

[€/km] 

Maintenance 
Cost 

[€/km.a] 

Rated 
Current 

[A] 

Rated 
Power 
[MVA] 

Resistance
2
 

[W/phase.km] 

Reactance
3
 

[W/phase.km] 

Earth-
Fault 

Current 
[A/km] 

Short-Circuit 
Withstand 
Current, 1s 

[kA] 

110-kV overhead line, steel towers                   
single circuit Al/Fe 106/25 9 072 120 528 129 600 1 000 430 82 0,273 0,410 0,32 10,0 

single circuit Al/Fe 152/25 12 960 147 312 160 272 1 000 550 105 0,190 0,400 0,33 14,3 

single circuit Al/Fe 205/33 12 960 174 096 187 056 1 000 660 126 0,145 0,390 0,33 18,9 

single circuit Al/Fe 305/39 18 468 200 880 219 348 1 000 845 161 0,100 0,380 0,35 28,7 

single circuit 2 x Al/Fe 305/39 36 936 219 897 256 833 1 000 1 280 244 0,049 0,270 0,35 28,7 

single circuit Al/Fe 565/72 27 216 254 448 281 664 1 000 1 240 236 0,054 0,360 0,37 53,1 

single circuit 2 x Al/Fe 565/72 54 432 281 232 335 664 1 000 1 880 358 0,027 0,260 0,37 53,1 

double circuit Al/Fe 106/25 18 144 145 800 163 944 1 000 860 164 0,137 0,430 0,29 10,0 

double circuit Al/Fe 152/25 25 920 178 200 204 120 1 000 1 100 210 0,095 0,420 0,30 14,3 

double circuit Al/Fe 205/33 25 920 210 600 236 520 1 000 1 320 251 0,073 0,410 0,30 18,9 

double circuit Al/Fe 305/39 3 636 243 000 246 636 1 000 1 690 322 0,050 0,400 0,32 28,7 

double circuit 2 x Al/Fe 305/39 73 872 266 004 339 876 1 000 2 560 488 0,025 0,290 0,32 28,7 

double circuit Al/Fe 565/72 54 432 307 800 362 232 1 000 2 480 473 0,027 0,380 0,34 53,1 

double circuit 2 x Al/Fe 565/72 108 864 340 200 449 064 1 000 3 760 716 0,014 0,270 0,34 53,1 

                      
110-kV cables (PEX types AHXLMK and HXLMK)                 
Al 300 129 000 600 000 729 000 2 000 390 74 0,125 0,132 9,90 28,3 

Al 800 165 000 600 000 765 000 2 000 670 128 0,053 0,113 13,80 75,6 

Cu 1200 300 000 600 000 900 000 2 000 1 100 210 0,019 0,110 16,80 171,1 

Cu 2000 465 000 600 000 1 065 000 2 000 1 400 267 0,012 0,101 24,60 285,7 

 
 
 
1 Earthwork, cable channels & pipes, erection of towers and materials; 
2 typical values; 
3 typical values for reactance of cables in delta configuration. 
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Appendix C: Parameters & Technical Constraints* 

 

Interest rate 6 %/a 

Load growth 1 %/a 

Load growth period 40 years 

Life cycle 40 years 

Discount Factors (load and costs increase constantly each year) 

klosses 32,834 

kload 32,834 

kEAC 15,046  

Peak utilization (Tpeak) 5000 h/a  

Price of power losses (hpl) 5 €/kVA.a 

Energy loss price:  

hw0 (no load losses)  0,03 €/kWh 

hwk (load losses)  0,04 €/kWh 

Nominal voltage 110 kV 

Repair costs: 

OHL faults 2000 €/fault 

UGC faults 20000 €/fault 

Others 100 €/h 

Customer Interruption Costs (CIC): 

Agricultural  0,45 €/kW; 9,38 €/kWh 

Commercial  2,65 €/kW; 29,89 €/kWh 

Domestic  0,36 €/kW; 4,29 €/kWh 

Industry  3,52 €/kW; 24,45 €/kWh 

Public Service  1,89 €/kW; 15,08 €/kWh 

Customer Interruption Costs (used value): 

Load 1, Load 2  a = 1,59 €/kW; b = 13,87 €/kWh, considering 
percentages of these 5 different types of 
customers distributed homogeneously. 
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Appendix D: Evaluation Parameters 

 

Appendix D.1: Investment and Maintenance Costs* 

Investment Unit 
Investment 

Cost 
[€/unit] 

Annual 
Maintenance 

Costs 
[€/unit.a] 

Equivalent 
Annual 
Costs 

[€/unit.a] 

Switches and network automation  
    

manually controlled line disconnector piece 3 000 75 274 

remotely controlled disconnection station piece 14 500 745 1 109 

network circuit breaker piece 30 000 300 2 294 

network circuit breaker station (3 cbs + 3 disconnectors) piece 68 000 680 5 199 

TCSC kVAr 100 
 

4,00 

[series] reactor kVAr 10 
 

0,80 

FCL piece 900 000 680 5 199 

     

Conductor 
    

overhead lines km 18 000 120 1 316 

underground cables km 40 000 50 2 708 

earth-fault compensation (cable lines) km 3 100 27 233 

 

 

Appendix D.2: Component Failure and Repair Time** 

Component 
Total Failure 

Rate  

Repair or 
Replacement 

Time [h] 

      

110 kV busbars 0,0068 fault/a 200 

110 kV circuit breakers 0,00336 fault/a 100 

110 kV transformers 0,023 fault/a 300 

110 kV overhead lines 0,0218 fault/km.a 48 

110 kV underground cables 0,001 fault/km.a 336 

 

*Source: Hyvärinen, M., “Electrical Networks and Economies of Load Density”, Doctoral Dissertation, Helsinki University of Technology, Espoo 
(Finland), December 2008, 94 pp; 

**Source: Kazemi, S., “Reliability Evaluation of Smart Distribution Grids”, Doctoral Dissertation, Aalto University, Espoo (Finland), October 2011, 
147 pp.. 
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Appendix E: Annuity Factor Formulation 

 

 

After 1 year payment  is accomplished, the owning money is: 

 

 

After 2 years: 

 

 

After 3 years: 

 

 

 

 

After t years (Equation I): 

 

 

 

 

Being: 

 

 

Multiplying  by:  

 

 

Substituting for A again: 

 

 

Isolating A: 
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Substituting in Equation I: 

 

 

 

 

 

Resulting in: 

 

 

 

 

Being: 

 

 

Therefore: 

 

 

And: 
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Appendix F: Conductor Cost Curves 

 

Appendix F.1: UGC Cost Curves 
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Appendix F.2: OHL (Single Circuit) Cost Curves 
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Appendix F.3: OHL (Double Circuit) Cost Curves 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Appendix G: Simulated Cases 

 

Appendix G.1.: (Part I: Network Cases) 

Case Network configuration 
Bars Total 

OHL   
[km] 

Total 
UGC  
[km] 

I-II I-III II-III II-IV III-IV 

  Distance [km] 10,00 10,00 14,14 10,00 10,00     

         
 

Base networks: 

       #1      Radial 
 

2 OHL 
 

2 OHL 
 

40,00 0 

#2      Looped 
 

2 OHL 
 

2 OHL  2 UGC 40,00 20,00 

#3      Meshed 
 

2 OHL  2 UGC 2 OHL 
 

40,00 28,28 

 
      

  

 
Improved networks: 

     
  

#4      Radial A 
 

2 OHL + UGC 
 

2 OHL + UGC 
 

40,00 20,00 

#5      Radial B 
 

2 OHL + OHL 
 

2 OHL + OHL 
 

60,00 0 

#6      Radial C 
 

2 OHL + 2 UGC 
 

2 OHL 
 

40,00 20,00 

#7      Radial D 
 

2 OHL + 2 OHL 
 

2 OHL 
 

60,00 0 

         
#8      Looped A 2 OHL 2 OHL 

 
2 OHL 

 
40,00 20 

#9      Looped B 2 UGC 2 OHL 
 

2 OHL 
 

40,00 20,00 

#10      Looped C 
 

2 OHL 
 

2 OHL 2 OHL 60,00 0 

#11      Looped D 
 

2 OHL 
 

2 OHL 2 UGC 40,00 20,00 

#12      Looped E OHL 2 OHL 
 

2 OHL OHL 60,00 0 

#13      Looped F UGC 2 OHL 
 

2 OHL UGC 40,00 20,00 

#14      Looped G OHL 2 OHL 
 

2 OHL UGC 50,00 10,00 

#15      Looped H UGC 2 UGC 
 

2 UGC UGC 0 60,00 

         
#16      Meshed A 

 
2 OHL 2 OHL 2 OHL 

 
68,28 0 

#17      Meshed B 
 

2 OHL  2 UGC 2 OHL 
 

40,00 28,28 

#18      Meshed C UGC 2 OHL   2 UGC 2 OHL  UGC 40,00 48,28 

#19      Meshed D OHL 2 OHL  2 UGC 2 OHL OHL 60,00 28,28 

#20      Meshed E OHL 2 OHL 2 OHL 2 OHL OHL 88,28 0 

#21      Meshed F UGC 2 UGC  2 UGC 2 UGC UGC 0 88,28 
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#22      Meshed G OHL 2 OHL OHL 2 OHL OHL 74,14 0 

#23      Meshed H UGC 2 UGC UGC 2 UGC UGC 0 74,14 

#24      Meshed I 2 OHL 2 OHL OHL 2 OHL  OHL 84,14 0 

#25      Meshed J 2 UGC 2 UGC UGC 2 UGC  UGC 0 84,14 

 
      

  

 
Equipment installed: 

     
  

#26      FCL A (TI and busbar I) UGC 2 OHL OHL 2 OHL UGC 54,14 20,00 

#27      FCL B (TII and busbar II) UGC 2 OHL OHL 2 OHL UGC 54,14 20,00 

#28      FCL C (T1 MV side) UGC 2 OHL OHL 2 OHL UGC 54,14 20,00 

#29      FCL D (T2 MV side) UGC 2 OHL OHL 2 OHL UGC 54,14 20,00 

         
#30      Base Case TCSC OHL 2 OHL UGC 2 OHL UGC 50,00 24,14 

#31      TCSC A OHL + TCSC 2 OHL UGC 2 OHL UGC 50,00 24,14 

#32      TCSC B OHL 2 OHL + TCSC UGC 2 OHL UGC 50,00 24,14 

#33      TCSC C OHL 2 OHL UGC 2 OHL + TCSC UGC 50,00 24,14 

#34      TCSC D UGC 2 OHL OHL + TCSC 2 OHL UGC 54,14 20,00 

    
 

    
#35      Base Case Reactor UGC 2 OHL UGC 2 OHL UGC 40,00 34,14 

#36      Reactor A UGC OHL + UGC + Reactor UGC 2 OHL UGC 30,00 44,14 

#37      Reactor B UGC OHL + UGC + Reactor UGC + Reactor 2 OHL UGC 30,00 44,14 

#38      Reactor C UGC 2 OHL UGC + Reactor 2 OHL UGC 40,00 34,14 

#39      Reactor D UGC 2 OHL UGC OHL + UGC + Reactor UGC 30,00 44,14 

#40      Reactor E UGC 2 OHL OHL 2 UGC + Reactor UGC 34,14 40,00 

#41      Reactor F UGC 2 UGC + Reactor OHL 2 OHL UGC 34,14 40,00 

#42      Reactor G UGC 2 OHL UGC 2 OHL UGC + Reactor 40,00 34,14 

         
#43      Base Case Split OHL 2 OHL 

 
2 OHL OHL 60,00 0 

#44      Split A (busbar III) OHL OHL + OHL 
 

2 OHL OHL 60,00 0 

#45      Split B (busbars III & IV) OHL OHL + OHL 
 

OHL + OHL OHL 60,00 0 

#46      Split C (busbar III) UGC UGC + UGC 
 

2 UGC UGC 0 60,00 

#47      Split D (busbars III & IV) UGC UGC + UGC 
 

UGC + UGC UGC 0 60,00 

#48      Split E (busbar III) UGC  OHL + UGC 
 

OHL + UGC UGC 20,00 40,00 

#49      Split F (busbars III & IV) UGC  OHL + UGC 
 

OHL + UGC UGC 20,00 40,00 

         
#50      Base Case Upgrade UGC OHL + UGC UGC 2 OHL UGC 30,00 44,14 

#51      Upgrade A UGC OHL + UGC Upgraded UGC 2 OHL UGC 30,00 44,14 

#52      Upgrade B UGC OHL + UGC UGC Upgraded 2 OHL UGC 30,00 44,14 

 

 



128 
 

 

Appendix G.2.: (Part II: Test Network) 

 

Case Network configuration 
Bars 

Total 
OHL   

Total 
UGC 

I-II I-III II-III II-IV III-IV [km] [km] 

 
Distance [km] 10 10 14,14 10 10 

  

         

 
Test network: 

       T1      Base Case 2 OHL  2 OHL 2 UGC UGC UGC 40 48,28 

T2      FCL I (between TI and busbar I) 2 OHL  2 OHL 2 UGC UGC UGC 40 48,28 

T3      FCL II (between TII and busbar II) 2 OHL  2 OHL 2 UGC UGC UGC 40 48,28 

T4      Reactor I 2 OHL  2 OHL 2 UGC + Reactor UGC UGC 40 48,28 

T5      Reactor II 2 OHL  2 OHL 2 UGC UGC + Reactor UGC 40 48,28 

T6      Split (busbar III) 2 OHL  2 OHL 2 UGC UGC UGC 40 48,28 

T7      Split (busbars III & IV) 2 OHL  2 OHL 2 UGC UGC UGC 40 48,28 

T8      Upgrade I 2 OHL  2 OHL 2 UGC UGC Upgraded UGC 40 48,28 

T9      Upgrade II 2 OHL  2 OHL UGC + UGC Upgraded UGC UGC 40 48,28 

 
 

 

Conductor in bold: base case (taken as reference for the related cases) 

Highlighted locus: equipment or technique applied to respective conductors 

Conductor in blue: changed conductor in comparison to base case 

Conductor in green: added conductor in comparison to base case   

 



 
 

 


